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Introduction

@ Young tableaux
@ Cylindric tableaux

@ Schur polynomials



Partitions and Young Diagrams

@ A partition A of a nonnegative integer n is a tuple (A1, A2, ..., Ak)
k

such that Z)\;:nand A > > ... > > 0.
i=1
@ For example, a partition of 10 is (5,2,2,1).



Partitions and Young Diagrams

@ A partition A of a nonnegative integer n is a tuple (A1, A2, ..., Ak)
k

such that Z)\;:nand A > > ... > > 0.
i=1
@ For example, a partition of 10 is (5,2,2,1).

@ Partitions can be represented with boxes (Young diagrams):




Young Tableaux

@ We can fill in Young diagrams boxes with numbers.

@ If entries strictly increase from top to bottom and weakly increase
from left to right, we have a semistandard Young tableau (henceforth,

tableau).
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Young Tableaux

@ We can fill in Young diagrams boxes with numbers.

@ If entries strictly increase from top to bottom and weakly increase
from left to right, we have a semistandard Young tableau (henceforth,
tableau).
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o If a tableau T is the Young diagram of a partition A with its boxes
filled, we say that ) is the shape of T.

@ In the example above, the shape of the tableau is (5,2,2,1).



Skew Young Diagrams and Skew Tableaux

@ Given two partitions A and p, with p inside A, the skew Young
diagram \/p consists of the boxes inside the Young diagram of A but
outside the Young diagram of p.

@ Example:
A=(5,3,2)

i = (5,3,2)/(2,1)
Young diagram of \/pu: [ ]




Skew Young Diagrams and Skew Tableaux

@ Given two partitions A and p, with p inside A, the skew Young
diagram \/p consists of the boxes inside the Young diagram of A but
outside the Young diagram of p.

@ Example:

A=(5,3,2)

p=(2,1)

/\//JJ = (57 3, 2)/(27 1)

Young diagram of \/pu: [ ]

@ A skew tableau is a skew Young diagram with its boxes filled
according to the same rules as regular tableaux.

1 2|2|
3

o Example:




Cylindric Tableaux

@ A cylindric tableau is an "“infinite” skew tableau where every row repeats if
you go k rows down but move m steps to the left, for some fixed k and m.

@ Corresponding entries are considered the same entry, because we can think
of them as corresponding to the same place on a cylinder.
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Cylindric Tableaux

@ A cylindric tableau is an "“infinite” skew tableau where every row repeats if
you go k rows down but move m steps to the left, for some fixed k and m.

@ Corresponding entries are considered the same entry, because we can think
of them as corresponding to the same place on a cylinder.
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Cylindric Partitions

@ A cylindric partition is a “periodic”, weakly decreasing sequence of integers.
@ It can be represented as a Young diagram that extends infinitely far left.

@ A cylindric tableau is bounded by two cylindric partitions.
°

Corresponding boxes in a partition are actually the same box.
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Schur Polynomials

@ Let T be a tableau with entries from {1,2,..., n}.
@ If T has uy k's for 1 < k < n, then the content of T is the tuple
(M17M27 e ,,Ltn).



Schur Polynomials

Let T be a tableau with entries from {1,2,..., n}.
If T has pg k's for 1 < k < n, then the content of T is the tuple

(M17N27 e ,,Ltn).
The Schur polynomial of a partition A in n variables, denoted

sa(x1,%2,...,xn), is obtained by:
o taking, for each tableau T of shape A, the monomial
Xt xh? L xh", where (p1, pi2, - .., f1n) is the content of T,
e adding these monomials together.
@ Example:
e A=(2,1)
e n=3

[T [1]2] [1[3] [1]1] [1]2]

1 1[3][2]2][2]3]
2] 3] 3] [3 3

o s\(x1, %0, X3) = X2xa + x1X5 + 2x130x3 + X2x3 + X152 + X3x3 + X0X2



Schur Polynomials

@ Let T be a tableau with entries from {1,2,..., n}.
@ If T has uy k's for 1 < k < n, then the content of T is the tuple

(N1>N27 e 7,un)-
@ The Schur polynomial of a partition A in n variables, denoted

sa(x1,%2,...,xn), is obtained by:
o taking, for each tableau T of shape A, the monomial
Xt xh? L xh", where (p1, pi2, - .., f1n) is the content of T,
e adding these monomials together.
@ Example:
e A=(2,1)
e n=3

[T [1]2] [1[3] [1]1] [1]2]

1 113][2]2][2]3]
2 2] [2] 3] B [3] 3

o s\(x1, %0, X3) = X2xa + x1X5 + 2x130x3 + X2x3 + X152 + X3x3 + X0X2
o Notice: sy is symmetric!

For regular, skew, and cylindric tableaux, Schur polynomials are



Proof of Schur Polynomial Symmetry (1)

@ This is the same as proving that the number of tableaux of a given
shape and content doesn’t change when you permute the content.



Proof of Schur Polynomial Symmetry (1)

@ This is the same as proving that the number of tableaux of a given
shape and content doesn’t change when you permute the content.
@ It suffices to show that the number of tableaux with content
(ki, ko, ..., ki, Kit1,...,kn) is the same as the number of tableaux
with content (ki, ko, ..., kit1,ki,...,kn) forany 1 <i < n.



