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Abstract

Currently, even the fastest deterministic primality tests run slowly, with the Agrawal-

Kayal-Saxena (AKS) Primality Test runtime Õ(log6(n)), and probabilistic primality

tests such as the Fermat and Miller-Rabin Primality Tests are still prone to false re-

sults. In this paper, we discuss the accuracy of the Miller-Rabin Primality Test and

the number of nonwitnesses for a composite odd integer n. We also extend the Miller-

Rabin Theorem by determining when the number of nonwitnesses N(n) equals
ϕ(n)

4

and by proving that for all n, if N(n) >
5

32
· ϕ(n) then n must be of one of these 3

forms: n = (2x + 1)(4x + 1), where x is an integer, n = (2x + 1)(6x + 1), where x

is an integer, n is a Carmichael number of the form pqr, where p, q, r are distinct

primes congruent to 3 (mod 4). We then find witnesses to certain forms of composite

numbers with high rates of nonwitnesses and find that Jacobi nonresidues and 2 are

both valuable bases for the Miller-Rabin test. Finally, we investigate the frequency of

strong pseudoprimes further and analyze common patterns using MATLAB. This work

is expected to result in a faster and better primality test for large integers.
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1 Introduction

Data is growing at an astoundingly rapid rate, and better information security is re-

quired to protect increasing quantities of data. Improved data protection requires more

sophisticated cryptographic methods. Improved cryptography necessitates the use of larger

semiprimes that are extremely difficult to factor, and thus requires the verification of pri-

mality of larger primes. Therefore, faster and more efficient primality tests are key to better

information security.

1.1 Primality Tests

A primality test is simply an algorithm to determine whether an input number is prime.

Some primality tests are deterministic; that is, they always correctly determine if a number

is prime or composite. The fastest known deterministic primality test was created in 2004,

when three computer scientists, Agrawal, Kayal, and Saxena, created the AKS primality

test that operated in Õ(log(n)6) time, where Õ(f(n)) is defined as O(f(n) · log(f(n))k) for

some integer k [1]. Although a significant breakthrough, this speed is still rather slow when

compared to information security needs.

Probabilistic primality tests are usually faster, but are not always accurate. These tests

determine whether n satisfies one or more conditions that all primes must satisfy. So, if

an input n does not satisfy these conditions, we know n is composite. If n satisfies the

conditions, n is probably prime, but n does not have to be prime.

The Fermat Primality Test stems from Fermat’s Little Theorem, which states that if n

is prime, an−1 ≡ 1 (mod n). Given an input n and a < n, we check whether an−1 ≡ 1 (mod

n). If this is not true, then n is composite. Else, n is probably prime. Unfortunately, the

Fermat Primality Test has a high rate of error, with too many composites being probably

prime. Instead, we use a more accurate method, the Miller-Rabin Primality Test.

1.2 The Miller-Rabin Primality Test

The Miller-Rabin Primality Test is an extension of the Fermat Primality Test. The test

works as follows: Suppose we have an odd integer n, such that n = 1 + d · 2e and d is odd.
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We choose a positive integer a < n. If either ad ≡ 1 (mod n), or a2
r·d ≡ −1 (mod n) for

some r < e, then n is probably prime. Else, n is composite. If n is probably prime, then

either n is prime, or n is composite, in which case we say that a is a nonwitness to n and

that n is a strong pseudoprime to the base a. We say that a is a witness to n if a < n, and

a is not a nonwitness [2, 3].

Example 1.2.1. Suppose n = 65. If we consider a = 8, we notice that n = 1 + 1 · 26,

81 ≡ 8 6= 1, but 821·1 = 64 ≡ −1. Thus, either 65 is prime, or 65 is a composite and 8

is a nonwitness. Of course 65 is not prime, but just to check, we consider a = 2. Clearly,

a1 = 2 6≡ 1, a2
0·1 = 2 6≡ −1, a2

1·1 = 4 6≡ −1, a2
2·1 = 16 6≡ −1, a2

3·1 ≡ 61 6≡ −1, a2
4·1 ≡ 16 6≡

−1, a2
5·1 ≡ 61 6≡ −1. Since 65 fails the Miller-Rabin Primality Test in base 2, we know that

65 is composite. We also know 2 is a witness to 65, but 8 is a nonwitness to 65.

The Miller-Rabin Primality Test is significantly more accurate than the Fermat Primality

Test. There exist an infinite number of composite integers known as Carmichael numbers,

which satisfy the property that ∀n, where n is a Carmichael number, if (a, n) = 1, then

an−1 ≡ 1 (mod n) [4]. However, Michael O. Rabin proved that for any composite odd integer

n, the number of nonwitnesses of n is at most
n

4
, and can even be reduced to

ϕ(n)

4
if n ≥ 25

[3].

