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Abstract 

Snowflake growth is an example of crystallization, a basic phase transition in physics. 

Studying snowflake growth helps gain fundamental understanding of this basic process and may 

help produce better crystalline materials and benefit several major industries. The basic 

theoretical physical mechanisms governing the growth of snowflake are not well understood: 

whilst current computer modeling methods can generate snowflake images that successfully 

capture some basic features of actual snowflakes, so far there has been no analysis of these 

computer models in the literature, and more importantly, certain fundamental features of 

snowflakes are not well understood. A key challenge of analysis is that the snowflake growth 

models consist of a large set of partial difference equations, and as in many chaos theory 

problems, rigorous study is difficult. In this paper we analyze a popular model (Reiter’s model) 

using a combined approach of mathematical analysis and numerical simulation. We divide a 

snowflake image into main branches and side branches and define two new variables (growth 

latency and growth direction) to characterize the growth patterns. We derive a closed form 

solution of the main branch growth latency using a one dimensional linear model, and compare it 

with the simulation results using the hexagonal automata. We discover a few interesting patterns 

of the growth latency and direction of side branches. On the basis of the analysis and the 

principle of surface free energy minimization, we propose a new geometric rule to incorporate 
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interface control, a basic mechanism of crystallization that is not taken into account in the 

original Reiter’s model. 



2 
 

1. Introduction 

Snowflakes exhibit a rich combination of characteristic symmetry and complexity. The 

six fold symmetry is a result of the hexagonal structure of the ice crystal lattice, and the 

complexity comes from the random motion of individual snow crystals falling through the 

atmosphere.    Figure 1 shows different real snowflakes.  

 
Figure 1. Plates and dendrites [5]. (a) Stellar dendrite (b) Stellar plate (c) Sectored plate. 

Snowflake growth is a specific example of crystallization – how crystals grow and create 

complex structures. Because crystallization is a basic phase transition in physics, and crystals 

make up the foundation of several major industries, studying snowflake growth helps gain 

fundamental understanding of how molecules condense to form crystals. This fundamental 

knowledge may help fabricate new and better types of crystalline materials [4].  

Scientific studies of snowflakes can be categorized into two main types. The first type 

takes a macroscopic view by observing natural snowflakes in a variety of morphological 

environments characterized by temperature, pressure and vapor density [6,7,8]. The second type 

takes a microscopic view and investigates the basic theoretical physical mechanisms governing 

the growth of snowflakes [4]. While some aspects of snowflake growth, e.g., the crystal structure 

of ice, are well understood, many other aspects such as diffusion limited growth are at best 

understood at a qualitative level [4]. Computer modeling [2,3,9,10,11,12] is yet another approach 

in which snowflake growth is numerically simulated to produce images with mathematical 

models derived from the physical principles. By comparing computer generated images with 
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actual snowflakes, one can correlate the mathematical models and their parameters with physical 

conditions. 

While computer modeling can generate snowflake images that successfully capture some 

basic features of actual snowflakes, so far there has been no analysis of these computer models in 

the literature. Moreover, certain fundamental features of snowflakes are still not well understood. 

In this paper we attempt to analyze snowflake growth simulated by the computer models so as to 

connect the microscopic and macroscopic views and to further our understanding of snowflake 

physics. A key challenge of analysis is that the snowflake growth models (e.g., [2,11]) consist of 

a large set of partial difference equations and no analytical solution is known. The models that 

have been considered in the past are in essence chaos theory models, which is why they 

successfully capture the real world phenomena, but prove to be notoriously difficult to analyze 

rigorously. In this paper we analyze a popular model (Reiter’s model [11]) using a combined 

approach of mathematical analysis and numerical simulation. 