Proof of Schur Polynomial Symmetry (2)

@ We will create a bijection (Bender-Knuth involution). Here's an
example:
o Let i =2 and T be the following tableau:

o Leave the white and blue boxes alone.
o Reverse the number of green and red boxes in each row:

10/17



Proof of Schur Polynomial Symmetry (2)

@ We will create a bijection (Bender-Knuth involution). Here's an
example:
o Let i =2 and T be the following tableau:

o Leave the white and blue boxes alone.
o Reverse the number of green and red boxes in each row:

@ This is a bijection, since re-applying the transformation gives back T.

10/17



Proof of Schur Polynomial Symmetry (2)

@ We will create a bijection (Bender-Knuth involution). Here's an
example:
o Let i =2 and T be the following tableau:

o Leave the white and blue boxes alone.
o Reverse the number of green and red boxes in each row:

@ This is a bijection, since re-applying the transformation gives back T.
@ This proof also works for skew and cylindric tableaux.

10/17



Horizontal and Vertical Strips: Definition

@ A horizontal i-strip is a set of i boxes, none of which are in the same

column. (Example: E:|:|:|)
1]

@ A vertical i-strip is a set of i boxes, none of which are in the same
row. (Example: L)
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Horizontal and Vertical Strips: Definition

A horizontal i-strip is a set of i boxes, none of which are in the same

column. (Example: E:|:|:|)
1]

A vertical i-strip is a set of i boxes, none of which are in the same
row. (Example: L)

hi(X\) is the formal sum of all partitions you can get after attaching a
horizontal j-strip to .

ei(A) is the formal sum of all partitions you can get after attaching a
vertical i-strip to \.

h*(A) is the formal sum of all partitions you can get after removing a
horizontal j-strip from A.

e*() is the formal sum of all partitions you can get after removing a
vertical j-strip from .
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Horizontal and Vertical Strips: Example

°h2A)=_|-+EHZI+.II+‘:H+tHJ
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Horizontal and Vertical Strips: Example
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Horizontal and Vertical Strips: Example

e \=
h2() I-+Ei]+ [ + +
(\) T [ . EH tHJ
° &A= + + +

S

o hs(\) =1 +H
e e5(\) =11

h and e commute with each other and with themselves.
hi(hi(X)) = hi(h;j(}))
o ¢j(ei(A)) = ei(g(N))
o hi(ei(A)) = ei(hj(}))

Similarly, h* and e* commute with each other and with themselves.
Y,
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Proof that h Commutes with Itself (1)

o Consider hj(hi(\)) for any j, i, and A.
@ Let p be X\ with the horizontal i-strip added.
@ Let v be p with the horizontal j-strip added.

o Consider the Young diagram of v/\.

o Fill the boxes of /A with 1's.
o Fill the boxes of v/u with 2's.

@ Example:
o A=(5,4,4,1)
o /=
e j=6

o One summand of hj(h;(\)):
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Proof that h Commutes with Itself (2)

@ Since we can do this for every pair of horizontal strips that is added,
the number of times v is in h;(h;(\)) is the number of skew tableaux
of shape v/\ with i 1's and j 2's.
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Proof that h Commutes with Itself (2)

@ Since we can do this for every pair of horizontal strips that is added,
the number of times v is in h;(h;(\)) is the number of skew tableaux
of shape v/\ with i 1's and j 2's.

@ Since Schur polynomials are symmetric, this is the same as the
number of skew tableaux of shape v/ with j 1's and i 2's.

@ Therefore, hj(hj(A)) = hi(hj(N)).

@ This proof also works for cylindric partitions.
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Commutativity of h and e with h* and e*

@ For regular partitions, neither h nor e commute with either h* or e*.
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Commutativity of h and e with h* and

e:k

@ For regular partitions, neither h nor e commute with either h* or e*.

o Example:

o hi(hi(CLD)) =m([)) = DI+H

o hi(h (L)) = (L LI+

) =0+ 0+
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Commutativity of h and e with h* and e*

@ For regular partitions, neither h nor e commute with either h* or e*.

o Example:

° hl(h{(|:|:|)):h1(|:|):|:|j+H
o hi(h (L)) = m(CTI+ 1)) = (T + [ I+H

For cylindric partitions, h and e commute with h* and e*. I
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Commutativity of h and e with h* and e*

@ For regular partitions, neither h nor e commute with either h* or e*.

o Example:

° hl(h{(|:|:|)):h1(|:|):|:|j+H
o hi(h (L)) = m(CTI+ 1)) = (T + [ I+H

For cylindric partitions, h and e commute with h* and e*. \

@ The fact that there are nice properties of cylindric tableaux that don’t
exist for regular tableaux is encouraging.
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Goals

@ Goal 1: extend notions applicable to regular tableaux to cylindric
tableaux.

o Cylindric tableau product (different equivalent methods for
regular tableau products yield different results for cylindric
tableaux)

o Robinson-Schensted-Knuth Correspondence (bijection between
matrices and pairs of tableaux)

o Various combinatorial identities
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Goals

@ Goal 1: extend notions applicable to regular tableaux to cylindric
tableaux.

o Cylindric tableau product (different equivalent methods for
regular tableau products yield different results for cylindric
tableaux)

o Robinson-Schensted-Knuth Correspondence (bijection between
matrices and pairs of tableaux)

o Various combinatorial identities

@ Goal 2: find useful notions applicable to cylindric tableaux but not to
regular tableaux.

o Commutativity of h, e, h*, and e*
@ Goal 3: find applications of cylindric tableaux to other parts of math.

o Regular tableaux have a variety of applications in combinatorics
and abstract algebra.
o Very few, if any, applications are known for cylindric tableaux.
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