q-Analogues of Symmetric Polynomials and nilHecke Algebras

Ritesh Ragavender
Mentor: Alex Ellis

May 18, 2013
Symmetric Functions

Definitions

Define the elementary symmetric functions by:

\[e_k(x_1,\ldots,x_n) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} x_{i_1} \cdots x_{i_k} \]

Define the complete homogenous symmetric functions by:

\[h_k(x_1,\ldots,x_n) = \sum_{1 \leq i_1 \leq \cdots \leq i_k \leq n} x_{i_1} \cdots x_{i_k} \]

\[h_2(x_1,x_2,x_3) = x_1^2 + x_2^2 + x_3^2 + x_1x_2 + x_2x_3 + x_1x_3 \]
Symmetric Functions

Definitions

Define the elementary symmetric functions by:

\[e_k(x_1, \ldots, x_n) = \sum_{1 \leq i_1 < \ldots < i_k \leq n} x_{i_1} \cdots x_{i_n} \]

\[e_2(x_1, x_2, x_3) = x_1x_2 + x_2x_3 + x_1x_3 \]
Symmetric Functions

Definitions

Define the elementary symmetric functions by:

\[e_k(x_1, \ldots, x_n) = \sum_{1 \leq i_1 < \ldots < i_k \leq n} x_{i_1} \cdots x_{i_n} \]

\[e_2(x_1, x_2, x_3) = x_1x_2 + x_2x_3 + x_1x_3 \]

Define the complete homogenous symmetric functions by:

\[h_k(x_1, \ldots, x_n) = \sum_{1 \leq i_1 \leq \ldots \leq i_k \leq n} x_{i_1} \cdots x_{i_n} \]

\[h_2(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + x_1x_2 + x_2x_3 + x_1x_3 \]
Goals and Motivation

1. To develop a q-analogue of symmetric functions.
Goals and Motivation

1. To develop a q-analogue of symmetric functions.
2. The ”odd” ($q = -1$) nilHecke algebra can be used in categorification of quantum groups.
 We expect that our q-analogue can also be used in categorification.
3. Our q-bialgebra also has connections to 4D-topology.
Introduction to q-Bialgebras

Definition: Algebra

An *algebra* A is characterized by the following two maps:

$$\eta : \mathbb{C} \to A$$

$$m : A \otimes A \to A$$
Definition: Algebra

An algebra \(A \) is characterized by the following two maps:

\[
\eta : \mathbb{C} \rightarrow A
\]

\[
m : A \otimes A \rightarrow A
\]

\(q \)-Swap and Identity Maps

\[
\tau : v \otimes w \rightarrow q^{|v||w|} w \otimes v
\]

\[
1_A : A \rightarrow A
\]
Introduction to q-Bialgebras

Multiplication

We define the multiplication on $A \otimes A$ by

$$(a \otimes b)(c \otimes d) = q^{\|b\| \|c\|}(ac \otimes bd)$$
Introduction to q-Bialgebras

Multiplication

We define the multiplication on $A \otimes A$ by

$$(a \otimes b)(c \otimes d) = q^{||b||^{c}}(ac \otimes bd)$$

Multiplication map m_2

The multiplication map $m_2: A^{\otimes 4} \to A^{\otimes 4}$ is

$$m_2 = (m \otimes m)(1_A \otimes \tau \otimes 1_A)$$
Introduction to q-Bialgebras

Definition: Coalgebra

A coalgebra has the following maps:

\[\epsilon : A \to \mathbb{C} \]
\[\Delta : A \to A \otimes A \]
Definition: Coalgebra

A coalgebra has the following maps:

\[\epsilon : A \rightarrow \mathbb{C} \]
\[\Delta : A \rightarrow A \otimes A \]

Definition: Bialgebra

A bialgebra has all four maps \(\eta, m, \epsilon, \) and \(\Delta, \) with the added compatibility that the comultiplication is an algebra homomorphism.
Description as a q-Bialgebra

Let N^Λ_q be a free, associative, \mathbb{Z}-graded C-algebra with generators $h_1, h_2, ...$. Let $q \in \mathbb{C}$.

We define $h_0 = 1$, $h_i = 0$ for $i < 0$, and $\deg(h_k) = k$.

We define $h_{\lambda} = h_{\lambda_1} h_{\lambda_2} ... h_{\lambda_r}$.

