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Problem

MOOCs - Massive Online Open Courses
150,000:1 Student/professor ratio

Computer grading - Limited by multiple choice
Peer grading - Hackable by clever students
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Model

1) Let H be a function of a student's grade, returning a 
student's happiness, such that H(0)=0.
Happiness is an arbitrary numerical unit.
2) Students want to maximize their happiness.
3) Grading an assignment costs 1 happiness.
4) Happiness is not affected by external factors, such as 
the grades of peers.
5) Students can communicate with their peers.
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Model - New Assumptions

6) Students are not perfect graders.
7) There is no such thing as partial-grading.
8) Students can report their level of uncertainty when they 
grade. Let this factor be equal to U.
9) More effort spent in grading lowers uncertainty.
10) When a student assigns a grade G, the chance of the 
grade being N off from the actual grade is proportional to U.
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Benchmark

A numerical score defined by
maximum work done by any person + 
highest possible error in grading. 

maxi≥1{|H(gi)−H(oi)|} + maxi≥0{wi}
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Mechanisms - Improved Calibration

Assumption added:
5) Students can 
communicate

“Improved” with 
multiple calibrated 
assignments
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Mechanisms - Deduction

Max work: 2
Max error: 0
Benchmark Score: 2

Unfriendly 
competition
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Mechanisms - Comparison

Calibration and 
Deduction
outperform existing 
mechanisms
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Online, crowdsourced, and anonymous
Designed to validate Calibration Mechanism:

Presented two assignments to grade,
Rewarded on one assignment

Assignment - A set of “marbles”
Grading - Counting the orange “marbles”

Experiment



Experiment - Screenshot



Confidence Within Reward

1 1 marble $0.25

2 2 marbles $0.20

5 5 marbles $0.10

10 10 marbles $0.05

20 20 marbles $0.01
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Confidence Within Reward

1 1 marble $0.25

2 2 marbles $0.20

5 5 marbles $0.10

10 10 marbles $0.05

20 20 marbles $0.01

Experiment - Reward

Reward is based on 
the reported 
confidence and the 
accuracy of the 
reported guess
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Experiment - Data

1. Greater reward → lower uncalibrated error
2. Calibrated set indicates grading proficiency
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Conclusion

● Student model - approximations for student behavior
● Benchmark - score measuring efficiency and workload 

of various mechanisms
● Calibration, Improved Calibration, and Deduction 

mechanisms developed
● Calibration validated by a crowdsourced experiment
● Calibration and Deduction mechanisms outperform 

existing grading solutions
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Conclusion - Next Steps

● Improving realism - producing accurate 
grades from incompetent graders
○ Proficiency test
○ Using multiple graders to reduce error

● Implementation
○ User testing with Mechanical Turk
○ Eventually in Coursera / EdX
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