To demonstrate the improved effectiveness of the Miller-Rabin Primality Test, we check

whether 91 is prime or composite.

Example 1.2.2. We test 91 with the base of 3. If we use the Fermat Primality Test, we

get 390 ≡ 1 (mod 91). If we use the Miller-Rabin Primality Test, since 91 = 2 · 45 + 1, and

since 345 ≡ 27 (mod 91), it is clear that 3 is a witness to 91 for the Miller-Rabin Primality

Test even though 3 is a false witness for the Fermat Primality Test.

It is well known that the Miller-Rabin Primality Test has a running time of O(log3(n)).

Using Fast Fourier Transforms, the running time can be reduced to Õ(log2(n)), the same time

as for the Fermat Primality Test. The Miller-Rabin Primality Test is also more accurate,

but some numbers have a relatively high proportion of nonwitnesses.

Yet it is known that the smallest witness of any composite integer n must be at most

2 · ln(n)2, assuming the Extended Riemann Hypothesis (ERH) [2]. Thus, if the ERH is true,
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the Miller-Rabin Primality Test can be converted into a deterministic primality test with

running time Õ(log4(n)). Although it is significantly faster than the AKS primality test, it

requires the ERH to be true. Since the ERH is known to be an extremely difficult problem in

mathematics, the Miller-Rabin Primality Test is not verified as a true deterministic primality

test. Yet, even without proving the ERH, we can still reduce the number of nonwitnesses

and improve the speed of the Miller-Rabin Primality Test.

1.3 Experimental Results

While the Miller-Rabin Primality is more accurate than the Fermat Primality Test, some

numbers still have a high number of nonwitnesses with respect to the Miller-Rabin test.

One of the main goals of this paper is to single out which types of integers have a lot of

nonwitnesses and then use that information to build a better algorithm.

Some experimental evidence, as we describe below, hints that certain forms compos-

ite integers are significantly more likely to be strong pseudoprimes, and thus have higher

proportions of nonwitnesses.

Pomerance, Selfridge, and Wagstaff determined that, for all odd composites less than

2.5 ·1010, there are 13 integers which are strong pseudoprimes to the bases 2, 3, and 5 [5]. Of

these 13 integers, 11 are of the form (k+ 1)(ak+ 1), where a is an integer and k+ 1, ak+ 1

are prime. The other two are Carmichael numbers with three distinct prime factors. One of

the numbers has prime factorization 151 ·751 ·28351, and all three primes are congruent to 3

(mod 4). The other number has prime factorization 397 ·4357 ·8317, and all three primes are

congruent to 5 (mod 8). They also determined that among the 4842 strong pseudoprimes

to the base 2 that are less than 2.5 · 1010, 4200 have only 2 distinct prime factors, and 407

have 3 distinct prime factors.

Finally, when the GMP function mpz probab prime p(N, 1), a function that performs

a Miller-Rabin Primality Test with an unknown base once on an integer N , was tested on

composites, certain numbers clearly were more likely to be strong pseudoprimes. Of the

composites less than 4 · 1012, 3773 were strong pseudoprimes. Of them, 3523 had only 2

prime factors, 3187 were of the form (k+1)(ak+1) for primes k+1 and ak+1, 1095 were of

the form (k+1)(2k+1) for primes k+1 and 2k+1, and 856 were of the form (k+1)(3k+1)
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for primes k + 1 and 3k + 1 [7].

1.4 This Research

Despite the seemingly high rate of nonwitnesses, the Miller-Rabin Primality Test has

still proven to be very useful in finding primes less than 2500. For example, the Mersenne

numbers Mp were tested for primality for p ≤ 500 using repeated iterations of the Miller-

Rabin Primality Test, yielding correct results in only 10 minutes [3]. Its applications to

numbers of such magnitude make it especially useful for finding large semiprimes and thus

for cryptography [6].

However, for certain integers, nonwitnesses appear to abound, and hundreds of iterations

are necessary to remove such cases and guarantee primality. Even for some integers less than

264, when the Miller-Rabin Primality Test was iterated 10 times, two composites passed all

10 tests, and 12 tests were required to eliminate all composites [8]. When this test was

iterated on larger integers, dozens of composites under 280 were found to pass all 10 tests

[8]. Clearly, if a probabilistic primality test is used to find more large primes with certainty,

a more accurate primality test would be useful and more efficient.

Rather than finding a completely novel probabilistic or deterministic primality test, we

look to improve the accuracy of the Miller-Rabin Primality Test by removing cases of com-

posites with especially large numbers of nonwitnesses. In this paper, we analyze the number

of nonwitnesses and determine, with proof, which forms of numbers have the highest pro-

portion of nonwitnesses, as well as methods to remove such numbers by choosing bases that

are always witnesses to certain forms of composites. By removing these special forms, we

can make a more accurate implementation of the Miller-Rabin test and enhance our ability

to find large primes and generate semiprimes for cryptographic use [6].