Define multiplication as:

$$(w \otimes x)(y \otimes z) = q^{\deg(x) \deg(y)} (wy \otimes xz).$$

Define comultiplication as:

$$\Delta(h_n) = \sum_{m=0}^{n} h_m \otimes h_{n-m}.$$
Quantum Noncommutative Symmetric Functions

Description as a q-Bialgebra

Let Λ^q be a free, associative, \mathbb{Z}-graded \mathbb{C}-algebra with generators h_1, h_2, \ldots. Let $q \in \mathbb{C}$.

Define multiplication as:

$$ (w \otimes x)(y \otimes z) = q^{\deg(x)\deg(y)}(wy \otimes xz). $$

Define comultiplication as:

$$ \Delta(h_n) = \sum_{m=0}^{n} h_m \otimes h_{n-m}. $$
Quantum Noncommutative Symmetric Functions

Description as a q-Bialgebra

- Let NA^q be a free, associative, \mathbb{Z}-graded \mathbb{C}-algebra with generators h_1, h_2, \ldots. Let $q \in \mathbb{C}$.
- We define $h_0 = 1$, $h_i = 0$ for $i < 0$, and $\deg(h_k) = k$.
Let $N\Lambda^q$ be a free, associative, \mathbb{Z}-graded \mathbb{C}-algebra with generators h_1, h_2, \ldots. Let $q \in \mathbb{C}$.

- We define $h_0 = 1$, $h_i = 0$ for $i < 0$, and $\text{deg}(h_k) = k$.
- We define $h_\lambda = h_{\lambda_1} h_{\lambda_2} \ldots h_{\lambda_r}$.
Quantum Noncommutative Symmetric Functions

Description as a q-Bialgebra

- Let $\mathcal{N}\Lambda^q$ be a free, associative, \mathbb{Z}-graded \mathbb{C}-algebra with generators h_1, h_2, \ldots. Let $q \in \mathbb{C}$.
- We define $h_0 = 1$, $h_i = 0$ for $i < 0$, and $\deg(h_k) = k$.
- We define $h_\lambda = h_{\lambda_1} h_{\lambda_2} \ldots h_{\lambda_r}$.
- Define multiplication as:
 \[(w \otimes x)(y \otimes z) = q^{\deg(x) \deg(y)}(wy \otimes xz)\]
Quantum Noncommutative Symmetric Functions

Description as a q-Bialgebra

- Let $N\Lambda^q$ be a free, associative, \mathbb{Z}-graded \mathbb{C}-algebra with generators $h_1, h_2, ...$. Let $q \in \mathbb{C}$.
- We define $h_0 = 1$, $h_i = 0$ for $i < 0$, and $\deg(h_k) = k$.
- We define $h_\lambda = h_{\lambda_1} h_{\lambda_2} ... h_{\lambda_r}$.
- Define multiplication as:
 $$(w \otimes x)(y \otimes z) = q^{\deg(x)\deg(y)}(wy \otimes xz).$$
- Define comultiplication as:
 $$\Delta(h_n) = \sum_{m=0}^{n} h_m \otimes h_{n-m}$$
Diagrammatics for the Bilinear Form

Let’s consider the method to determine \((h_1 h_2 h_1, h_2 h_2)\).
Diagrammatics for the Bilinear Form

Let’s consider the method to determine \((h_1 h_2 h_1, h_2 h_2)\).
Let’s consider the method to determine \((h_1 h_2 h_1, h_2 h_2)\).

Use platforms with \(k\) strands to represent \(h_k\).
Diagrammatics for the Bilinear Form

Let’s consider the method to determine \((h_1 h_2 h_1, h_2 h_2)\).

Use platforms with \(k\) strands to represent \(h_k\).

Rules

There are no triple intersections, no critical points with respect to the height function, no instances of two curves intersecting at two or more points, and no crossing between curves originating from the same platform.
Diagrammatics for the Bilinear Form

Let’s consider the method to determine \((h_1h_2h_1, h_2h_2)\).

Use platforms with \(k\) strands to represent \(h_k\).

Rules

There are no triple intersections, no critical points with respect to the height function, no instances of two curves intersecting at two or more points, and no crossing between curves originating from the same platform.

\[(h_1h_2h_1, h_2h_2) = 1 + 2q^2 + q^3\]
Definition
Define $\text{Sym}^q \cong N\Lambda^q / R$, where R is the radical of the bilinear form.