The rest of this paper is organized as follows. Section 2 summarizes Reiter’s model. In 

Section 3 we divide a snowflake image into main branches and side branches, define growth 

latency and direction to characterize the growth patterns, and describe general geometric 

properties. In Section 4, we derive a new closed form solution of the main branch growth latency 

with a one dimensional linear model, and compare it with the simulation results. In Section 5, we 

study the growth latency and direction of side branches. On the basis of the analysis and the 

principle of surface free energy minimization, in Section 6, we propose a new geometric rule to 

incorporate interface control, a basic mechanism of crystallization that is not taken into account 

in the original Reiter’s model. We summarize our contributions and present a few future work 

directions in Section 7. 
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2. An overview of Reiter's model 

Reiter’s model is a hexagonal automata which can be described as follows. Tessellate the 

plane into hexagonal cells. Each cell   has six nearest neighbors. The state variable       of cell 

  at time   represents the amount of water stored in cell  . The cells are divided into three types: 

Definition 2.1 A cell   is called frozen if        . If a cell is not frozen itself but at least one 

of the nearest neighbors is frozen, the cell is called a boundary cell. A cell that is neither frozen 

nor boundary is called nonreceptive. The union of frozen and boundary cells are called receptive 

cells. 

Reiter’s growth model starts from a single ice crystal          at the origin cell  , 

which represents a thin hexagonal prism. For all other cells         , where   represents a 

fixed constant background vapor level. The state of a cell evolves as a function of the states of its 

nearest neighbors according to the local update rules that reflect the underlying mathematical 

models. To describe the local update rules, we use 
−
 and 

+
 notations to denote the variables 

before and after a step is completed. At time  , define two variables             of each cell  : 

      represents the amount of water that participates in diffusion, and       is the amount that 

does not participate. If cell   is receptive,          and              ; otherwise,        

      and         .  

Given     two fixed constants representing vapor addition and diffusion coefficients 

respectively, Reiter’s model is based on the following two local update rules:  

 Constant addition. For any receptive cell  ,  

  
       

        (1) 

 Diffusion. For any cell  ,  
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( ̅ 

       
    )  (2) 

 where  ̅ 
     is the average of   

  for the six nearest neighbors of cell  . 

The underlying physical principle of Equation (2) is the diffusion equation 

  

  
       (3) 

where   is a constant and     
   

    
   

    is the Laplacian. Equation (2) is the discrete version 

of Equation (3) on the hexagonal lattice, and it states that cell   keeps (  
 

 
) fraction of   

     

to itself, uniformly distributes the remaining to its six neighbors, and receives 
 

  
 fraction from 

each neighbor. The total amount of       would be conserved within the entire system, except 

that a real world simulation consists of a finite number of contiguous cells. The cells at the edge 

of the simulation setup are referred to as edge cells, in which one sets   
         Thus, water is 

added to the system via the edge cells in the diffusion process. 

Combining the two intermediate variables, one obtains 

           
       

      (4) 

By varying      , Reiter's model can generate certain geometric forms of snowflakes observed 

in nature. Figure 2 shows a variety of dendrite and plate forms generated from Reiter's model.  
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Figure 2. Snowflake images generated by Reiter's model published in [11], with    . The upper left figure is (a), the upper 

right figure is (b), the lower left figure is (c), and the lower right figure is (d). 

3. General geometric properties 

In what follows, we give new descriptions of snowflake growth and analyze them with a 

combined approach of mathematical analysis and numerical simulation. To model snowflake 

growth, we consider a coordinate system of cells as in Figure 3(a). A cell   is represented by its 

coordinate      , for      . Thanks to the six fold symmetry, we only focus on one twelfth of 

the cells, marked as dark dots, for which      :  
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Figure 3. (a) Coordinate system of hexagonal cells. (b) Definition of growth directions in the coordinate system. 

The images in Figure 2 show that a crystal consists of six main branches that grow along 

the lattice axes, and numerous side branches that grow from the main branches in a seemingly 
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random manner. The main and side branches exhibit a rich combination of characteristic 

symmetry and complexity. Before we analyze the growth pattern of the main and side branches, 

we can show the following general geometric properties.  

