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Introduction to sl(2)

Definition: sl(2)

The Lie algebra sl(2) consists of the set of 2× 2 matrices over C
with trace 0. The standard basis for sl(2) is:

e =

[
0 1
0 0

]

f =

[
0 0
1 0

]
h =

[
1 0
0 −1

]
.



Representation theory of sl(2)

Representation of sl(2)

A representation of sl(2) is a vector space V equipped with three
operators, E ,F ,H, that satisfy:

HE − EH = 2E

HF − FH = −2F

EF − FE = H.

This representation has an associated linear homomorphism
ρ : sl(2)→ End V . The homomorphism maps e to E , h to H, and
f to F .
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Combining representations

Direct sum of representations

Given two representations V and W of sl(2), the direct sum
V ⊕W is also a representation. Its homomorphism is given by:

ρV⊕W (l) =

[
ρV (l) 0

0 ρW (l)

]
.

Tensor product of representations

Given two representations V and W of a sl(2), the tensor product
V ⊗W is also a representation. Its homomorphism is given by:

ρV⊗W (l) = ρV (l)⊗ Id + Id⊗ ρW (l).
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Representation theory of sl(2)

Infinite dimensional representations of sl(2)

A common class of infinite dimensional representations of
sl(2) is the class of Verma modules.

For any complex λ, there exists a unique Verma module,
denoted ∆λ.

∆λ is the union of 1-d weight spaces Vλ,Vλ−2,Vλ−4, ...
corresponding to H. Here each Vi is a weight space with
weight i .

The operator E moves any v ∈ Vi to a vector in Vi+2 (and
moves v ∈ Vλ to 0).

The operator F moves any v ∈ Vi to a vector in Vi−2.

We will only deal with real, nonintegral λ.



Signature characters of Verma modules

Signature characters of Verma modules

Every real highest weight Verma module has a signature
character that encodes (a) information about its weight
spaces and (b) the signature of its Hermitian form.

This signature character is an element of Z[s]/(s2 − 1).

For λ negative the signature character of ∆λ is:∑
i≥0

eλ−2i · s i .

For λ positive the signature character of ∆λ is:

bλc∑
i≥0

eλ−2i +
∑
i≥dλe

eλ−2i · sdλe−i .
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More on signature characters

Denote the signature character (if it exists) of a representation V
of sl(2) by chs(V ). The signature character obeys some natural
rules for direct sums and tensor products.

Relations for the signature character

chs(V ⊕W ) = chs(V ) + chs(W ).

chs(V ⊗W ) = chs(V ) · chs(W ).

In particular, tensor products of Verma modules admit a signature
character.



Tensor products of Verma modules

Decomposition of the tensor product

Consider the tensor product of the Verma modules
∆λ1 ,∆λ2 , ...,∆λn . It decomposes uniquely as a direct sum:⊗

i

∆λi
∼=
⊕
k≥0

∆(
∑

λi )−2k ⊗ Ek

where each multiplicity space Ek has a signature character in
Z[s]/(s2 − 1) and experiences the null action in the representation.

Motivating question

For a given tensor product decomposition, which multiplicity
spaces have definite signature characters? Is there a formula for
the signature characters of the multiplicity spaces?
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Results: Two special cases

Consider the tensor product of ∆λ1 ,∆λ2 , ...,∆λn , where each λi is
negative.

Theorem 1 (Decomposition for negative factors case).

In the decomposition⊗
i

∆λi
∼=
⊕
k≥0

∆(
∑

λi )−2k ⊗ Ek

each multiplicity space Ek has signature character sk ·
(k+n−2

n−2
)
.

Idea of Proof. Standard counting argument.



Results: Two special cases

Consider the tensor product of two arbitrary Verma modules
∆λ1 ,∆λ2 .

Theorem 2 (Decomposition for two factors case).

In the decomposition

∆λ1 ⊗∆λ2
∼=
⊕
k≥0

∆(
∑

λi )−2k ⊗ Ek

the signature character of each Ek is given by a known piecewise
defined function.

Idea of proof. For λ positive, define Lλ = chs(∆λ)− chs(∆λ−2dλe).
Compute Lλ · chs(∆µ) for λ positive and µ negative.



Results: The general case

Consider the tensor product of Verma modules ∆λ1 ,∆λ2 , ...,∆λn ,
where λi is positive for i ≤ p and negative for i > p.

Theorem 3 (Polynomial behavior in general case).

In the decomposition⊗
i

∆λi
∼=
⊕
k≥0

∆(
∑

λi )−2k ⊗ Ek

there exist polynomials P and Q such that for all sufficiently large
k , the signature character of Ek is sn+k(P(k) + sQ(k)). If the
number of even floor positive weights is even, then P has degree
n − 2 and Q has degree n − 3. Otherwise, P has degree n − 3 and
Q has degree n − 2.



Results: The general case

Theorem 4 (Asymptotic approximation in general case).

The leading terms of the polynomials P(x) and Q(x) from
Theorem 3 are

1

(n − 2)!
· xn−2

and ∑
i≤pd

λi
2 e

(n − 3)!
· xn−3

in some order.

Corollary. In an arbitrary tensor product of Verma modules, there
are finitely many definite multiplicity spaces iff n ≥ 3 and p ≥ 1.



Summary and future work

Summary of results

Computed decomposition in two specific cases

Described asymptotic behavior in general case

Current and future work

Currently working on explicitly computing the number of definite
multiplicity spaces in the general case

In the future, it would be nice to describe the short term behavior
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