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The Problem

Cookie Monster is always hungry.

We present him with a set of cookie jars, each filled with
some number of cookies.
He wants to empty them as quickly as possible. But...
On each of his moves, he must choose a subset of the jars
and take the same number of cookies from each.
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Initial Observations

Cookie Monster may perform his moves in any order.

Jars with equal number of cookies may be treated the
same.
Jars may be "emptied" without being emptied.
Is there a procedure the monster can follow that will always
lead to the optimal solution?
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General Algorithms

Empty the Most Jars Algorithm: the monster reduces the
number of distinct jars by as many as he can for each
move.
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General Algorithms

Take the Most Cookies Algorithm: the monster takes as
many cookies as possible for each move.
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General Algorithms

Binary Algorithm: the monster takes 2k cookies from all
jars that contain at least 2k cookies for k as large as
possible.

{18,16,9,8}

−16−−−−−−→
Jar 1, Jar 2

{2,0,9,8} = {2,9,8}

None of these algorithms are optimal in all cases.



General Algorithms

Binary Algorithm: the monster takes 2k cookies from all
jars that contain at least 2k cookies for k as large as
possible.
{18,16,9,8}

−16−−−−−−→
Jar 1, Jar 2

{2,0,9,8} = {2,9,8}

None of these algorithms are optimal in all cases.



General Algorithms

Binary Algorithm: the monster takes 2k cookies from all
jars that contain at least 2k cookies for k as large as
possible.
{18,16,9,8}

−16−−−−−−→
Jar 1, Jar 2

{2,0,9,8} = {2,9,8}

None of these algorithms are optimal in all cases.



General Algorithms

Binary Algorithm: the monster takes 2k cookies from all
jars that contain at least 2k cookies for k as large as
possible.
{18,16,9,8}

−16−−−−−−→
Jar 1, Jar 2

{2,0,9,8} = {2,9,8}

None of these algorithms are optimal in all cases.



CM(S)

Suppose S is the set of the numbers of the cookies in the
jars.

The Cookie Monster number of S, CM(S), is the minimum
number of moves Cookie Monster must use to empty all of
the jars in S.
Suppose CM(S) = n and Cookie Monster follows an
optimal procedure.
After he performs move n, all jars are empty.
Therefore, each jar may be represented as the sum of
some moves.
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General Bounds for CM(S)

Theorem
For all |S| = m, dlog2(m + 1)e ≤ CM(S) ≤ m.



Interesting Sequences

We now present our Cookie Monster with interesting
sequences of cookies in his jars.

First, we challenge our monster to empty a set of jars
containing cookies in the Fibonacci sequence.
Define the Fibonacci sequence as F0 = 0, F1 = 1, and
Fi = Fi−2 + Fi−1 for i ≥ 2.
A jar with 0 cookies and 2 jars containing 1 cookie are
irrelevant, so our smallest jar will contain F2 cookies.
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Fibonacci and CM(S)

Theorem
When S = {F2, . . . ,Fm}, then CM(S) = dm

2 e.



N-nacci

Each term starting with the n-th is the sum of the previous
n terms.

For example, in the 3-nacci sequence, otherwise known as
Tribonacci, each term after the third is the sum of the
previous three terms.
0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149 . . .
Tetranacci, Pentanacci similar
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Tribonacci Example
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Jar 5, Jar 6

{1,2,4,7,0,7} = {1,2,4,7}

"Empty" 3 jars with 2 moves!
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Tribonacci and CM(S)

Theorem

When S = {T3, . . . ,Tm}, then CM(S) = d2m
3 e − 1.



General Nacci CM(S)

Theorem
When Cookie Monster is presented with the first m − (n − 1)
distinct n-nacci numbers, CM(S) = dn−1

n me − (n − 2).



Beyond Nacci

The monster wonders if he can extend his knowledge of
nacci sequences to non-nacci ones.

Define a Super-n-nacci sequence as S = {k1, . . . , km}
where ki+n ≥ ki+n−1 + · · ·+ ki for i ≥ 1.
Cookie Monster suspects that since he already knows how
to consume the nacci sequences, he might be able to
bound CM(S) for Super naccis.
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Super Nacci

Theorem

For Super-n-nacci sequences with m terms, CM(S) ≥ d (n−1)m
n e.



Bounds Depending on Growth of Sequence

The n-nacci sequences all give monic recursive equations,
xn = xn−1 + xn−2 + · · ·+ x1 + 1.

Therefore, any n-nacci sequence approximates a
geometric sequence, specifically αr , αr2, αr3, . . . where r is
a real root of the characteristic polynomial and α is some
real number.
Cookie Monster wonders if there is any relationship
between r and n−1

n , the coefficient for CM(S) of n-nacci.
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Figure: Real root (red) approaches 2 as fraction (blue) approaches 1.



Bounds Depending on Growth of Sequence

Theorem

The real root of xn = xn−1 + xn−2 + · · · x + 1 may be
approximated as 2− ε where ε = 1

2n−1 .

Thus, n ≈ log2(1 + 1
2−r ), so n−1

n = 1− 1
n ≈ 1− 1

log2(1+
1

2−r )
.

Therefore, for large n, the Cookie Monster coefficient
approximates a function of r .
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Bounds Depending on Growth of Sequence

Conjecture
There exist m jars in a recursive sequence with characteristic
equation of the form xn = xn−k1 + xn−k2 + · · · xn−km such that
CM(S) = dqme where q is any rational number between 0 and
1.



Future Research

CM(S) = n characterization
Explore more interesting sequences with regard to CM(S)

Is computing CM(S) an NP-hard problem?
Introduce more monsters, more dimensions of cookies, or
a game to play with the cookies
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