Geodesics in the Hypercube

Kavish Gandhi

Mentor: Yufei Zhao

Fourth Annual MIT-PRIMES Conference

May 17, 2014
Consider a 2-coloring of the edges of the cube where no opposite edges are the same color.
Consider a 2-coloring of the edges of the cube where no opposite edges are the same color.
Consider a 2-coloring of the edges of the cube where no opposite edges are the same color.
Colorings of the Cube

- Consider a 2-coloring of the edges of the cube where no opposite edges are the same color.

- Notice how we can always find a monochromatic path between two opposite points.
Consider a 2-coloring of the edges of the cube where no opposite edges are the same color.

Notice how we can always find a monochromatic path between two opposite points.
Colorings of the Cube

- Consider a 2-coloring of the edges of the cube where no opposite edges are the same color.

- Notice how we can always find a monochromatic path between two opposite points.
Consider a 2-coloring of the edges of the cube where no opposite edges are the same color.

Notice how we can always find a monochromatic path between two opposite points.
Consider a 2-coloring of the edges of the cube where no opposite edges are the same color.

Notice how we can always find a monochromatic path between two opposite points.
Consider a 2-coloring of the edges of the cube where no opposite edges are the same color.

Notice how we can always find a monochromatic path between two opposite points.
Consider a 2-coloring of the edges of the cube where no opposite edges are the same color.

Also notice how this monochromatic path cycles.
Now, let’s make our discussion slightly more rigorous.
Now, let’s make our discussion slightly more rigorous.

Definition

The **antipodal** vertex x^a of x is the unique vertex on Q_n farthest from x.
Now, let’s make our discussion slightly more rigorous.

Definition

The **antipodal** vertex \(x^a \) of \(x \) is the unique vertex on \(Q_n \) farthest from \(x \).
Now, let’s make our discussion slightly more rigorous.

Definition

The **antipodal** vertex x^a of x is the unique vertex on Q_n farthest from x.

We similarly define the antipodal edge of xy as x^ay^a.
Now, let’s make our discussion slightly more rigorous.

Definition

The **antipodal** vertex x^a of x is the unique vertex on Q_n farthest from x.

We similarly define the antipodal edge of xy as x^ay^a.

An antipodal coloring of Q_n is one where no antipodal edges are the same color.
A geodesic on Q_n is the shortest possible path between two vertices. In other words, it is a path that traverses each coordinate direction at most once. An antipodal geodesic is one between antipodal vertices.
A geodesic on Q_n is the shortest possible path between two vertices. In other words, it is a path that traverses each coordinate direction at most once. An antipodal geodesic is one between antipodal vertices.

The paths we were considering on the cube were geodesics.
A **geodesic** on Q_n is the shortest possible path between two vertices. In other words, it is a path that traverses each coordinate direction at most once. An **antipodal geodesic** is one between antipodal vertices.

The paths we were considering on the cube were geodesics.
Conjecture (Leader and Long, 2013)

Given an antipodal 2-coloring of Q_n, there exists a monochromatic geodesic between some pair of antipodal vertices.
Conjecture (Leader and Long, 2013)

Given an antipodal 2-coloring of Q_n, there exists a monochromatic geodesic between some pair of antipodal vertices.

Notice that this is simply an extension to all dimensions of our earlier discussion.
Conjecture (Leader and Long, 2013)

Given an antipodal 2-coloring of Q_n, there exists a monochromatic geodesic between some pair of antipodal vertices.

Notice that this is simply an extension to all dimensions of our earlier discussion.

Conjecture (Leader and Long, 2013)

Given a 2-coloring of Q_n, there exists a geodesic between antipodal vertices that changes color at most once.
Conjectures

Conjecture (Leader and Long, 2013)

Given an antipodal 2-coloring of Q_n, there exists a monochromatic geodesic between some pair of antipodal vertices.

Notice that this is simply an extension to all dimensions of our earlier discussion.

Conjecture (Leader and Long, 2013)

Given a 2-coloring of Q_n, there exists a geodesic between antipodal vertices that changes color at most once.

It has been shown that these two conjectures are equivalent.
Examples of Conjecture 2

Kavish Gandhi
Outline of our Work

We took these conjectures and explored two areas:

1. We showed that they were true for the cases $n = 2, 3, 4, 5, 6$.
2. We looked at the opposite problem, maximality, in the following cases:
 - Antipodal 2-colorings of the cube
 - Subgraphs of the cube with a fixed proportion of edges
Outline of our Work

We took these conjectures and explored two areas:

1. We showed that they were true for the cases $n = 2, 3, 4, 5, 6$.
2. We looked at the opposite problem, maximality, in the following cases:
 - Antipodal 2-colorings of the cube
 - Subgraphs of the cube with a fixed proportion of edges
We took these conjectures and explored two areas:

1. We showed that they were true for the cases \(n = 2, 3, 4, 5, 6 \).
2. We looked at the opposite problem, maximality, in the following cases:
Outline of our Work

We took these conjectures and explored two areas:

1. We showed that they were true for the cases $n = 2, 3, 4, 5, 6$.
2. We looked at the opposite problem, maximality, in the following cases:
 1. Antipodal 2-colorings of the cube
We took these conjectures and explored two areas:

1. We showed that they were true for the cases $n = 2, 3, 4, 5, 6$.
2. We looked at the opposite problem, maximality, in the following cases:
 1. Antipodal 2-colorings of the cube
 2. Subgraphs of the cube with a fixed proportion of edges
1. Antipodal 2-colorings of Q_n

2. Subgraphs of Q_n with a fixed number of edges
Maximal Antipodal 2-colorings: Idea

We aim to maximize the number of monochromatic geodesics.

