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Overview of dynamical systems

What is a dynamical system?

Two flavors:

Discrete (Iterative Maps)

Continuous (Differential Equations)
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Iterative maps

Definition (Iterative map)

A (one-dimensional) iterative map is a sequence {xn} with xn+1 = f (xn)
for some function f : R→ R.

Basic Ideas:

Fixed points

Periodic points (can be reduced to fixed points)

Stability of fixed points

By approximating f with a linear function, we get that a fixed point
x∗ is stable whenever |f ′(x∗)| < 1.
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Getting a picture: “cobwebbing”
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A famous example: the logistic map

We consider
xn+1 = rxn(1− xn)

on the interval [0, 1].

Properties vary based on r :

If 0 ≤ r ≤ 1, only fixed point is x∗ = 0, and it’s stable.

If 1 < r ≤ 3, 0 is unstable, 1− 1
r is stable.

If 3 < r ≤ 1 +
√

6, no stable fixed points, but
r+1±
√

(r−3)(r+1)

2r is
stable 2-cycle.

2-cycle becomes 4-cycle, then 8-cycle, and so on.
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The case of a stable 2-cycle
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The orbit diagram

We can plot the points in stable cycles with respect to r :
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The first Feigenbaum constant

Let rn be where stable 2n cycle begins.
The distance between rn’s converges roughly geometrically, up to r∞.

Definition (δ)

The first Feigenbaum constant is defined as

δ = lim
n→∞

rn − rn−1
rn+1 − rn

≈ 4.669 . . .
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The first Feigenbaum constant: not just for one map?

Yeah, but why do we care about δ?

Consider the sine map
xn+1 = r sinπxn.

Guess what its orbit diagram looks like?
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Sine map orbit diagram

No, I didn’t accidentally repeat the previous image...

...it looks exactly the same!
Not only that, if you try to calculate δ here, you’ll get the same number!

J. Won, Y. Borns-Weil (MIT) Discrete and Continuous Dynamical Systems May 18, 2014 10 / 32



Univerality of δ

Theorem 1 (Universality of δ)

If

Dschf (x) =

(
f ′′

f ′

)′
(x)− 1

2

(
f ′′(x)

f ′(x)

)2

< 0

in the bounded interval and f experiences period-doubling, then letting
{rn} be defined for this new map,

lim
n→∞

rn − rn−1
rn+1 − rn

= δ.

Essentially, δ is a “universal constant!”
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Now, the continuous case ...

Continuous dynamical systems involve analyzing differential equations.

They describe systems that change over time.
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Oscillating chemical reactions

Chemical reactions: governed by differential equations involving
concentrations of the reactants and products.

Multi-step reactions can exhibit complicated dynamical behaviors.

Belousov’s discovery in 1950’s exhibits a periodical behavior.
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Continuous dynamical systems and oscillating chemical
reactions

Figure: Periodic behavior of an oscillating chemical reaction.
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Continuous dynamical systems: one–dimensional case

ẋ = f (x)

The continuous time dynamics ẋ of a system is governed by its
current state x.
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Continuous dynamical systems: one–dimensional case

Example: ẋ = r + x2, where r is a parameter.

Figure: The phase portrait of the system ẋ = r + x2.

Flow and vector fields

Stable and unstable fixed points (ẋ = 0)
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Continuous dynamical systems: bifurcations

Example: ẋ = r + x2, where r is a parameter.

Figure: The phase portrait of the system ẋ = r + x2.

Bifurcation: a qualitative change in the vector field.
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Continuous dynamical systems: two–dimensional case

ẋ = f (x , y)
ẏ = g(x , y).

Figure: A two-dimensional vector field.

Vector fields: represented as arrows on the plane (phase portrait).
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Linearization near a fixed point

Linearized systems: near a fixed point (x∗, y∗),

u = x − x∗, v = y − y∗,(
u
v

)
=

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)(
x
y

)
.

The matrix

A =

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
(x∗,y∗)

is called the Jacobian matrix at the fixed point (x∗, y∗).
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Linearization near a fixed point

Figure: A two-dimensional vector field.

