
Investigating GCD in Euclidean Domains

Rohil Prasad
under mentorship of Tanya Khovanova

PRIMES 2013

May 18, 2013

WHAT IS GCD?

The greatest common divisor, or GCD, of two integers is the
largest integer that divides both of them.

I Many algorithms use GCD calculation, one of the more
famous being the RSA encryption algorithm.

I Several algorithms have been devised to efficiently
calculate GCD for integers.

THE EUCLIDEAN ALGORITHM

THE EUCLIDEAN ALGORITHM

THE EUCLIDEAN ALGORITHM

THE EUCLIDEAN ALGORITHM

THE EUCLIDEAN ALGORITHM

THE BINARY GCD ALGORITHM

THE BINARY GCD ALGORITHM

THE BINARY GCD ALGORITHM

THE BINARY GCD ALGORITHM

THE BINARY GCD ALGORITHM

THE BINARY GCD ALGORITHM

THE BINARY GCD ALGORITHM

THE BINARY GCD ALGORITHM

THE BINARY GCD ALGORITHM

EUCLIDEAN DOMAINS

We can extend our definition of GCD to arbitrary Euclidean
domains.

I A Euclidean domain E is a principal ideal domain with a
function f such that for any nonzero a and b in E, there
exists q and r in E with a = bq + r and f (r) < f (b). This
function is called a norm, and q is called the quotient of a
and b.

I The integers are an example of a Euclidean domain with
norm f (a) = |a|.

I We work in Z[
√

2] and Z[
√

3].

FINDING GCD IN EUCLIDEAN DOMAINS

What are some ways of efficiently calculating GCD in
Euclidean domains?

I Option 1: Calculate a quotient

I Option 2: Divide out by a small prime
I Option 3: Approximate division

FINDING GCD IN EUCLIDEAN DOMAINS

What are some ways of efficiently calculating GCD in
Euclidean domains?

I Option 1: Calculate a quotient
I Option 2: Divide out by a small prime

I Option 3: Approximate division

FINDING GCD IN EUCLIDEAN DOMAINS

What are some ways of efficiently calculating GCD in
Euclidean domains?

I Option 1: Calculate a quotient
I Option 2: Divide out by a small prime
I Option 3: Approximate division

OPTION 1: CALCULATING THE QUOTIENT

I The quotient of elements in Z[
√

2] is calculated as follows:

a+b
√

2
c+d
√

2
= (a+b

√
2)(c−d

√
2)

c2−2d2 = ac−2bd
c2−2d2 + (bc−ad)

√
2

c2−2d2

I Rounding each component to the nearest integer gives the
quotient.

I Quotient calculation is identical in Z[
√

3].

OPTION 1: CALCULATING THE QUOTIENT

I The quotient of elements in Z[
√

2] is calculated as follows:

a+b
√

2
c+d
√

2
= (a+b

√
2)(c−d

√
2)

c2−2d2 = ac−2bd
c2−2d2 + (bc−ad)

√
2

c2−2d2

I Rounding each component to the nearest integer gives the
quotient.

I Quotient calculation is identical in Z[
√

3].

OPTION 1: CALCULATING THE QUOTIENT

I The quotient of elements in Z[
√

2] is calculated as follows:

a+b
√

2
c+d
√

2
= (a+b

√
2)(c−d

√
2)

c2−2d2 = ac−2bd
c2−2d2 + (bc−ad)

√
2

c2−2d2

I Rounding each component to the nearest integer gives the
quotient.

I Quotient calculation is identical in Z[
√

3].

OPTION 2: DIVISION BY A SMALL PRIME

I We use primes of norm 2 because it is easiest to check for
divisibility.

I Primes with small components have the fastest
implemented division.

I We use 1 +
√

3 for Z[
√

3] and 2±
√

2 for Z[
√

2].

OPTION 2: DIVISION BY A SMALL PRIME

I We use primes of norm 2 because it is easiest to check for
divisibility.

I Primes with small components have the fastest
implemented division.

I We use 1 +
√

3 for Z[
√

3] and 2±
√

2 for Z[
√

2].

OPTION 2: DIVISION BY A SMALL PRIME

I We use primes of norm 2 because it is easiest to check for
divisibility.

I Primes with small components have the fastest
implemented division.

I We use 1 +
√

3 for Z[
√

3] and 2±
√

2 for Z[
√

2].

OPTION 3: APPROXIMATE DIVISION

I Calcuation of the quotient limits the Euclidean algorithm’s
runtime.

I A possible solution to this is to approximate the quotient
quickly.

I Current implementations for Z[
√

2] and Z[
√

3] involves
bitshifting the components of each number by about half
their bitsize and approximating the quotient with these.

OPTION 3: APPROXIMATE DIVISION

I Calcuation of the quotient limits the Euclidean algorithm’s
runtime.

I A possible solution to this is to approximate the quotient
quickly.

I Current implementations for Z[
√

2] and Z[
√

3] involves
bitshifting the components of each number by about half
their bitsize and approximating the quotient with these.

OPTION 3: APPROXIMATE DIVISION

I Calcuation of the quotient limits the Euclidean algorithm’s
runtime.

I A possible solution to this is to approximate the quotient
quickly.

I Current implementations for Z[
√

2] and Z[
√

3] involves
bitshifting the components of each number by about half
their bitsize and approximating the quotient with these.

COMPARING ALGORITHMS

FUTURE RESEARCH

There are many directions in which this research can be taken:
I Extend ideas to Z[

√
d] for squarefree d.

I Improve performance of the new ‘binary’ and
‘approximate division’ algorithms.

I Find worst cases for the Euclidean algorithm in Z[
√

d].

FUTURE RESEARCH

There are many directions in which this research can be taken:
I Extend ideas to Z[

√
d] for squarefree d.

I Improve performance of the new ‘binary’ and
‘approximate division’ algorithms.

I Find worst cases for the Euclidean algorithm in Z[
√

d].

FUTURE RESEARCH

There are many directions in which this research can be taken:
I Extend ideas to Z[

√
d] for squarefree d.

I Improve performance of the new ‘binary’ and
‘approximate division’ algorithms.

I Find worst cases for the Euclidean algorithm in Z[
√

d].

ACKNOWLEDGMENTS

I would like to acknowledge the following:
I Stefan Wehmeier and Ben Hinkle of Mathworks.
I My mentor Tanya Khovanova.
I The MIT PRIMES Program.
I My family.