We note that numbers of the form (2x+1)(2ax+1) for a small integer a are likely to pass

the Miller-Rabin Primality Test, at least according to empirical results. We first devise, with

proof, a general formula for the number of nonwitnesses to a composite odd integer n. Then,

we use this formula to check, with proof, that numbers of the form (2x + 1)(2ax + 1) for a

small integer a have very high rates of nonwitnesses. We also use this formula to determine

whether any other forms of composite integers have exceptionally high rates of nonwitnesses.
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We also eliminate several of these cases of integers to allow for a more accurate version of

the Miller-Rabin Primality Test. Some of these numbers can be easily eliminated, but others

are much harder to eliminate. We therefore determine which bases are most apt to remove

these more difficult composites, and empirically test the bases theoretically predicted to be

strongest against other bases.

2 Finding Composites with Many Nonwitnesses

2.1 Number of Nonwitnesses to a Composite n

For each integer n, we define N(n) as the number of nonwitnesses of n. Brian Higgins [9]

presents a conjecture stating that N(n) =
ϕ(n)

4
if n is of the form (2x + 1)(4x + 1), where

x is odd and 2x + 1, 4x + 1 are prime. We present a general formula for N(n), which we

will use to prove Higgins’s conjecture as well as extend a theorem about the Miller-Rabin

Primality Test. After this result was obtained, we became aware that a similar result was

stated, though without proof, by Charles R. Greathouse IV [10], so we present an original

proof to this formula.

Throughout this section, we use the same notation as explained in Theorem 2.1.1.

Theorem 2.1.1. Consider an odd composite integer n with m distinct prime factors. Sup-

pose that n − 1 = 2e · d and d is odd. Also suppose that n =
m∏
i=1

pqii , and each pi can be

expressed as 2ei · di + 1, where each di is odd. We prove that the number of nonwitnesses to

n’s compositeness equals

m∏
i=1

gcd(d, di) ·
(

2min(ei)·m − 1

2m − 1
+ 1

)

Proof. First, we determine the number of solutions to ad ≡ 1 (mod n). Clearly, ad ≡ 1

(mod n) if and only if ad ≡ 1 (mod pqii ) ∀ i. First, we determine the number of solutions

to ad ≡ 1 (mod pqii ) for each i. Since ap
qi−1
i ·(pi−1) ≡ 1 (mod pqii ), ad ≡ 1 if and only

if agcd(d, p
qi−1
i ·(pi−1)) ≡ 1 (mod pqii ). But since d is odd and is not divisible by pi, this is

equivalent to agcd(d, di) ≡ 1 (mod pqii ). The number of solutions to this equation is known
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to be gcd(d, di), since Up
qi
i

is cyclic. Thus, the number of solutions to ad ≡ 1 (mod pi) also

equals gcd(d, di). By the Chinese remainder theorem, the number of solutions to ad ≡ 1

(mod n) equals
∏

gcd(d, di).

Now, we determine the number of solutions to a2
k·d ≡ 1 (mod pqii ). Of course, when

k = 0, there are gcd(d, di) solutions. For arbitrary k, the number of solutions equals

gcd(2k · d, ϕ(pqii )) = gcd(2k · d, pi − 1) = gcd(2k · d, di · 2ei).

By the same method as in the previous paragraph, which equals gcd(2k, 2ei) · gcd(d, di).

Thus, gcd(2k · d, ϕ(pqii )) = 2min(k, ei) · gcd(d, di). The number of solutions to a2
k·d ≡ −1 (mod

pi) equals the number of solutions to (a2
k·d)2 ≡ 1 (mod pqii ) minus the number of solutions

to a2
k·d ≡ 1 (mod pqii ). This value equals 2min(k+1, ei) · gcd(d, di) − 2min(k, ei) · gcd(d, di), or

2k·gcd(d, di) if k < ei, 0 otherwise. That means the number of solutions to a2
k·d ≡ −1 (mod

n), by the Chinese Remainder Theorem, equals 2km ·
∏

gcd(d, di) if k < min(ei), and 0

otherwise.

Therefore, the total number of nonwitnesses equals

(∏
gcd(d, di)

)
·

1 +

min(ei)−1∑
k=0

2km

 =
(∑

gcd(d, di)
)
·
(

2min(ei)·m − 1

2m − 1
+ 1

)
.

2.2 Miller-Rabin Extensions

It is known that for any composite odd integer n, N(n) ≤ ϕ(n)

4
[3]. Here, we prove this

theorem, but also show that unless n is of a few certain forms, N(n) ≤ 5

32
· ϕ(n). We begin

by proving a few lemmas to prove our extensions of the Miller-Rabin Theorem.