- The ”odd case” refers to $q = -1$, studied in [EK].
- The ”even” case refers to $q = 1$, studied in [GKLLRT].
Definition

Define $\text{Sym}^q \cong N\Lambda^q / R$, where R is the radical of the bilinear form.

- The ”odd case” refers to $q = -1$, studied in [EK].
- The ”even” case refers to $q = 1$, studied in [GKLLRT].

Diagrammatic Property

1. No strands from different tensor factors intersect:

$$ (w \otimes x, y \otimes z) = (w, y)(x, z). $$
The Elementary Symmetric Functions

Definitions

Inductively define \[\sum_{k=0}^{n} (-1)^k \binom{k}{2} h_{n-k} e_k = 0 \]
The Elementary Symmetric Functions

Definitions

Inductively define \(\sum_{k=0}^{n} (-1)^k q^{(k)} h_{n-k} e_k = 0 \)

\(e_1 = h_1 \)
The Elementary Symmetric Functions

Definitions

Inductively define \(\sum_{k=0}^{n} (-1)^k q^{(k)} h_{n-k} e_k = 0 \)

\(e_1 = h_1 \)
\(qe_2 = h_1^2 - h_2 \)
The Elementary Symmetric Functions

Definitions

Inductively define \(\sum_{k=0}^{n} (-1)^k q^{\binom{k}{2}} h_{n-k} e_k = 0 \)

\(e_1 = h_1 \)

\(qe_2 = h_1^2 - h_2 \)

We will use a blue platform with \(k \) strands to denote \(e_k \).
The Elementary Symmetric Functions

Definitions

Inductively define \[\sum_{k=0}^{n} (-1)^k \binom{k}{2} h_{n-k} e_k = 0 \]

\[e_1 = h_1 \]
\[qe_2 = h_1^2 - h_2 \]
We will use a blue platform with \(k \) strands to denote \(e_k \).

Theorem

\((h_\lambda, e_k) = 0 \) if \(|\lambda| = k \), unless \(\lambda = 1^k \).
Diagrammatics for the Bilinear Form

Idea of Proof

\[(h_{m \times e})_n = \begin{cases} (x,e)_{n-1} & \text{if } m = 1 \\ 0 & \text{otherwise} \end{cases}\]

Use strong induction on \(n\) to find \((h_{m \times e})_k (h_n - k)\).

By definition:

\[(-1)^{n+1} q(n^2) (h_{m \times e})_n = \sum_{k=0}^{n-1} (-1)^k q(k^2) (h_{m \times e})_k (h_n - k)\]
Diagrammatics for the Bilinear Form

Idea of Proof

- Show that

\[(h_m x, e_n) = \begin{cases}
 (x, e_{n-1}) & \text{if } m = 1 \\
 0 & \text{otherwise}
\end{cases} \]
Diagrammatics for the Bilinear Form

Idea of Proof

- Show that

 \[(h_m x, e_n) = \begin{cases}
 (x, e_{n-1}) & \text{if } m = 1 \\
 0 & \text{otherwise}
 \end{cases} \]

- Use strong induction on \(n \) to find \((h_m x, e_k h_{n-k}) \)
Diagrammatics for the Bilinear Form

Idea of Proof

- Show that

\[(h_m x, e_n) = \begin{cases}
(x, e_{n-1}) & \text{if } m = 1 \\
0 & \text{otherwise}
\end{cases}\]

- Use strong induction on \(n\) to find \((h_m x, e_k h_{n-k})\)

- By definition:

\[(-1)^{n+1} q\binom{n}{2} (h_m x, e_n) = \sum_{k=0}^{n-1} (-1)^k q\binom{k}{2} (h_m x, e_k h_{n-k})\]
There are two cases to consider by the inductive hypothesis applied to $k < n$. Either there is a strand connecting h_m and e_k, or there is not.
Diagrammatics for the Bilinear Form

Idea of Proof

If no strand connects h_m and e_k. This contributes $q^{km}(x, e_k h_{n-k-m})$.
Diagrammatics for the Bilinear Form

Idea of Proof

If a strand connects h_m and e_k. This contributes $q^{(k-1)(m-1)}(x, e_{k-1} h_{n-k-m+1})$.
Summary of Diagrammatic Rules for any q

Theorem

$$(e_n, e_n) = q^{-(n \choose 2)}$$
Summary of Diagrammatic Rules for any q

Theorem

$$(e_n, e_n) = q^{-\binom{n}{2}}$$

Diagrammatics

- There is at most one strand connecting an orange (h) platform and a blue (e) platform.
- There is a sign as given above when n strands connect two blue platforms.
Relations and the Center

Theorem

h_1^n is in the center of $N\Lambda^q$, if $q^n = 1$.
Relations and the Center

Theorem

h_1^n is in the center of $N\Lambda^q$, if $q^n = 1$.

