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The Problem

@ Cookie Monster is always hungry.

@ We present him with a set of cookie jars, each filled with
some number of cookies.

@ He wants to empty them as quickly as possible. But...

@ On each of his moves, he must choose a subset of the jars
and take the same number of cookies from each.
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@ Cookie Monster may perform his moves in any order.

@ Jars with equal number of cookies may be treated the
same.

@ Jars may be "emptied" without being emptied.

@ |s there a procedure the monster can follow that will always
lead to the optimal solution?
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General Algorithms

@ Take the Most Cookies Algorithm: the monster takes as
many cookies as possible for each move.

@ {20,19,14,7,4}

—14
o ———{6,50,7,4 ={6,57,4
Jar 1, Jar 2, Jar 3 {6,5,0,7,4} = {6,5,7,4}
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General Algorithms

@ Binary Algorithm: the monster takes 2% cookies from all
jars that contain at least 2% cookies for k as large as
possible.

e {18,16,9,8}

— 1%, 120,98 ={2,98}
Jar 1, Jar 2

@ None of these algorithms are optimal in all cases.
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CM(S)

@ Suppose S is the set of the numbers of the cookies in the
jars.

@ The Cookie Monster number of S, CM(S), is the minimum
number of moves Cookie Monster must use to empty all of
the jars in S.

@ Suppose CM(S) = n and Cookie Monster follows an
optimal procedure.

@ After he performs move n, all jars are empty.

@ Therefore, each jar may be represented as the sum of
some moves.



General Bounds for CM(S)

Forall |S| = m, [logo(m+1)] < CM(S) < m.
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Interesting Sequences

@ We now present our Cookie Monster with interesting
sequences of cookies in his jars.

@ First, we challenge our monster to empty a set of jars
containing cookies in the Fibonacci sequence.

@ Define the Fibonacci sequence as F; =0, F = 1, and
Fi=Fi_2+ Fi_qfori>2.

@ A jar with 0 cookies and 2 jars containing 1 cookie are
irrelevant, so our smallest jar will contain F, cookies.



Fibonacci and CM(S)

When S = {Fo,...,Fn}, then CM(S) = |




@ Each term starting with the n-th is the sum of the previous
n terms.



@ Each term starting with the n-th is the sum of the previous
n terms.

@ For example, in the 3-nacci sequence, otherwise known as
Tribonacci, each term after the third is the sum of the
previous three terms.



@ Each term starting with the n-th is the sum of the previous
n terms.

@ For example, in the 3-nacci sequence, otherwise known as
Tribonacci, each term after the third is the sum of the
previous three terms.

@ 0,0,1,1,2,4,7,13,24, 44,81, 149 ...



@ Each term starting with the n-th is the sum of the previous
n terms.

@ For example, in the 3-nacci sequence, otherwise known as
Tribonacci, each term after the third is the sum of the
previous three terms.

@ 0,0,1,1,2,4,7,13,24,44,81,149 ...
@ Tetranacci, Pentanacci similar
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Tribonacci Example

@ {1,2,4,7,13,24,44}

o — 2 ,11,2,4,7,13,0,20} = {1,2,4,7,13,20}
Jar6,Jar7

o —° 11,2,4,7,0,7}={1,2,4,7}
Jar 5, Jar 6

@ "Empty" 3 jars with 2 moves!



Tribonacci and CM(S)

When S = {Ts, ..., T}, then CM(S) = [2] — 1.




General Nacci CM(S)

When Cookie Monster is presented with the firstm — (n— 1)
distinct n-nacci numbers, CM(S) = [t m] — (n — 2).
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Beyond Nacci

@ The monster wonders if he can extend his knowledge of
nacci sequences to non-nacci ones.

@ Define a Super-n-nacci sequence as S = {ky,...,Kkn}
where ki n > Kiip1+---+ kifori>1.
@ Cookie Monster suspects that since he already knows how

to consume the nacci sequences, he might be able to
bound CM(S) for Super naccis.



For Super-n-nacci sequences with m terms, CM(S) > [W}-
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Bounds Depending on Growth of Sequence

@ The n-nacci sequences all give monic recursive equations,
Xn:Xn—1+Xn—2_’_"‘_’_X1_|_1'

@ Therefore, any n-nacci sequence approximates a
geometric sequence, specifically ar, ar?,ar?, ... where r is

a real root of the characteristic polynomial and « is some
real number.

@ Cookie Monster wonders if there is any relationship
between r and 21, the coefficient for CM(S) of n-nacci.



Bounds Depending on Growth of Sequence

Figure: Real root (red) approaches 2 as fraction (blue) approaches 1.
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Bounds Depending on Growth of Sequence

The real root of x" = x"~1 4 x"=2 ... x + 1 may be

approximated as 2 — e where e = 5.

S NP I B
n log,(1+5)

@ Therefore, for large n, the Cookie Monster coefficient
approximates a function of r.

o Thus, n~ logy(1 + 5), s0 =1 = 1



Bounds Depending on Growth of Sequence

There exist m jars in a recursive sequence with characteristic
equation of the form x" = x"~k 4 x"=k ... x"—kn gych that
CM(S) = [gm| where q is any rational number between 0 and
1.




Future Research

@ CM(S) = ncharacterization
@ Explore more interesting sequences with regard to CM(S)
@ Is computing CM(S) an NP-hard problem?

@ Introduce more monsters, more dimensions of cookies, or
a game to play with the cookies
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