Lemma 2.2.1. Consider an odd composite integer n with m distinct prime factors. If

m ≥ 4, then N(n) ≤ 1

8
· ϕ(n).
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Proof. If m ≥ 4, then

2min(ei)·m−1
2m−1 + 1

2min(ei)·m
=

1

2m − 1
+

(
1

2min(ei)·m

)
·
(

1− 1

2m − 1

)
≤ 1

2m − 1
+

(
1

2m

)(
1− 1

2m − 1

)
=

2(2m − 1)

(2m)(2m − 1)

=
2

2m

≤ 1

8
.

Therefore,

∏
gcd(d, di) ·

(
2min(ei)·m − 1

2m − 1
+ 1

)
≤ 1

8
·
∏

gcd(d, di) · 2min(ei)·m

≤ 1

8
·
∏

(di · 2ei)

=
1

8
·
∏

(pi − 1)

≤ 1

8
· ϕ(n).

Lemma 2.2.2. If m = 3, then either N(n) ≤ 5

32
· ϕ(n) or n is a Carmichael number with

all 3 factors congruent to 3 (mod 4), in which case N(n) =
1

4
· ϕ(n).

Proof. We first note that

2min(ei)·m−1
2m−1 + 1

2min(ei)·m
=

1

2m − 1
+

(
1

2min(ei)·m

)(
1− 1

2m − 1

)
.

If min(ei) ≥ 2, then

1

2m − 1
+

(
1

2min(ei)·m

)(
1− 1

2m − 1

)
≤ 1

7
+

1

64
· 6

7
=

5

32
.
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Similar to our proof of the first lemma, we have

∏
gcd(d, di) ·

(
2min(ei)·m − 1

2m − 1
+ 1

)
≤ 5

32
·
(∏

gcd(d, di)
)
· 2min(ei)·m

≤ 5

32
·
∏

(di · 2ei)

=
5

32
·
∏

(pi − 1)

≤ 5

32
· ϕ(n).

Else, if min(ei) = 1, then
2min(ei)·m−1

2m−1 + 1

2min(ei)·m
=

1

2m
=

1

4
. We also have that

1

4
·
(∏

gcd(d, di)
)
·

2(min(ei)·m) =
1

4

∏
(gcd(d, di) · 2ei) if and only if e1 = e2 = e3 = 1. Else,

1

4
·
(∏

gcd(d, di)
)
·

2(min(ei)·m) ≤ 1

8
·
∏

(gcd(d, di) · 2ei).

If e1 = e2 = e3 = 1, then
1

4
·
∏

(gcd(d, di) · 2ei) =
1

4
·
∏

(di · 2ei) =
1

4
·
∏

(pi − 1) if and

only if di|d ∀ d. Else,
1

4
·
∏

(gcd(d, di) ·2ei) ≤
1
4
·
∏

(di · 2ei)

2
=

1

8
·
∏

(pi−1) ≤ ϕ(n)

8
. Either

way, if n is not squarefree, then N(n) ≤ 1

4
·
∏

(pi − 1) ≤ 1

12
· ϕ(n). If n is squarefree, then

di|d∀ d is equivalent to (pi − 1)|(n− 1) ∀i and pi ≡ 3 (mod 4) ∀ i. In other words, if m = 3,

then N(n) =
ϕ(n)

4
if and only if n is squarefree and (pi − 1)|(n− 1) ∀ i, which is equivalent

to n is a Carmichael number with three distinct prime factors all congruent to 3 (mod 4).

Else, N(n) ≤ ϕ(n)

8
.

Lemma 2.2.3. Suppose m = 2 and e1 6= e2. Then N(n) =
1

4
· ϕ(n) if and only if n =

(2x+ 1)(4x+ 1), where x is odd and 2x+ 1, 4x+ 1 are prime.
1

6
· ϕ(n) < N(n) <

1

4
· ϕ(n)

if and only if n = (2x+ 1)(4x+ 1), where x is even and 2x+ 1, 4x+ 1 are prime. Also, if n

is not of the form (2x+ 1)(4x+ 1), then N(n) ≤ ϕ(n)

8
.

Proof. Suppose n = (1 + 2e1 · d1)(1 · 2e2 · d2). We have
2min(ei)·m−1

2m−1 + 1

2min(ei)·m
≤ 2

2m
=

1

2
, so

N(n) =
(∏

gcd(d, di)
)(2min(ei)·m − 1

2m − 1
+ 1

)
≤ 1

2
·
(∏

gcd(d, di)
)
· 22·min(ei).
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If e1 6= e2,

1

2
·
∏

gcd(d, di) · 22·min(ei) ≤ 1

2
·
(∏

di

)
· 22·min(ei)

≤ 1

4
·
∏

(di · 2ei)

≤ 1

4
· ϕ(n).