Definition

A **subcube 2-coloring** of Q_n colors the edges of disjoint $n - 1$-dimensional subcubes in Q_n opposite colors, and then colors antipodally the remaining edges connecting these subcubes.
Maximal Antipodal 2-colorings: Idea

We aim to \textit{maximize} the number of monochromatic geodesics.

Definition

A \textbf{subcube 2-coloring} of Q_n colors the edges of disjoint $n - 1$-dimensional subcubes in Q_n opposite colors, and then colors antipodally the remaining edges connecting these subcubes.
We aim to *maximize* the number of monochromatic geodesics.

Definition

A **subcube 2-coloring** of Q_n colors the edges of disjoint $n - 1$-dimensional subcubes in Q_n opposite colors, and then colors antipodally the remaining edges connecting these subcubes.

We conjectured that such a subcube coloring contained the maximum number of geodesics.
Theorem

The maximum number of geodesics in an antipodal 2-coloring of Q_n is $2^{n-1}(n-1)!$, which occurs **only in a subcube coloring**.
Theorem

The maximum number of geodesics in an antipodal 2-coloring of Q_n is $2^{n-1}(n - 1)!$, which occurs only in a subcube coloring.

Proof:

- We consider cycles in the hypercube
Theorem

The maximum number of geodesics in an antipodal 2-coloring of Q_n is $2^{n-1}(n-1)!$, which occurs only in a subcube coloring.

Proof:

- We consider cycles in the hypercube
- We can show that each cycle contains at most 2 geodesics: this implies our maximum.
Theorem

The maximum number of geodesics in an antipodal 2-coloring of Q_n is $2^{n-1}(n-1)!$, which occurs only in a subcube coloring.

Proof:

- We consider cycles in the hypercube.
- We can show that each cycle contains at most 2 geodesics: this implies our maximum.
1. Antipodal 2-colorings of Q_n

2. Subgraphs of Q_n with a fixed number of edges
Idea: without an antipodal coloring, best way to maximize is to pack monochromatic cycles.

Cycles have the most geodesics for the number of edges.
Subgraphs of the Cube: Idea

- Idea: without an antipodal coloring, best way to maximize is to pack monochromatic cycles.
- Cycles have the most geodesics for the number of edges
- This led us to the configuration below: a subgraph containing all edges in the 'middle layer'

![Diagram of a cube with vertices labeled 000, 001, 010, 011, 100, 101, 110, 111, with edges connecting them to form a hexagon. The cube is also shown with its vertices at the corners.](image)
Let $d(v)$ be the number of 1’s in the coordinate form of v.

Definition

A **middle-layer subgraph** is one containing an edge $E = \{v_1, v_2\} \in Q_n$ if and only if $\frac{n}{2} - C \leq d(v_1), d(v_2) \leq \frac{n}{2} + C$, where C depends on the proportion of edges.
Subgraphs of the Cube

Let $d(v)$ be the number of 1’s in the coordinate form of v.

Definition

A **middle-layer subgraph** is one containing an edge $E = \{v_1, v_2\} \in Q_n$ if and only if $\frac{n}{2} - C \leq d(v_1), d(v_2) \leq \frac{n}{2} + C$, where C depends on the proportion of edges.

![Diagram](Image of a cube with edges highlighting the middle layer)

Edges concentrated in the 'middle layer'

(1, 1, ..., 1)
(0, 0, ..., 0)

Shown is a path of edges in this middle layer.
Subgraphs of the Cube: Computation

We calculate the maximal number of antipodal geodesics in a subgraph with a fixed proportion of edges.
We calculate the maximal number of antipodal geodesics in a subgraph with a fixed proportion of edges.

Result: Given that our proportion of edges is equivalent to the area shown below:
We calculate the maximal number of antipodal geodesics in a subgraph with a fixed proportion of edges.

Result: Given that our proportion of edges is equivalent to the area shown before, the proportion of geodesics in a middle layer subgraph is equivalent to the area shown below:
Future Directions

- Work on a similar problem, except for antipodal subgraphs of the hypercube
Future Directions

- Work on a similar problem, except for antipodal subgraphs of the hypercube
- Work on the more general problem of the maximum number of monochromatic geodesics in any 2-coloring of the cube with any proportion of red and blue edges
Future Directions

- Work on a similar problem, except for antipodal subgraphs of the hypercube
- Work on the more general problem of the maximum number of monochromatic geodesics in any 2-coloring of the cube with any proportion of red and blue edges
- Explore the original conjectures further
- Look into similar results or applications to other regular graphs besides the hypercube
- Incorporate probability into these colorings: e.g. the expected number of antipodal geodesics
Future Directions

- Work on a similar problem, except for antipodal subgraphs of the hypercube
- Work on the more general problem of the maximum number of monochromatic geodesics in any 2-coloring of the cube with any proportion of red and blue edges
- Explore the original conjectures further
- Look into similar results or applications to other regular graphs besides the hypercube
Future Directions

- Work on a similar problem, except for antipodal subgraphs of the hypercube
- Work on the more general problem of the maximum number of monochromatic geodesics in *any* 2-coloring of the cube with any proportion of red and blue edges
- Explore the original conjectures further
- Look into similar results or applications to other regular graphs besides the hypercube
- Incorporate probability into these colorings: e.g. the expected number of antipodal geodesics
Many thanks to:
- Yufei Zhao, my mentor
- MIT-PRIMES
- My awesome parents