Definition 3.1 The rate of water accumulation of cell   is defined as                     .  

Proposition 3.1 For a nonreceptive cell    one has           and           Moreover, 

        only for edge cell  .  

Proposition 3.2 For a boundary cell  ,        is the sum of    and diffusion. If    , there 

exists      such that         ; otherwise,               if cell   is surrounded by a set 

of frozen cells and disconnected from the edge cells. 

Proposition 3.3 For a frozen cell  , one has          . 

Proposition 3.4 At any time the set of all the receptive cells are connected. Moreover, suppose 

that a nonreceptive cell   is surrounded by receptive cells and disconnected from the edge cells. 

If    , there exists      such that         ; otherwise,              . 

To become frozen, a cell goes through two stages of growth. First, it is nonreceptive and 

loses vapor to other cells due to diffusion (Proposition 3.1). Next, it becomes boundary and 

accumulates water via diffusion and addition (Proposition 3.2) until it becomes frozen and sees 

no benefit of diffusion (see Proposition 3.3). Becoming boundary is a critical event between the 

two stages. We focus on the second stage and define two new variables to characterize growth 

patterns. 

Definition 3.2 The time to be frozen of a cell   is denoted by      and defined by the condition 

            and         for       . Similarly, one can define      as the first time to be 

boundary. Growth latency is denoted by      and defined by                . 
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 A cell (referred to as destination cell   ) becomes boundary as one of its neighboring 

cells (referred to as source cell   ) has just become frozen. Note that while the growth of    is 

traced back to a unique   , a source cell may correspond to multiple destination cells. 

Definition 3.3 Growth direction of cell    is denoted by       and defined as the orientation of 

   with respect to   . As shown in Figure 3(b), the angle is given relative to the horizontal 

direction in the coordinate system, and 

satisfies        {                               } . The source-destination cell 

relationship is denoted by         . 

4. Growth of main branches 

The snowflake growth is fastest along a lattice axis, which represents a main branch. The 

growth is slowest along the    -offset lattice axis. More precisely, consider cells        where 

      for a fixed  . These cells are all   hops from the origin       on the grid. The main 

branch growth pattern is such that               and that  (
 

 
 
 

 
)         for even   and 

 (
   

 
 
   

 
)         for odd    Along the lattice  -axis,             for all  . 

We next develop a model to calculate the growth latency       . Note that when cell 

      becomes frozen, cell          becomes boundary immediately. It follows that the first 

time to be boundary                . Thus, one can calculate        as 

              ∑      

 

   

  (5) 

In order to gain analytical understanding, we first study a one dimensional model. 

Consider a line of consecutive cells        . Cell   is the edge cell. Initially cell   is frozen. 

We focus on the growth period [         ] in which cells           are frozen and cell 
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  grows from boundary to frozen. Partial difference equation (2) describes the diffusion 

dynamics of vapor being transferred from the edge cell to cell  . Moreover, cell   accumulates 

water via addition (1). To derive an analytical solution, we make the following assumption which 

we justify next. 

Assumption 4.1 For   [         ], assume that in the diffusion equation (2),   
       

      

for          , and therefore, the vapor distribution reaches a steady state, denoted as 

      . 

 From Assumption 4.1, we can ignore the notations of 
−
 and 

+
, and reduce the partial 

difference equation (2) to the linear equation 

       
 

 
(                 )  (6) 

With the boundary conditions          and           the vapor distribution can be written 

in a closed form as follows: 

       
   

   
              (7) 

which graphically represents a line that connects the two boundary condition points.  

We shall now explain why we have made Assumption 4.1. Suppose that the steady state 

distribution (7) is already reached at       , i.e.,                   
       

       
 , for 

       . We examine how       evolves in the interval of           ]. For    , one has 

                  
 

     
   , and thus it is reasonable to assume           

       because cell   will take quite a few simulation steps to reach           . 