There is equality if and only if
2min(ei)·m−1

2m−1 + 1

2min(ei)·m
=

1

2
, di|d∀ i, n is squarefree, and |e1− e2| = 1.

The last three conditions require the following: n can be written as (1 + d1 · 2e1)(1 +

d2 · 2e1+1) = 1 + 2e1(d1 + 2d2). Clearly, d = d1 + 2d2, so if d1|d, then d1|d1 + 2d2, so d1|d2.

Similarly, if d2|d, then d2|d1 +2d2, so d2|d1, so d1 = d2 according to the last three conditions.

If any of these are false, it is evident that N(n) ≤ 1

8
· ϕ(n).

Else, if m = 2 and e1 6= e2, then n = (1 + 2e1 · d1)(1 + 2e1+1 · d1) (we can assume without

loss of generality that e2 > e1). If e1 ≥ 2, then min(e1, e2) ≥ 2, so

1

2m − 1
<

2min(ei)·m−1
2m−1 + 1

2min(ei)·m

=
1

2m − 1
+

(
1

2min(ei)·m

)(
1− 1

2m − 1

)
≤ 1

2m − 1
+

(
1

22·m

)(
1− 1

2m − 1

)
,

and since m = 2,
1

3
<

2min(ei)·m−1
2m−1 + 1

2min(ei)·m
≤ 3

8
. This means

1

6
· 2e1+e2 <

2min(ei)·m − 1

2m − 1
+ 1 ≤

3

16
· 2e1+e2 .

Thus, we have the following, if n is not of the form (2x+ 1)(4x+ 1), where 2x+ 1, 4x+ 1

are primes, then N(n) ≤ 1

8
· ϕ(n). If n is of the form (2x + 1)(4x + 1), where x is odd,

2x+ 1, 4x+ 1 are primes, then n = 1 + 6x+ 8x2 = 1 + 2(3x+ 4x2), so N(n) = gcd(x, 3x+

4x2) · gcd(x, 3x + 4x2) · (2) = 2x2 =
1

4
· ϕ(n). Finally, if n is of the form (2x + 1)(4x + 1),

where x is even, 2x+ 1, 4x+ 1 are primes, then
1

6
· ϕ(n) < N(n) ≤ 3

16
· ϕ(n).

Lemma 2.2.4. If m = 2 and e1 = e2, then N(n) =
1

6
·ϕ(n) if and only if n = (2x+1)(6x+1),

where x is odd and 2x+ 1, 6x+ 1 are prime. Else, N(n) ≤ 1

8
· ϕ(n).
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Proof. We again have N(n) =
(∏

gcd(d, di)
)(2min(ei)·m − 1

2m − 1
+ 1

)
≤ 1

2
·
(∏

gcd(d, di)
)
·

22·min(ei).

First, suppose that n is squarefree. Then we have n = (1 + 2e1 · d1) (1 + 2e1 · d2) =

1 + 2e1(d1 + d2 + 2e1 · d1 · d2). Now, we have d = d1 + d2 + 2e1 · d1 · d2, so if d1|d,

then d1|d2. Since d1 6= d2, either gcd(d1, d) 6= d1 or gcd(d2, d) 6= d1, and since d1, d2, d

are all odd, gcd(d1, d) · gcd(d2, d) ≤ d1 · d2
3

. If gcd(d1, d) · gcd(d2, d) =
d1 · d2

3
, then

we have two options: gcd(d, d1) =
d1
3
, gcd(d, d2) = d2, or vice versa. Without loss of

generality, we assume the first. Note that gcd (d1, d1 + d2 + 2e1 · d1 · d2) = gcd(d1, d2) =

gcd (d2, d1 + d2 + 2e1 · d1 · d2), so
d1
3

= gcd(d, d1) = gcd(d, d2) = d2. Thus, d1 = 3d2.

Also,
2min(ei)·m−1

2m−1 + 1

2min(ei)·m
=

1

2
only if min(ei) = 1, so if n’s prime factorization can be written as

(2d1+1)(6d1+1), then N(n) =
d1 · d2

3
·1
2

=
d21
2

=
1

6
·ϕ(n). Else, either gcd(d, d1)·gcd(d, d2) ≤

d1d2
5

or
2min(ei)·m−1

2m−1 + 1

2min(ei)·m
≤ 3

8
. Either way, if n does not have a prime factorization of the form

(2x+ 1)(6x+ 1), clearly, N(n) ≤ 1

8
· ϕ(n).

