Inferring the Structure of Probabilistic Graphical Models for Efficient Natural Language Understanding

Istvan Chung Oron Propp Mentor: Dr. Thomas Howard¹

> ¹Robust Robotics Group MIT CSAIL

Fourth Annual MIT PRIMES Conference 18 May 2014

Introduction

- Existing interfaces for controlling robots are specialized and difficult to use
- It would be much easier to control robots using natural language commands
- Existing natural language interfaces do not scale well with the complexity of the environment

Probabilistic Graphical Models

Example

{WorldObject(0, 'robot'), WorldObject(1, 'crate'), WorldObject(2, 'box')} + "approach the box" → Constraint(WorldObject(0), WorldObject(2), 'near')

Grammar

- It doesn't make sense to view the input as a monolithic block of text
- It is more meaningful to understand the input with its grammatical structure
- A grammar is used to assign meaning to the words

VP	\rightarrow	VB NP
VP	\rightarrow	VB NP PP
VP	\rightarrow	VB PP
NP	\rightarrow	DT NN
NP	\rightarrow	NP PP
PP	\rightarrow	IN NP
VB	\rightarrow	"approach", "land", "fly"
DT	\rightarrow	"a","the"
ΝN	\rightarrow	"box","chair","table"
IN	\rightarrow	"near", "far", "to"

• Some sentences are ambiguous

CYK Chart Parser

- The CYK Parsing algorithm [4, 5, 6] accomplishes this task in $O(n^3)$ time.
- All possible parses of an ambiguous sentence are returned

Generalized Grounding Graph

- Comprised of "factors" which relate groundings, correspondences, and phrases, and are represented by log-linear models
- Grounding each phrase depends on the groundings of the child phrases

Figure: Generalized grounding graph for "approach the box near the chair"

[2] S. Tellex, T. Kollar, S. Dickerson, M. Walter, A. Banerjee, S. Teller, and N. Roy, *Approaching the Symbol Grounding Problem with Probabilistic Graphical Models*. 2013.

- Log-linear models [1] are used to assign a score to a grounding given some input.
- This is done using a set of features
- Features evaluate aspects of the input and grounding

Scoring function

$$p(c \mid x, y; \mathbf{v}) = \frac{\exp(\mathbf{v} \cdot \mathbf{f}(x, y, c))}{\sum_{c' \in \mathcal{C}} \exp(\mathbf{v} \cdot \mathbf{f}(x, y, c'))}$$

Where x is the input, y is the grounding, c is a correspondence variable, **f** is the array of features, and **v** is the array of feature weights.

[1] M. Collins, Log-Linear Models. http://www.cs.columbia.edu/~mcollins/loglinear.pdf

- Feature weights **v** are trained according to data from a corpus of examples.
- The aim of training is to maximize the objective function:

Objective function and gradient

$$L'(\mathbf{v}) = \sum_{i} \log p(c_i \mid x_i, y_i; \mathbf{v}) - \frac{\lambda}{2} \sum_{k} v_k^2$$
$$\nabla L')(\mathbf{v})_k = \sum_{i} f_k(x_i, y_i, c_i) - \sum_{i} \sum_{c \in \mathcal{C}} p(c \mid x_i, y_i; \mathbf{v}) f_k(x_i, y_i, c) - \lambda v_k$$

• The LBFGS optimization method [7] efficiently maximizes L' while consuming little space.

[7] Byrd, R. H., Lu, P., Nocedal, J., Zhu, C. A Limited Memory Algorithm for Bound Constrained Optimization. 1995.

- Number of possible individual groundings is $O(n^2)$ in the number of objects
- Adding in sets of groundings makes it $2^{O(n^2)}$

The Problem

With 17 objects and 8 relations, the number of sets of constraints is

$$2^{8 \times (17 + 8 \times 17)^2} = 3.08 \times 10^{56374}$$

Partitioning Grounding Spaces

- In many situations, most groundings are irrelevant
- Partition the grounding space to eliminate irrelevant objects from consideration

• Aim of rules is to partition grounding spaces to only include pertinent groundings

Example

```
World: WorldObject(0, 'robot'), WorldObject(1, 'crate'),
WorldObject(2, 'box')
"approach the box" → {Rule('box'), Rule('robot')}
```

Effectiveness of rules increases with complexity of environment and grounding spaces

- Run inference on space of rules
- Apply result to grounding spaces in grounding graph model
- Run inference in graphical model on partitioned grounding spaces for efficient grounding

Hierarchical Grounding Graph

Figure: Hierarchical Grounding Graph for "approach the box near the chair"

Score Evaluations

Score Evaluations for G³ Model and Hierarchical G³ Model 6 G³ model -0-Score evaluations (log₁₀) 5 4 3 2.63 2 ∟ 20 40 60 80 100 120 160 140 Background objects

Runtime for G^3 Model and Hierarchical G^3 Model

Holodeck Experiment

- Expand space of rules to handle region and constraint types
- Implement spatial features with regards to physical world model
- Improve optimization routine (current runtime is impractical)
- Test on Distributed Correspondence Graph model [3]
- Handle parse ambiguity
- Support more sophisticated sentence structures
- Rigorous testing in more complex environments
- Compute bounds on the efficiency of the algorithm

[3] T.M. Howard, S. Tellex, and N. Roy, *A Natural Language Planner Interface for Mobile Manipulators*, to appear in the Proceedings of the 2014 International Conference on Robotics and Automation. 2014.

Thank you to

- MIT PRIMES
- Dr. Thomas Howard
- Professor Nicholas Roy
- Dr. Marec Doniec
- Our parents

Bibliography I

- [1] M. Collins, Log-Linear Models. http://www.cs.columbia.edu/~mcollins/loglinear.pdf
- [2] S. Tellex, T. Kollar, S. Dickerson, M. Walter, A. Banerjee, S. Teller, and N. Roy, *Approaching the Symbol Grounding Problem with Probabilistic Graphical Models*. 2013.
- [3] T.M. Howard, S. Tellex, and N. Roy, A Natural Language Planner Interface for Mobile Manipulators, to appear in the Proceedings of the 2014 International Conference on Robotics and Automation. 2014.
- [4] J. Cocke, and J. Schwartz, *Programming languages and their compilers: Preliminary notes.* 1970.
- [5] D. Younger, Recognition and parsing of context-free languages in time n³. 1967.
- [6] T. Kasami, An efficient recognition and syntax-analysis algorithm for context-free languages. 1965.

[7] Byrd, R. H., Lu, P., Nocedal, J., Zhu, C. A Limited Memory Algorithm for Bound Constrained Optimization. 1995.