Moreover, |               |  |
       

       
   

   

   
 |    for    . Thus, in each simulation 
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step of              ] , the function       only varies slightly and can be considered 

approximately constant. Hence,   
       

    .  

From Equations (2) and (6), we estimate that  ̂ 
     

 

 

 

   
 . Because   

      , it 

follows that 

  ̂     
 

 

 

   
     (8) 

 ̂    
          

  ̂    
 

  
 

     
 

 
 

 
   

   
  (9) 

Figure 4(a) below compares        at cell   determined by the simulation, and 

  ̂     predicted by (8) for   [         ]. Initially             , and          ̂    . In 

just about 5 simulation steps,        drops to a flat plateau, which is approximately equal to 

  ̂    . At any time  , one observes that   ̂           . Figure 4(b) compares 

     determined by the simulation, and  ̂    predicted by (9) as the snowflake grows from cell   

to the edge cell. For any  , one observes that       ̂   . This phenomenon is expected from 

the following proposition. 

Proposition 4.1 There exists     such that at any time instance   [         ], for   

                    and   ̂           . As a result,  ̂          
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Figure 4. In the one dimensional model with     , the left figure (a) compares vapor accumulation in every simulation step, as 

the simulation proceeds from the time when cell      just becomes boundary to the time when it becomes frozen; the right 

figure (b) plots                as a function of cell index. The blue curve is generated by simulating (2) and the red curve 

is predicted by the steady state model (7). In both pictures,                    

Equation (9) predicts that  ̂    drops monotonically with  . In simulation, we observe 

that in the beginning the cells grow from boundary to frozen very quickly, well before the steady 

state is reached. As a result, the steady state assumption 4.1 does not hold in that time period.            

Figure 4(b) shows that      first increases, then drops, and eventually matches the prediction 

 ̂   . 

Finally, we return to the two dimensional hexagonal cellular case. With a similar steady 

state assumption, we can reduce the partial difference equation to a set of linear equations similar 

to Equation (6). However, the geometric structure is much more complex than the one 

dimensional case. As a result, it is difficult to derive a closed form formula of the vapor 

distribution similar to (7).   Figure 5 below plots        along a main branch. Comparison with 

Figure 4(b) indicates a similarity between the one dimensional and two dimensional cases in that 

  increases as the snowflake grows from the origin. However, in the two dimensional case, we 

observe that                           .  When the snowflake grows close to the edge 

cell, it experiences some edge effect in the simulation where   drops drastically. This indicates 
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that somewhat surprisingly          remains almost constant as the snowflake grows along the 

main branch. 

 
Figure 5.                of cells       along a main branch for          in the two dimensional scenario. Cell         is an 

edge cell and                    

5. Growth of side branches 

While the main branches of snowflakes represent clean six fold symmetry, the side 

branches exhibit characteristic features of chaotic dynamics: complexity and unpredictability. 

Reiter’s model is completely deterministic with no noise or randomness involved, and yet the 

resultant snowflake images are sensitive to the parameters      and   in a chaotic manner. Chaos 

may appear to be the antithesis of symmetry and structure. Our goal in this section is to discover 

growth patterns that emerge from seemingly chaotic dynamics.  

Definition 5.1 Starting from a cell    on the  -axis main branch, the set of consecutive frozen 

cells in the  -axis direction are referred to as side branch from cell   , and are denoted by 

       {           }. Denote by        the outmost cell or tip, and by       the length of the 

side branch.  