Now, assume n is not squarefree. Then if n = p1
q1 ·p2q2 , then since N(n) ≤ (p1−1)(p2−1),

N(n) ≤ 1

2
· ϕ(n)

p1q1−1 · p2q2−1
=
ϕ(n)

6
, with the last equality if and only if n is of the form 32 · p2

where p2 6= 3. Else, N(n) ≤ ϕ(n)

10
. Assume p2 = 1 + 2e2 · d2 and 9p = 1 + 2e · d. Thus,

m∏
i=1

gcd(d, di) ·
(

2min(ei)·m − 1

2m − 1
+ 1

)
= gcd(1, d) · gcd(d2, d) ·

(
21·2 − 1

22 − 1
+ 1

)
= 2 · gcd(d2, d).

As gcd(p2− 1, 9p2− 1) ≤ gcd(9p2− 9, 9p2− 1) = gcd(8, 9p2− 1)|8, and since d, d2 are odd,

gcd(d2, d) = 1, so N(n) = 2 ·1 = 2. But as p2 ≥ 5 and ϕ(n) = 6(p2−1) ≥ 24, N(n) ≤ ϕ(n)

12
.

Thus, if m = 2 and e1 = e2, we either have n = (2x+ 1)(6x+ 1) and N(n) =
1

6
· ϕ(n) or

N(n) =
1

8
· ϕ(n).

The last set of composites we must work with are those that are prime powers. Luckily,

if n = pq, it is clear from Theorem 1 that N(n) ≤ p. If n ≥ 81, it is easy to prove that
N(n)

ϕ(n)
≤ p

pq−1 · (p− 1)
<

5

32
.
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The following theorem is proved as a direct result of our lemmas in the previous section:

Theorem 2.2.1. Suppose n is an odd composite integer ≥ 81. Then N(n) =
ϕ(n)

4
if and

only if n is of the form (2k+ 1)(4k+ 1), where k is odd and 2k+ 1, 4k+ 1 are prime or n is

a Carmichael Number of the form pqr, where p, q, r are distinct primes ≡ 3 (mod 4). Also,
ϕ(n)

6
< N(n) <

ϕ(n)

4
if and only if n = (2k+ 1)(4k+ 1), where k is even and 2k+ 1, 4k+ 1

are primes. Finally, N(n) =
ϕ(n)

6
if and only if n is of the form (2k+ 1)(6k+ 1), where k is

odd and 2k + 1, 6k + 1 are prime. Else, N(n) ≤ 5

32
· ϕ(n).

2.3 New Primality Test

We now explain how to use the results of the previous section to create a primality testing

algorithm.

The new primality test proposed consists of 4 steps:

1. Remove integers n of the form (2x+ 1)(4x+ 1).

2. Remove integers n of the form (2x+ 1)(6x+ 1).

3. Remove integers n that are Carmichael numbers of the form pqr, where p, q, r ≡ 3

(mod 4).

4. Perform the Miller-Rabin Primality Test with increased accuracy, since we have gotten

rid of the composites with high rates of nonwitnesses.

We note that Theorem 2.2.1 and our primality test is consistent with the experimental

results. As composites of the form (2x+ 1)(4x+ 1) and (2x+ 1)(6x+ 1) made the majority

of the pseudoprimes in [7], our new primality test should increase the accuracy of the Miller-

Rabin Primality Test. The Carmichael form is not as common, but still makes up a significant

portion of the common pseudoprimes.

However, this primality test will still result in high rates of error. For integers greater

than 4 · 1012, integers of our three forms become less and less frequent. Also, other forms

such as (2x+ 1)(8x+ 1) or (2x+ 1)(2ax+ 1) for larger integers a still are prevalent. Finally,

12



there is no known polynomial time algorithm that determines whether n is a Carmichael

number of the form pqr, where p, q, r ≡ 3 (mod 4). Thus, we obtain methods to remove

other forms of integers with many nonwitnesses by performing Miller-Rabin Primality Tests

with special bases.

3 Eliminating Integers with Many Nonwitnesses

3.1 Choosing Bases to Remove Composites

From the experimental results, we note that our three forms are not necessarily the only

forms that we can eliminate. Being able to eliminate other forms (2x+ 1)(2kx+ 1) can also

remove extra composites and increase the accuracy of our primality test.

To remove the first two cases, we just have to check if 8n+1 or 3n+1 is a perfect square.

However, this strategy will not cover (2x + 1)(2kx + 1) for large values of k. Instead, we

attempt to remove such values of k with Miller-Rabin tests for specific bases.

We prove the following:

Theorem 3.1.1. If n =
∏

pi, and v2(pi − 1) = v2(pj − 1) ∀ i, j, then if x is a nonwitness

to n,

(
x

pi

)
=

(
x

pj

)
∀ i, j.

Proof. If x is a nonwitness, x
∏

pi−1 ≡ 1 (mod
∏

pi). If we suppose pi0 is the remainder

when
∏

pi − 1 is divided by pi − 1, then xpi0 ≡ 1 (mod pi).