$(h_{1112}, e_4x) = (h_{2111}, e_4x)$
Relations and the Center

Theorem

\(h_1^n \) is in the center of \(N \Lambda^q \), if \(q^n = 1 \).

\((h_{1112}, e_4x) = (h_{2111}, e_4x) \)
Relations and the Center

Theorem

\(h_1^n \) is in the center of \(N \Lambda^q \), if \(q^n = 1 \).

\((h_{1112}, e_4x) = (h_{2111}, e_4x)\)

\[
\begin{align*}
v_1 &= h_{11211} + h_{12111} + h_{21111} \\
v_2 &= h_{1122} - 2h_{1221} + 3h_{2112} + h_{2211} \\
v_3 &= 2h_{1131} - 2h_{114} + 2h_{1311} - 2h_{141} + 3h_{222} + 2h_{1113} - 2h_{411} \\
v_1 + q^2v_2 + qv_3 &= 0
\end{align*}
\]
q-divided Difference Operators

Definition

The ring of q-symmetric polynomials ($qPol_a$):
\[
\mathbb{Z}\langle x_1, x_2, \ldots, x_a \rangle / \langle x_j x_i - qx_i x_j = 0 \text{ if } j > i \rangle
\]
q-divided Difference Operators

Definition

The ring of q-symmetric polynomials ($qPol_a$):

$$\mathbb{Z}\langle x_1, x_2, ..., x_a \rangle / \langle x_j x_i - qx_i x_j = 0 \text{ if } j > i \rangle$$

We now define the linear q-divided difference operators:

\[\partial_i (1) = 0 \]
\[\partial_i (x_i) = q \partial_i (x_{i+1}) = -1 \]
\[r_i (x_i) = qx_i + 1 \]
\[r_i (x_{i+1}) = q^{-1} x_i \]
\[r_i (x_j) = qx_j \text{ if } j > i + 1 \]
\[r_i (x_j) = q^{-1} x_j \text{ if } j < i \]
q-divided Difference Operators

Definition

The ring of q-symmetric polynomials ($q\text{Pol}_a$):

$$\mathbb{Z}\langle x_1, x_2, \ldots, x_a \rangle / \langle x_j x_i - qx_i x_j = 0 \text{ if } j > i \rangle$$

We now define the linear q-divided difference operators:

- $\partial_i(1) = 0$
- $\partial_i(x_i) = q$
- $\partial_i(x_{i+1}) = -1$
- $\partial_i(x_j) = 0 \text{ if } j \neq i, i + 1$
Definition

The ring of q-symmetric polynomials ($qPol_a$):

$$\mathbb{Z}\langle x_1, x_2, \ldots, x_a \rangle / \langle x_j x_i - q x_i x_j = 0 \text{ if } j > i \rangle$$

We now define the linear q-divided difference operators:

$$\partial_i(1) = 0$$
$$\partial_i(x_i) = q$$
$$\partial_i(x_{i+1}) = -1$$
$$\partial_i(x_j) = 0 \text{ if } j \neq i, i + 1$$

$$r_i(x_i) = q x_{i+1}$$
$$r_i(x_{i+1}) = q^{-1} x_i$$
$$r_i(x_j) = q x_j \text{ if } j > i + 1$$
$$r_i(x_j) = q^{-1} x_j \text{ if } j < i$$
\textbf{q-divided Difference Operators}

\textbf{Definition}

The ring of q-symmetric polynomials ($q\text{Pol}_a$):
\[\mathbb{Z}\langle x_1, x_2, \ldots, x_a \rangle / \langle x_j x_i - qx_i x_j = 0 \text{ if } j > i \rangle \]