In what follows, we study the growth latency of side branches. Figure 6 below plots the 

tips of the side branches that grow from the  -axis main branch using the parameters of the four 

images in Figure 2. Due to the chaotic dynamics, the lengths of the side branches vary drastically 
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with    in a seemingly random manner. For image (a), most of the side branches are short and 

only a small number stand out. The opposite holds for image (d). The scenarios are in between 

for images (b) and (c). The length of the side branches is indicative of the growth latency. The 

long side branches represent the ones that grow fastest. In Figure 6 we connect the tips of the 

long side branches to form an envelope curve that represents the frontier of the side branch 

growth. The most interesting observation is that the envelope curve can be closely approximated 

by a straight line for the most part. Recall that the growth latency of the main branch is a 

constant. Thus we infer that the growth latency of the long side branches is also constant. Denote 

by    and    the growth latencies of the main and long side branches respectively. We can show 

that   

  

  
 

   (
  
   )

    
  (10) 

where   is the angle between the envelope curve straight line and the  -axis. As a specific 

example, for the magenta curve, the envelope curve of the long side branches grows almost as 

fast as the main branch such that   
 

 
 and the resultant image (Figure 2(d)) is roughly a 

hexagon. 
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Figure 6. Plots of the tips (thin curves) and envelope curves (thick curves) of the side branches from the  -axis main branch using 

the parameters of the four example images in Figure 2. Due to symmetry, we focus on one set of side branches that grow from the 

right side of lattice  -axis. Here, the black curve represents Figure 2(a), blue for Figure 2(b), red for Figure 2(c), and magenta for 

Figure 2(d). The  -/ - axes are the horizontal and vertical axes of the coordinate system. 

Next, we study the growth directions of the cells on side branches. Figure 7 below plots 

the trace of   as a snowflake develops in the simulation. The corresponding snowflake image is 

shown in Figure 2(b). When a cell   becomes boundary, we mark the cell to indicate      using 

the legend labeled in the figure. If a cell never becomes boundary, no mark is made. All side 

branches grow from the  -axis main branch, starting in the direction parallel to the  -axis. 

Subsequently, a side branch may split into multiple directions. Indeed, all six orientations have 

been observed and the dynamics appear chaotic as      appears unpredictable. However, we do 

find an interesting pattern described below. 
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Figure 7. Trace of relative orientations of source cells with respective destination cells. A destination cell becomes boundary 

because a source cell, which is one of the neighbors of the destination cell, becomes frozen. Legend is as follows: 

magenta      , black      , green      , blue      , red         cyan                           . Not all 

straight paths are labeled. The  - and  - axes are the horizontal and vertical axes of the coordinate system Figure 3(a).  

Definition 5.2 Starting from a cell    on the  -axis main branch, the set of consecutive frozen 

cells in the  -axis direction such that            for              , are called straight path 

from cell  , and are denoted by        {                 }. Its length is denoted by      . 

Comparison between Definitions 5.1 and 5.2 shows that             and        

     . When a cell      on the straight path becomes frozen, it triggers not only    in the  -axis 

direction but also other neighbors to become boundary, resulting in growth in other directions, 

called deviating paths. The straight and deviating paths collectively form a side branch cluster. 

Definition 5.3 A side branch cluster, denoted by      , is the set of frozen cells that can be 

traced back to a cell on the straight path from cell    on the  -axis main branch. 

Figure 8 below compares the concepts of main branch, side branch, straight path, 

deviating path, and side branch cluster. 
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Figure 8. Summary of the concepts of main branch, side branch, straight path, deviating path, and side branch cluster. An arrow 

linking two cells indicates the source/destination relationship. 

A side branch cluster is a visual notion of a collection of side branches that appear to 

grow together. Figure 7 shows several side branch clusters and the cells on the corresponding 

straight path marked with cyan  . Compared with the straight paths, the deviating paths do not 

grow very far, because they compete with other straight or deviating paths for vapor 

accumulation in diffusion. On the other hand, the competition with the deviating paths slows 

down or may even block the growth of a straight path. When a straight path is blocked, the 

straight path is a strict subset of the corresponding side branch. This scenario is illustrated in 

Figure 8, where three side branches are shown. The straight path of the middle side branch is 

blocked by a deviating path of the lower side branch, which grows into a sizeable side branch 

cluster. We can show this proposition. 