Suppose v2(
∏

pi−1)−v2(pi−1) = k for some nonnegative integer k. Since v2(pi−1) ≥ 1,

we can define pij for any j from 0 to k + 1 as pij being

∏
pi − 1

2j
taken mod pi − 1.

We prove that xpij ≡ 1 (mod pi) ∀ j, 1 ≤ j ≤ k. To show this, suppose xpij−1 ≡ 1 (mod

pi). Then pij−1
≡ 2 · pij (mod pi − 1), so xpij−1 ≡ (xpij )2, or xpij ≡ ±1 (mod pi). But since

v2(pij) ≥ v2(pi − 1), ∃p′ such that p′ · pij−1
≡ pij (mod pi − 1). Thus, xpij ≡ (xpij−1 )p

′ ≡ 1

(mod pi). This also means x
∏

pi−1

2j ≡ 1 (mod n) ∀ j, 1 ≤ j ≤ k.

Now, since x is a nonwitness, we know that x
∏

pi−1

2k+1 ≡ ±1 (mod n). If x
∏

pi−1

2k+1 ≡ 1 (mod

n), then for each prime pi, x
∏

pi−1

2k+1 ≡ 1 (mod pi). Since v2(

∏
pi − 1

2k+1
) = v2(pi − 1) − 1 and

since Upi is cyclic, we know that x
∏

pi−1

2k+1 ≡ 1 (mod pi) is the same as saying

(
x

pi

)
= 1.

13



Similarly, x
∏

pi−1

2k+1 ≡ −1 (mod pi) is the same as saying

(
x

pi

)
= −1. Thus,

(
x

pi

)
= 1 ∀ i or(

x

pi

)
= −1 ∀ i.

This theorem can lead us to a few lemmas:

Lemma 3.1.1. If n is a Carmichael number of the form pqr, where p, q, r ≡ 3 (mod 4), and

1 ≤ x < n, then x is a nonwitness if and only if

(
x

p

)
=

(
x

q

)
=
(x
r

)
.

Proof. Note that v2(p−1) = v2(q−1) = v2(r−1) = 1. By our theorem, the lemma is clearly

true.

Lemma 3.1.2. If n is of the form (2k+ 1)(2ak+ 1), where a is odd and 2k+ 1, 2ak+ 1 are

prime, then if x is a nonwitness to n,
(x
n

)
= 1.

This lemma is clearly true from our theorem. Unfortunately, there does not exist a

method to find an integer x such that
(x
n

)
= −1. However, this can be easily done if a ≡ 3

(mod 4) and k is odd (x can equal 2). It is also known that assuming the Extended Riemann

Hypothesis, ∀n, ∃x ≤ 2 · ln(n)2 such that
(x
n

)
= −1 [2, 9].

We can also eliminate composites of the form n = (2k + 1)(4ak + 1), where a, k are odd

and 2k + 1, 4ak + 1 are prime. To do so, we first prove the following theorem.

Theorem 3.1.2. If n = (2k+ 1)(4ak+ 1), where 2k+ 1, 4ak+ 1 are prime, if

(
x

4ak + 1

)
=

−1, x is a witness to n.

Proof. Note xn−1 = x8ak
2+(4a+2)k ≡ x2k (mod 4ak + 1). If x were a nonwitness, then 1 ≡

x2k ≡ x2ak ≡
(

x

4ak + 1

)
(mod 4ak + 1). The contrapositive of this statement is equivalent

to the theorem.

This theorem is an extension of a theorem published by F. Arnault, who proves a similar

theorem except assuming that a = 1 [12].

Now, we prove the following:

Lemma 3.1.3. If n is of the form (2k+ 1)(4ak+ 1), where a, k are odd and 2k+ 1, 4ak+ 1

are prime, 2 is a witness to n.
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Proof. Note that

(
2

4ak + 1

)
= −1 since 4ak+1 ≡ 5 (mod 8), so 2 is a quadratic nonresidue.

From our previous theorem, since

(
2

4ak + 1

)
= −1, 2n−1 6≡ 1 (mod n), so 2 is a witness.

3.2 Refined Primality Test

From our results here, we can refine our original test in Section 2.3 as follows: [5]

1. Remove integers n of the form (2x+ 1)(4x+ 1).

2. Remove integers n that are Carmichael numbers of the form pqr, where p, q, r ≡ 3

(mod 4).

3. Perform the Miller-Rabin Primality Test for base 2.

4. For each remaining n, determine the smallest integer x such that x > 2,
(x
n

)
= −1

and perform the Miller-Rabin Primality Test for that base.

5. If required, perform additional Miller-Rabin Primality Tests.

Determining whether n is of the form (2x+ 1)(4x+ 1) can be done in O(log(n)) time, as

square root computation can be done in O(log(n)) time. Also, it is known that calculating(a
b

)
can be done in O(log(a) · log(b)) time, so assuming the Extended Riemann Hypothesis,

finding such an x can be done in (2 · ln(n)2) ·O(log(n) · log(2 · ln(n)2)) = O(ln(n)3 · ln(ln(n)))

time [13].

