The Cookie Monster Problem

Leigh Marie Braswell

Under Mentorship of Tanya Khovanova

PRIMES Conference 2013

• Cookie Monster is always hungry.

- Cookie Monster is always hungry.
- We present him with a set of cookie jars, each filled with some number of cookies.

- Cookie Monster is always hungry.
- We present him with a set of cookie jars, each filled with some number of cookies.
- He wants to empty them as quickly as possible. But...

- Cookie Monster is always hungry.
- We present him with a set of cookie jars, each filled with some number of cookies.
- He wants to empty them as quickly as possible. But...
- On each of his moves, he must choose a subset of the jars and take the same number of cookies from each.

16 10 6 3

16	10	6	3
-10	-10		

16	10	6	3
-10	-10		
0544	0541		
6	0	6	3

16	10	6	3
-10	-10		
6	0	6	3
-6		-6	
C S S S S S S S S S S S S S S S S S S S			
0	0	0	3

16	10	6	3
-10	-10		
6	0	6	3
-6		-6	
1000 C		000 H	
0	0	0	3
			-3

16	10	6	3
-10	-10		
(See			
6	0	6	3
-6		-6	
		6501	
0	0	0	3
			-3
			9 6 8 9 9 9 9 9 9 9
0	0	0	0

• Cookie Monster may perform his moves in any order.

- Cookie Monster may perform his moves in any order.
- Jars with equal number of cookies may be treated the same.

- Cookie Monster may perform his moves in any order.
- Jars with equal number of cookies may be treated the same.
- Jars may be "emptied" without being emptied.

- Cookie Monster may perform his moves in any order.
- Jars with equal number of cookies may be treated the same.
- Jars may be "emptied" without being emptied.
- Is there a procedure the monster can follow that will always lead to the optimal solution?

• *Empty the Most Jars Algorithm*: the monster reduces the number of distinct jars by as many as he can for each move.

- *Empty the Most Jars Algorithm*: the monster reduces the number of distinct jars by as many as he can for each move.
- $\{7, 4, 3, 1\}$

• *Empty the Most Jars Algorithm*: the monster reduces the number of distinct jars by as many as he can for each move.

•
$$\xrightarrow{-4}$$
 {3,0,3,1} = {3,1}

• *Take the Most Cookies Algorithm*: the monster takes as many cookies as possible for each move.

- *Take the Most Cookies Algorithm*: the monster takes as many cookies as possible for each move.
- {20, 19, 14, 7, 4}

- Take the Most Cookies Algorithm: the monster takes as many cookies as possible for each move.
- {20, 19, 14, 7, 4}

•
$$\xrightarrow{-14}$$
 {6,5,0,7,4} = {6,5,7,4}

 Binary Algorithm: the monster takes 2^k cookies from all jars that contain at least 2^k cookies for k as large as possible.

- *Binary Algorithm*: the monster takes 2^k cookies from all jars that contain at least 2^k cookies for k as large as possible.
- {**18**, **16**, **9**, **8**}

- *Binary Algorithm*: the monster takes 2^k cookies from all jars that contain at least 2^k cookies for k as large as possible.
- {**18**, **16**, **9**, **8**}

•
$$\frac{-16}{\text{Jar 1, Jar 2}}$$
 {2,0,9,8} = {2,9,8}

- Binary Algorithm: the monster takes 2^k cookies from all jars that contain at least 2^k cookies for k as large as possible.
- {**18**, **16**, **9**, **8**}

•
$$\frac{-16}{\text{Jar 1, Jar 2}}$$
 {2,0,9,8} = {2,9,8}

• None of these algorithms are optimal in all cases.

• Suppose *S* is the set of the numbers of the cookies in the jars.

- Suppose *S* is the set of the numbers of the cookies in the jars.
- The *Cookie Monster number of S*, *CM*(*S*), is the minimum number of moves Cookie Monster must use to empty all of the jars in *S*.

- Suppose *S* is the set of the numbers of the cookies in the jars.
- The *Cookie Monster number of S*, *CM*(*S*), is the minimum number of moves Cookie Monster must use to empty all of the jars in *S*.
- Suppose CM(S) = n and Cookie Monster follows an optimal procedure.