The eigenvectors and eigenvalues (λ) of A determine the
eigendirections near (x∗, y∗).

Behavior of the flow near a fixed point is governed by the stable
manifolds (λ < 0) and unstable manifolds (λ > 0).
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Back to oscillating chemical reactions...

Figure: Periodic behavior of an oscillating chemical reaction.
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The BZ (Belousov-Zhabotinsky) reaction

Main reaction steps:

MA + I2 → IMA + I− + H+;
d [I2]

t
= −k1a[MA][I2]

k1b + [I2]
(1)

ClO2 + I− → ClO−2 +
1

2
I2;

d [ClO2]

t
= −k2

[ClO2]

[I−]
(2)

ClO−2 + 4I− + 4H+ → Cl− + 2I2 + 2H2O;

d [ClO−2 ]

dt
= −k3a[ClO−2 ][I−][H+]− k3b[ClO−2 ][I2]

[I−]

u + [I−]2
(3)
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Main reaction steps:

MA + I2 → IMA + I− + H+;
d [I2]

t
= −k1a[MA][I2]

k1b + [I2]
(4)

ClO2 + I− → ClO−2 +
1

2
I2;

d [ClO2]

t
= −k2

[ClO2]

[I−]
(5)

ClO−2 + 4I− + 4H+ → Cl− + 2I2 + 2H2O;

d [ClO−2 ]

dt
= −k3a[ClO−2 ][I−][H+]− k3b[ClO−2 ][I2]

[I−]

u + [I−]2
(6)

=⇒Very complicated.
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Simplified model of the BZ reaction

ẋ = a− x − 4xy
1+x2

,

ẏ = bx
(

1− y
1+x2

)
.

Here, x and y are dimensionless concentrations of I− and ClO−2 .
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Simplified model of the BZ reaction

Figure: The phase portrait of the simplied model of the BZ reaction.

Fixed point where the nullclines intersect tangentially
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Analysis of the dynamical system

Behavior of vector fields near a fixed point in a linearized system is
determined by the determinant ∆ and the trace τ of the Jacobian
matrix.

Figure: Classification of fixed points.
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Analysis of the dynamical system

The system is linearized near the fixed point.

Fixed point: x∗ = a/5, y∗ = 1 + (x∗)2 = 1 + (a/5)2.

Jacobian at the fixed point (x∗, y∗) is

1

1 + (x∗)2

(
3(x∗)2 − 5 −4x∗

2b(x∗)2 −bx∗
)
.

The determinant and trace are given by

∆ =
5bx∗

1 + (x∗)2
> 0, τ =

3(x∗)2 − 5− bx∗

1 + (x∗)2
.
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Analysis of the dynamical system

The fixed point is unstable if ∆ > 0 and τ > 0 (∆ > 0 is given to us).

τ > 0 if b < bc = 3a/5− 25/a.

A bifurcation occurs at b = bc (the stability of the fixed point
changes).
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Applying the Poincaré-Bendixson Theorem

Theorem 2 (Poincaré-Bendixson Theorem)

Suppose that:

1 R is a closed, bounded subset of the plane;

2 ẋ = f (x) is a continuously differentiable vector field on an open set
containing R;

3 R does not contain any fixed points; and

4 There exists a trajectory C that is “confined” in R, in the sense that
it starts in R and stays in R for all future time.

Then R contains a closed orbit.
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Conclusion

Figure: A trapping box in the BZ reaction system.

Because distant vectors point to the unstable fixed point when
b < bc , we can form a punctured trapping region for trajectories.

Poincaré-Bendixson Theorem tells us that there is a stable limit cycle
(a closed orbit) around the fixed point.

Chemically, this explains why the BZ reaction shows a periodic
behavior.
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Conclusion

Changing the parameters a, b > 0, which depend on the rate
constants and concentrations of slow reactants, results in a
supercritical Hopf bifurcation.

Change in stability.

Formation of a stable limit cycle.

Figure: Supercritical Hopf bifurcation in the BZ reaction system.
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