We now define the linear q-divided difference operators:
\[
\begin{align*}
\partial_i(1) &= 0 \\
\partial_i(x_i) &= q \\
\partial_i(x_{i+1}) &= -1 \\
\partial_i(x_j) &= 0 \text{ if } j \neq i, i + 1 \\
\end{align*}
\]
\[
\begin{align*}
\partial_i(x_i) &= qx_i+1 \\
\partial_i(x_{i+1}) &= q^{-1}x_i \\
r_i(x_j) &= qx_j \text{ if } j > i + 1 \\
r_i(x_j) &= q^{-1}x_j \text{ if } j < i \\
\end{align*}
\]

Leibniz Rule: $\partial_i(fg) = \partial_i(f)g + r_i(f)\partial_i(g)$
q-divided Difference Operators

Definition

The ring of q-symmetric polynomials ($qPol_a$):
$$\mathbb{Z}\langle x_1, x_2, ..., x_a \rangle / \langle x_j x_i - q x_i x_j = 0 \text{ if } j > i \rangle$$

We now define the linear q-divided difference operators:

- $\partial_i(1) = 0$
- $\partial_i(x_i) = q$
- $\partial_i(x_{i+1}) = -1$
- $\partial_i(x_j) = 0$ if $j \neq i, i + 1$

Leibniz Rule:

$$\partial_i(fg) = \partial_i(f)g + r_i(f)\partial_i(g)$$

Note that these definitions account for the odd case as well.
Properties of the q-divided Difference Operators

Lemma

$$\partial_i(x_j x_i - q x_i x_j) = 0 \text{ for } j > i.$$
Properties of the q-divided Difference Operators

Lemma

$$\partial_i(x_jx_i - qx_i x_j) = 0 \text{ for } j > i.$$

As a consequence, ∂_i descends to an operator on $q\text{Pol}_{a}$.
Properties of the q-divided Difference Operators

Lemma

\[\partial_i(x_j x_i - q x_i x_j) = 0 \text{ for } j > i. \]

As a consequence, ∂_i descends to an operator on $q\text{Pol}_a$

We have the following properties of the q-divided difference operators:
Properties of the q-divided Difference Operators

Lemma

$$\partial_i(x_j x_i - qx_i x_j) = 0 \text{ for } j > i.$$

As a consequence, ∂_i descends to an operator on $qPol_a$
We have the following properties of the q-divided difference operators:

$$\partial_i^2 = 0$$
Properties of the q-divided Difference Operators

Lemma

\[\partial_i(x_j x_i - q x_i x_j) = 0 \text{ for } j > i. \]

As a consequence, ∂_i descends to an operator on $q\text{Pol}_a$

We have the following properties of the q-divided difference operators:

- $\partial_i^2 = 0$
- $\partial_i \partial_j = q \partial_j \partial_i$ when $i > j + 1$
Properties of the q-divided Difference Operators

Lemma

$$\partial_i(x_j x_i - q x_i x_j) = 0 \text{ for } j > i.$$

As a consequence, ∂_i descends to an operator on $q \text{Pol}_a$. We have the following properties of the q-divided difference operators:

- $\partial_i^2 = 0$
- $\partial_i \partial_j = q \partial_j \partial_i$ when $i > j + 1$
- $\partial_i \partial_j = q^{-1} \partial_j \partial_i$ when $i < j$
Properties of the q-divided Difference Operators

Lemma
\[\partial_i(x_j x_i - qx_i x_j) = 0 \text{ for } j > i. \]

As a consequence, ∂_i descends to an operator on $q\text{Pol}_a$

We have the following properties of the q-divided difference operators:
\[\partial_i^2 = 0 \]
\[\partial_i \partial_j = q \partial_j \partial_i \text{ when } i > j + 1 \]
\[\partial_i \partial_j = q^{-1} \partial_j \partial_i \text{ when } i < j \]
\[\partial_i(x_i^m x_{i+1}^m) = 0 \text{ for any positive integer } m \]
Properties of the q-divided Difference Operators

Lemma

\[\partial_i(x_jx_i - qx_ix_j) = 0 \text{ for } j > i. \]

As a consequence, ∂_i descends to an operator on $q\text{Pol}_a$
We have the following properties of the q-divided difference operators:

\[\partial_i^2 = 0 \]

\[\partial_i \partial_j = q \partial_j \partial_i \text{ when } i > j + 1 \]

\[\partial_i \partial_j = q^{-1} \partial_j \partial_i \text{ when } i < j \]

\[\partial_i(x^m_i x^m_{i+1}) = 0 \text{ for any positive integer } m \]

\[\partial_i(x^k_i) = \sum_{j=0}^{k-1} q^{jk-2j-j^2+k} x^j_i x^{k-1-j}_{i+1} \]
Properties of the q-divided Difference Operators