Apart from Step 2, which does not have a known minimum running time algorithm,

all of the steps which are not direct Miller-Rabin implementations take at most Õ(log(n)3)

time, which means this primality test’s running time, at least if Step 2 is excluded, is not

significantly slower than the Miller-Rabin Primality Test. However, as it removes the forms

of the most likely pseudoprimes, it is nevertheless significantly more accurate.
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4 Implementations

To determine the approximate frequency of strong pseudoprimes to 2 or to its Jacobi

nonresidues, we used MATLAB to determine the number of strong pseudoprimes to 2, 3, and

5 less than 223, as well the number of strong pseudoprimes to its smallest Jacobi nonresidue

less than 223.

Base 2 3 5 Smallest Jacobi Nonresidue

216 11 17 15 8

217 18 26 21 13

218 24 35 29 22

219 34 56 45 33

220 49 75 65 44

221 75 110 93 69

222 104 150 133 89

223 147 189 185 115

Table 4.1: Number of Strong Pseudoprimes less than 2n, 16 ≤ n ≤ 23

From the table shown above, it appears as if the smallest proportion of strong pseudo-

primes are strong pseudoprimes to its smallest Jacobi nonresidue. This is not very surprising,

since using the Jacobi nonresidue removes any composites of the form (x+ 1)(kx+ 1), where

k is odd and (x + 1)(kx + 1) is prime. As shown in countless empirical studies, these are

extremely common forms of strong pseudoprimes.

Strong pseudoprimes to base 2 seem rarer than strong pseudoprimes to bases 3 or 5,

which supports our theoretical justification for 2 being a strong base.

Yet for every value from 216 to 223, strong pseudoprimes to base 5 are less frequent than

strong pseudoprimes to base 3. It is unclear whether this is mere coincidence, or whether 5

is in fact a stronger base than 3. But this leads to a conjecture we propose:

Conjecture 4.1. For squarefree integers x greater than 1, define Px(n) as the number of

strong pseudoprimes to base x less than n. Then the distributions of strong pseudoprimes

to x follow Px(n) = (1 + o(1)) · cx · f(n), where cx is a distinct constant for each x, and fn is
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a function of n irrelevant of the base. In other words, lim
x→+∞

Px(n)

Py(n)
is a constant ∀ x, y, not

necessarily equal to 1.

5 Conclusion and Future Research

In conclusion, we have proven that N(n) =
ϕ(n)

4
if and only if n = (2x + 1)(4x + 1),

where x is odd and 2x+1, 4x+1 are prime or n = pqr, where n is a Carmichael number and

p, q, r are primes congruent to 3 (mod 4). Also, we have proven that if n cannot be written

as (2x + 1)(4x + 1), where x is an integer, as (2x + 1)(6x + 1), where x is an integer, or as

n = pqr, where n is a Carmichael number and p, q, r are primes congruent to 3 (mod 4), then

N(n) ≤ 5

32
· ϕ(n). We also found a way to choose bases that would remove certain forms of

composites with high rates of witnesses. Finally, we analyzed the frequency of pseudoprimes

in MATLAB and noticed our predictions regarding 2 and the smallest Jacobi nonwitness as

strong bases were clearly supported.

For further research, we hope to implement our new primality test and test for speed as

well as accuracy.

Also, further research could be performed to help answer our previous conjecture along

with the following conjectures we propose:

Conjecture 5.1. If a composite n satisfies N(n) ≤ 5

32
· ϕ(n) (i.e. n is not one of the three

special forms), ∃ a witness to n less than (2 · ln(n)2), and this can be proved without the

need of the Extended Riemann Hypothesis.

Conjecture 5.2. There exists a method that determines whether an integer n is a Carmichael

number of the form pqr, where p, q, and r ≡ 3 (mod 4), that operates in Õ(log(n)4) running

time.

Stronger version: For any real ε > 0, there exists a method which determines whether

an integer n satisfies N(n) > ε ∗ ϕ(n), which operates in Õ(log(n)4) running time.

Remark: We choose Õ(log(n)4) running time since this is the running time of the de-

terministic variant of the Miller-Rabin primality test, assuming the Extended Riemann Hy-

pothesis.
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As the Miller-Rabin test is usually iterated hundreds of times for large primes (and occa-

sional pseudoprimes), increasing the maximum probability of a nonwitness for a composite

means fewer iterations will be needed. This clearly has vast applications in not only primal-

ity testing and number theory, but also in developing methods to create large semiprimes

quickly. This will improve cryptography, and will also have practical implications in many

other aspects of computer science and number theory.
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