- Suppose *S* is the set of the numbers of the cookies in the jars.
- The *Cookie Monster number of S*, *CM*(*S*), is the minimum number of moves Cookie Monster must use to empty all of the jars in *S*.
- Suppose CM(S) = n and Cookie Monster follows an optimal procedure.
- After he performs move *n*, all jars are empty.

- Suppose *S* is the set of the numbers of the cookies in the jars.
- The *Cookie Monster number of S*, *CM*(*S*), is the minimum number of moves Cookie Monster must use to empty all of the jars in *S*.
- Suppose CM(S) = n and Cookie Monster follows an optimal procedure.
- After he performs move *n*, all jars are empty.
- Therefore, each jar may be represented as the sum of some moves.

General Bounds for CM(S)

Theorem

For all |S| = m, $\lceil \log_2(m+1) \rceil \leq CM(S) \leq m$.

• We now present our Cookie Monster with interesting sequences of cookies in his jars.

- We now present our Cookie Monster with interesting sequences of cookies in his jars.
- First, we challenge our monster to empty a set of jars containing cookies in the Fibonacci sequence.

- We now present our Cookie Monster with interesting sequences of cookies in his jars.
- First, we challenge our monster to empty a set of jars containing cookies in the Fibonacci sequence.
- Define the Fibonacci sequence as $F_0 = 0$, $F_1 = 1$, and $F_i = F_{i-2} + F_{i-1}$ for $i \ge 2$.

- We now present our Cookie Monster with interesting sequences of cookies in his jars.
- First, we challenge our monster to empty a set of jars containing cookies in the Fibonacci sequence.
- Define the Fibonacci sequence as $F_0 = 0$, $F_1 = 1$, and $F_i = F_{i-2} + F_{i-1}$ for $i \ge 2$.
- A jar with 0 cookies and 2 jars containing 1 cookie are irrelevant, so our smallest jar will contain *F*₂ cookies.

Fibonacci and CM(S)

Theorem

When $S = \{F_2, \ldots, F_m\}$, then $CM(S) = \lceil \frac{m}{2} \rceil$.

• Each term starting with the *n*-th is the sum of the previous *n* terms.

- Each term starting with the *n*-th is the sum of the previous *n* terms.
- For example, in the 3-nacci sequence, otherwise known as Tribonacci, each term after the third is the sum of the previous three terms.

- Each term starting with the *n*-th is the sum of the previous *n* terms.
- For example, in the 3-nacci sequence, otherwise known as Tribonacci, each term after the third is the sum of the previous three terms.
- 0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149 ...

- Each term starting with the *n*-th is the sum of the previous *n* terms.
- For example, in the 3-nacci sequence, otherwise known as Tribonacci, each term after the third is the sum of the previous three terms.
- 0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149 ...
- Tetranacci, Pentanacci similar

Tribonacci Example

• $\{1, 2, 4, 7, 13, 24, 44\}$

•
$$\{1, 2, 4, 7, 13, 24, 44\}$$

• $\xrightarrow{-24}{\text{Jar 6}, \text{Jar 7}}$ $\{1, 2, 4, 7, 13, 0, 20\} = \{1, 2, 4, 7, 13, 20\}$

•
$$\{1, 2, 4, 7, 13, 24, 44\}$$

• $\frac{-24}{Jar 6, Jar 7}$ $\{1, 2, 4, 7, 13, 0, 20\} = \{1, 2, 4, 7, 13, 20\}$
• $\frac{-13}{Jar 5, Jar 6}$ $\{1, 2, 4, 7, 0, 7\} = \{1, 2, 4, 7\}$

•
$$\{1, 2, 4, 7, 13, 24, 44\}$$

•
$$\xrightarrow{-24}$$
 {1, 2, 4, 7, 13, 0, 20} = {1, 2, 4, 7, 13, 20}

•
$$\xrightarrow{-13}{}$$
 {1,2,4,7,0,7} = {1,2,4,7}

"Empty" 3 jars with 2 moves!

Tribonacci and CM(S)

Theorem

When
$$S = \{T_3, \ldots, T_m\}$$
, then $CM(S) = \lceil \frac{2m}{3} \rceil - 1$.