Lemma

\[\partial_i(x_j x_i - qx_i x_j) = 0 \text{ for } j > i. \]

As a consequence, ∂_i descends to an operator on $q\text{Pol}_a$

We have the following properties of the q-divided difference operators:

- $\partial_i^2 = 0$
- $\partial_i \partial_j = q \partial_j \partial_i$ when $i > j + 1$
- $\partial_i \partial_j = q^{-1} \partial_j \partial_i$ when $i < j$
- $\partial_i(x_i^m x_{i+1}^m) = 0$ for any positive integer m

\[\partial_i(x_i^k) = \sum_{j=0}^{k-1} q^{j(k-2) - j^2 + k} x_i^j x_{i+1}^{k-1-j} \]

\[\partial_i(x_{i+1}^k) = -\sum_{j=0}^{k-1} q^{-j} x_i^j x_{i+1}^{k-1-j} \]
Properties of the q-divided Difference Operators

Definition

Define the k-th elementary q-symmetric polynomial to be

\[e_k(x_1, \ldots, x_n) = \sum_{1 \leq i_1 < \ldots < i_k \leq n} x_{i_1} \cdots x_{i_k}, \]

where

\[\tilde{x}_j = q^{j-1}x_j. \]
Properties of the q-divided Difference Operators

Definition

Define the k-th elementary q-symmetric polynomial to be

$$e_k(x_1, \ldots, x_n) = \sum_{1 \leq i_1 < \ldots < i_k \leq n} x_{i_1} \cdots x_{i_n}$$
Definition

Define the k-th elementary q-symmetric polynomial to be

$$e_k(x_1, \ldots, x_n) = \sum_{1 \leq i_1 < \ldots < i_k \leq n} x_{i_1} \cdots x_{i_n}$$

and the k-th twisted elementary q-symmetric polynomial:

$$\tilde{e}_k(x_1, \ldots, x_n) = \sum_{1 \leq i_1 < \ldots < i_k \leq n} \tilde{x}_{i_1} \cdots \tilde{x}_{i_n},$$

where $\tilde{x}_j = q^{j-1}x_j$.
Properties of the q-divided Difference Operators

Theorem

$$\partial_i(\tilde{e}_k) = 0.$$
Hence $\tilde{\Lambda}_n^q \subseteq \bigcap_{i=1}^{n-1} \ker(\partial_i)$.

Properties of the q-divided Difference Operators

Theorem

\[\partial_i(\tilde{e}_k) = 0. \]

Hence \(\tilde{\Lambda}_n^q \subseteq \bigcap_{i=1}^{n-1} \ker(\partial_i) \).

Conjecture

\[\bigcap_{i=1}^{n-1} \ker(\partial_i) \subseteq \tilde{\Lambda}_n^q. \]
More properties

nilHecke Relations

\[\partial_i x_i - qx_{i+1} \partial_i = q \]
\[\partial_i x_{i+1} - \frac{1}{q} x_i \partial_i = -1 \]
More properties

nilHecke Relations

\[\partial_i x_i - qx_{i+1} \partial_i = q \]
\[\partial_i x_{i+1} - \frac{1}{q} x_i \partial_i = -1 \]

Braiding Relation

\[\partial_i \partial_{i+1} \partial_i \partial_{i+1} \partial_i \partial_{i+1} = -\partial_{i+1} \partial_i \partial_{i+1} \partial_i \partial_{i+1} \partial_i \]
References

Acknowledgements

Alexander Ellis, for being an excellent mentor and providing guidance/resources.

MIT PRIMES USA, for giving me the opportunity to conduct this research.

My family, for always supporting me.
Acknowledgements

- Alexander Ellis, for being an excellent mentor and providing guidance/resources.
Acknowledgements

- Alexander Ellis, for being an excellent mentor and providing guidance/resources.
- MIT PRIMES USA, for giving me the opportunity to conduct this research.
Acknowledgements

- Alexander Ellis, for being an excellent mentor and providing guidance/resources.
- MIT PRIMES USA, for giving me the opportunity to conduct this research.
- My family, for always supporting me.