Evidence of Purifying Selection in Humans

John Long
Mentor: Angela Yen (Kellis Lab)
Outline

- Background
 - Genomes
 - Expression
 - Regulation
 - Selection
- Goal
- Methods
- Progress
- Future Work
Outline

- **Background**
 - Genomes
 - Expression
 - Regulation
 - Selection

- **Goal**

- **Methods**

- **Progress**

- **Future Work**
Human Genome

- Genome
 - Set of genetic information
 - Grouped into chromosomes
 - Chromosomes made of nucleotides

- The Human Genome Project (2003)

- Reference Genome

- Function?
 - Genes (2%)
 - Regulatory (10-50%)
 - Junk (50-90%)
Central Dogma of Biology

Process by which coding DNA regions (genes) get converted to protein
Example of regulation of genes
Natural Selection

- Natural process by which populations evolve
- 2 types
 - Positive selection: increase in frequency of beneficial mutations
 - Negative (purifying) selection: decrease in frequency of deleterious mutations
- Selection occurs in populations (not individuals)
- Over long periods of time
 - 10,000 – millions of years
What is an allele?
Ancestral Allele (AA) and Derived Allele (DA)

Andrew

Bob

AACTGGGG

AACTGGGG

AACTGAAA

Ancestral Allele (AA)

Derived Allele (DA)
Single Nucleotide Polymorphism (SNP)

Mutation:
Single Nucleotide Polymorphism

Andrew

Bob
Allele Frequency

- Remember that A is derived allele

AACTGG

AACTG

AACTG

AACTG

AACTGG

AACTGGG

Derived Allele Frequency (DAF): 1/2 = 50%
No Selection

- If the result of a mutation is neutral, there is no selection.
- If there is no selection, DAF will remain about 18%.

Derived Allele Frequency (DAF):

\[
\text{2/10} = 20\%
\]
Purifying Selection

- A random mutation is more likely a bad mutation
- Purifying selection weeds out bad mutations

Derived Allele Frequency (DAF):

\[
\frac{1}{9} = 11\%
\]
Significance of Selection

- Selection suggests that a set of regions is important.
- Purifying selection is more common than positive selection because random mutations are likely bad.
- DAF value at a position indicates level of selection.
- A lower **mean** DAF across sets of regions indicates purifying selection.
- Previous research on genes by Dr. Ward.

Protein coding (ND)

Bar indicates mean DAF in gene regions.
Outline

- Background
 - Genomes
 - Expression
 - Regulation
 - Selection
- Goal
- Methods
- Progress
- Future Work
Goal

- Find evidence of purifying selection in the following regions:
 - 5’ Untranslated Regions
 - Exonic Splicing Enhancers
 - miRNA binding sites
- DAF used to measure selection
- How much of the regions are functional
Sets of Regions

- **5’ Untranslated Region**
 - Regions that occur right before a coding region

- **Exonic Splicing Enhancers**
 - Regions where exonic splicers tend to bind

- **Micro RNA binding Sites**
 - Regions where Micro RNA tends to bind
 - miRNA: a regulatory molecule
Outline

- Background
 - Genomes
 - Expression
 - Regulation
 - Selection
- Goal
- Methods
- Progress
- Future Work
Methods

Prepare SNP files
- Download from database
- Filter
- Extract Info (vcftools)
- Convert file format
- Sort SNPs

Find Region File
- Download from database

Intersect SNPs
- Bedtools bedIntersect
- Mean DAF of SNPs in set of regions
- Mean DAF of SNPs in set of control regions

Control for variables
Outline

- Background
 - Genomes
 - Expression
 - Regulation
 - Selection
- Goal
- Methods
- Progress
- Future Work
Progress

- Prepared SNP files
 - VCF format (1000 genomes project)
 - Extracted useful information (vcftools)
 - Deleted SNPs
 - Converted to bed file format
 - Sorted to match bed format sorted order
 - Unix and awk commands
Progress

- Intersect SNP and Bed files
 - `intersectBed` command
 - Bedtools
 - Mean DAF of SNPs was calculated using an awk script submitted as job
 - Similarly calculated for control regions
Outline

- Background
 - Genomes
 - Expression
 - Regulation
 - Selection
- Goal
- Methods
- Progress
- Future Work
Future

- Run the program on region files
- Script is adaptable
- Hope to find lower DAF value
- Confirm these regions are important
- Move to other annotated regions of genome
Acknowledgements

- PRIMES program
- Dr. Manolis Kellis, Luke Ward, and Angela Yen
- Angela Yen
- Parents