General Nacci CM(S)

Theorem

When Cookie Monster is presented with the first m - (n - 1) distinct *n*-nacci numbers, $CM(S) = \lceil \frac{n-1}{n}m \rceil - (n-2)$.

 The monster wonders if he can extend his knowledge of nacci sequences to non-nacci ones.

- The monster wonders if he can extend his knowledge of nacci sequences to non-nacci ones.
- Define a Super-*n*-nacci sequence as $S = \{k_1, \ldots, k_m\}$ where $k_{i+n} \ge k_{i+n-1} + \cdots + k_i$ for $i \ge 1$.

- The monster wonders if he can extend his knowledge of nacci sequences to non-nacci ones.
- Define a Super-*n*-nacci sequence as $S = \{k_1, \ldots, k_m\}$ where $k_{i+n} \ge k_{i+n-1} + \cdots + k_i$ for $i \ge 1$.
- Cookie Monster suspects that since he already knows how to consume the nacci sequences, he might be able to bound CM(S) for Super naccis.

Super Nacci

Theorem

For Super-n-nacci sequences with m terms, $CM(S) \ge \lceil \frac{(n-1)m}{n} \rceil$.

• The *n*-nacci sequences all give monic recursive equations, $x^n = x^{n-1} + x^{n-2} + \cdots + x^1 + 1.$

- The *n*-nacci sequences all give monic recursive equations, $x^n = x^{n-1} + x^{n-2} + \cdots + x^1 + 1.$
- Therefore, any *n*-nacci sequence approximates a geometric sequence, specifically $\alpha r, \alpha r^2, \alpha r^3, \ldots$ where *r* is a real root of the characteristic polynomial and α is some real number.

- The *n*-nacci sequences all give monic recursive equations, $x^n = x^{n-1} + x^{n-2} + \cdots + x^1 + 1.$
- Therefore, any *n*-nacci sequence approximates a geometric sequence, specifically $\alpha r, \alpha r^2, \alpha r^3, \ldots$ where *r* is a real root of the characteristic polynomial and α is some real number.
- Cookie Monster wonders if there is any relationship between *r* and ⁿ⁻¹/_n, the coefficient for *CM*(*S*) of *n*-nacci.

Bounds Depending on Growth of Sequence

Figure: Real root (red) approaches 2 as fraction (blue) approaches 1.

Theorem

The real root of $x^n = x^{n-1} + x^{n-2} + \cdots + 1$ may be approximated as $2 - \epsilon$ where $\epsilon = \frac{1}{2^n - 1}$.

Theorem

The real root of $x^n = x^{n-1} + x^{n-2} + \cdots + 1$ may be approximated as $2 - \epsilon$ where $\epsilon = \frac{1}{2^n - 1}$.

• Thus,
$$n \approx \log_2(1 + \frac{1}{2-r})$$
, so $\frac{n-1}{n} = 1 - \frac{1}{n} \approx 1 - \frac{1}{\log_2(1 + \frac{1}{2-r})}$.

Theorem

The real root of $x^n = x^{n-1} + x^{n-2} + \cdots + 1$ may be approximated as $2 - \epsilon$ where $\epsilon = \frac{1}{2^n - 1}$.

- Thus, $n \approx \log_2(1 + \frac{1}{2-r})$, so $\frac{n-1}{n} = 1 \frac{1}{n} \approx 1 \frac{1}{\log_2(1 + \frac{1}{2-r})}$.
- Therefore, for large *n*, the Cookie Monster coefficient approximates a function of *r*.

Conjecture

There exist *m* jars in a recursive sequence with characteristic equation of the form $x^n = x^{n-k_1} + x^{n-k_2} + \cdots + x^{n-k_m}$ such that $CM(S) = \lceil qm \rceil$ where *q* is any rational number between 0 and 1.

- CM(S) = n characterization
- Explore more interesting sequences with regard to CM(S)
- Is computing *CM*(*S*) an NP-hard problem?
- Introduce more monsters, more dimensions of cookies, or a game to play with the cookies

- Tanya Khovanova
- PRIMES
- My parents

Thanks for listening!