Proposition 5.1 If there exists   such that         and       
  , then      

       
  . 

Definition 5.4 Denote by         the distance between    and        , defined as the 

smallest number of hops on the lattice from   to   . Define the length of       as        

                  .  

The proposition below states that the straight path determines the length of the side branch 

cluster. 
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Proposition 5.2 There exist              , for    , such that                for 

       . Moreover, there exists   with       such that         , and thus        

     . 

6. An enhanced Reiter’s model 

Plates and dendrites are two basic types of regular, symmetrical snowflakes. We observe 

that while the dendrite images in Figure 2(a)(b) generated by Reiter’s model resemble quite 

accurately the real snowflake in Figure 1(a), as seen in Figure 2 (c)(d) and Figure 1(b)(c), the 

plate images differ significantly. The plate images in Figure 2(c)(d) is in effect generated as a 

very leafy dendrite. The reason that Reiter’s model is unable to generate plate images natively is 

that the model only takes into account diffusion, not taking into account the effect of local 

geometry.  

As described in [1], two basic types of mechanisms contribute to the solidification 

process of snowflakes: diffusion control and interface control. Diffusion control is a 

nongeometric growth model, where snowflake surfaces are everywhere rough due to diffusion 

instability, a characteristic result of chaotic dynamics. For example, if a plane snowflake surface 

develops a small bump, it will have more exposure into the surrounding vapor and grow faster 

than its immediate neighborhood thanks to diffusion. Interface control is a geometric growth 

model where snowflake growth only depends on local geometry, i.e., curvature related forces. In 

the small bump example, the surface molecules on the bump with positive curvature have fewer 

nearest neighbors than do those on a plane surface and are thus more likely to be removed, 

making the bump move back to the plane. Interface control makes snowflake surfaces smooth 

and stable, and it is illustrated in Figure 9 below.  
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Figure 9. An example showing two competing forces of diffusion control and interface control that determine snowflake growth. 

In summary, snowflake growth is determined by the competition of the destabilizing 

force (diffusion control) and stabilizing force (interface control). In the absence of interface 

control, Reiter’s model is unable to simulate certain features of snowflake growth.  

The interface between the snowflake and vapor regions has potential energy, called 

surface free energy, due to the unfilled electron orbitals of the surface molecules. The surface 

free energy as a function of direction   ,     , is determined by the internal structure of 

snowflake, and in the case of a lattice plane, is proportional to lattice spacing in a given direction. 

Figure 10(a) below plots the surface free energy      of a snowflake as a function of the 

direction  . The equilibrium shape of the interface is the one that minimizes the total surface free 

energy for a given enclosed volume. Wulff construction (see [1]) can be used to derive the 

equilibrium crystal shape    from the surface free energy plot     : 

    {             }  (11) 

Wulff construction states that the distances of the equilibrium crystal shape from the 

origin are proportional to their surface free energies per unit area. Figure 10(a) plots the 

equilibrium crystal shape of snowflake. Moreover, it shows that due to interface control, 

snowflake growth is the slowest along the lattice axes, and the fastest along the    -offset lattice 

axes.  

This can be explained intuitively. Snowflake grows by adding layers of molecules to the 

existing surfaces. The larger the spaces between parallel lattice planes, the faster the growth is in 
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that direction. This effect is completely opposite to the diffusion control we have studied in  

Section 4, where snowflake grows fastest along the lattice axes. This is an example of 

competition between diffusion control and interface control. 

We next propose a new geometric rule to incorporate interface control in Reiter’s model. 

The idea is that the surface free energy minimization forces the lattice points on an equilibrium 

crystal shape to possess the same amount of vapor so that the surface tends to converge to the 

equilibrium crystal shape as snowflake grows. From Figure 10(a), we learn that the equilibrium 

crystal shape is a hexagon except for six narrow regions along the    -offset lattice axes where 

the transition from one edge of the hexagon to another edge is smoothened. The equilibrium 

crystal shape used in the new geometric rule is shown in Figure 10(b). For a given cell   , define 

two interface control neighbors    
    

 , which are two neighboring cells of     on the same 

equilibrium crystal shape. Figure 10(b) shows the equilibrium crystal shape used in the new 

geometric rule and the interface control neighbors of the cells. As an example, cells 

            are on the same equilibrium crystal shape. Cells     are the interface control 

neighbors of  , cells     are the interface control neighbors of  , etc. 
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Figure 10. (a) Surface free energy of snowflake as a function of direction and equilibrium crystal shape of snowflake derived 

from surface free energy plot with Wulff construction [1]. (b) Equilibrium crystal shape used in the new geometric rule. 

The new geometric rule is applied after Equation (4) of     
                . A new 

variable        is defined to represent the amount of water to be redistributed for cell   at time  . 

We initialize         for all  . Define   ̅     as the average of the water amounts in cell    and 

its two interface control neighbors   
    

 : 

 ̅      
 

 
(    

          
    

       
    

  )  (12) 

For every boundary   , if neither of    
    

  are frozen, then adjust         as follows 

               ( ̅         
     )  (13) 

     
        

    ( ̅         
    

  )  (14) 

     
        

    ( ̅         
    

  )  (15) 

After       has been adjusted for all   according to (13)-(15), finally, for every cell  , set  

    
          

            (16) 

In (13)-(15), the amount of interface control is determined by  . Recall that in the original 

Reiter’s model, once water is accumulated in a boundary cell, water stays permanently in that 



21 
 

cell. The new function (16) forces water redistribution particularly among boundary cells to 

smoothen the snow vapor interface. Figure 11 below shows two snowflake images generated by 

the enhanced Reiter's model with the new geometric rule. 

  

Figure 11. Snowflake images generated by the enhanced Reiter's model with the new geometric rule. (a)      . (b)       .    

                   

At      , the image resembles a plate observed in nature much more closely than the 

ones in Figure 2. By reducing interface control with       , the snowflake starts as a plate and 

later becomes a dendrite as diffusion control dominates interface control.  

7. Conclusions and future work 

In this paper we have analyzed the growth of snowflake images generated by a computer 

simulation model (Reiter’s model [11]), and have proposed ways to improve the model. A 

snowflake consists of main branches and side branches. We have derived an analytical solution 

of the main branch growth latency and made numerical comparison with simulation results. We 

have discovered interesting patterns of side branches in terms of growth latency and direction. 

Finally, to enhance the model, we have introduced a new geometric rule that incorporates 

interface control, a basic mechanism of the solidification process, which is not present in the 

original Reiter’s model. 
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In follow up work, we shall further investigate some interesting patterns observed in this 

study. On the main branch growth, we will consider why the growth latency is almost constant 

(Figure 5) and whether this phenomenon is unique to the hexagonal cells or applicable to other 

two dimensional lattices. On the side branch growth, we have noted that some side branches 

grow much faster than their neighbors, and that with slightly different diffusion parameters the 

side branch growth latency could change drastically at the same position while the main branch 

growth latency remains virtually the same. Our preliminary study shows that this great sensitivity 

is attributable to diffusion instability – when the growth of cells in some direction gain initial 

advantage over their neighbors, the advantage continues to expand such that the growth in that 

direction becomes even faster. We find that diffusion instability is caused by competition among 

cells in diffusion and the average number of contributing neighbors is a good indicator to explain 

diffusion instability. Finally, we will use the enhanced model to explore the interplay of diffusion 

and interface control. For example, we shall simulate growth in an environment where the 

diffusion and interface control parameters vary with time so as to generate images similar to 

Figure 1(b)(c). We shall also define quantitative methods to compare the original and enhanced 

models. 
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