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e
WHAT 1s GCD?

The greatest common divisor, or GCD, of two integers is the
largest integer that divides both of them.

» Many algorithms use GCD calculation, one of the more
famous being the RSA encryption algorithm.

» Several algorithms have been devised to efficiently
calculate GCD for integers.



e
THE EUCLIDEAN ALGORITHM

def euclid gcd(a,b):
ki il (1038, 243)
a,b = b,a
while (! (b divides a)):
q = a/b
a,b = b,a-g*b

return d
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REME (110 divin ) (243, 66)
a,b = b,a-gq*b
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THE EUCLIDEAN ALGORITHM

def euclid gcd(a,b):

if b > &: (1038’ 243)
a,b =b,a
~-;_;_4;(i(1;/21v:.des a)): (243} 66)
a,b = b,a-gq*b
recurn d (66; 45)
(45,21)
(21, 3)
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THE BINARY GCD ALGORITHM

£ binary gcd(a,b):
-0 (1038, 243)
e (a,b) are even:
a,b = a/2, b/2
r = r+l

w
n
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1l even:

b b/2
a,b = min(a,b), abs(a-b)/2

oo

return a¥%(2”°r)
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THE BINARY GCD ALGORITHM

ef binary gcd(a,b):
R (1038, 243)
hile (a,b) are even:
Y (519, 243)
r = r+l
le a is even:
a = a/2
ile b is even:
b = b/2
a,b = min(a,b), abs(a-b)/2
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THE BINARY GCD ALGORITHM

ef binary gcd(a,b):
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THE BINARY GCD ALGORITHM

ef binary gcd(a,b):
S | (1038, 243)
e (519, 243)

r = r+l

e even: (243, 138)
b2 (243, 69)

b = b/2
a,b = min(a,b), abs(a-b)/2



THE BINARY GCD ALGORITHM

ef binary gcd(a,b):

= (1038, 243)

ile(a !'= b):
‘;éi?éf;f” (519, 243)
e e e even: (243, 138)
o2 (243, 69)

77;:; = b/2
return ax(2°r) (87269)

a,b = min(a,b), abs(a-b)/2



THE BINARY GCD ALGORITHM

ef binary gcd(a,b):

= (1038, 243)
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LU (519, 243)
L (243, 138)
,,;} s l;/zeven: (243’ 69)
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THE BINARY GCD ALGORITHM

ef binary gcd(a,b):

= (1038, 243)

ile(a !'= b):
LU (519, 243)
et (243, 138)
a,;é ;;i/(i,e:)ei‘.abs(a-b)/2 (243’ 69)
return a%(2°r) (87269)
(69.9)
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THE BINARY GCD ALGORITHM

ef binary gcd(a,b):

(1038, 243)

ile(a !'= b):

hile (a,b) are even:
i Pyt (519, 243)
r = r+l

(243, 138)
(243, 69)
(87,69)
(69..9)
(30,9)

9. 3)

a

oo



e
THE BINARY GCD ALGORITHM

ef binary gcd(a,b):

S (1038, 243)
(519,243)
i (243, 138)
a,;é E;é;(i,e:)erj:abs(a-b)/2 (243’ 69)
- (87.,69)
(69.9)
(30, 9)
9. 3)
(3.3)



e
EUCLIDEAN DOMAINS

We can extend our definition of GCD to arbitrary Euclidean
domains.

» A Euclidean domain E is a principal ideal domain with a
function f such that for any nonzero 4 and b in E, there
exists g and r in E witha = bg +r and f(r) < f(b). This
function is called a norm, and g is called the quotient of a
and b.

» The integers are an example of a Euclidean domain with
norm f(a) = |a|.
» We work in Z[v/2] and Z[/3].
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.
FINDING GCD IN EUCLIDEAN DOMAINS

What are some ways of efficiently calculating GCD in
Euclidean domains?

» Option 1: Calculate a quotient
» Option 2: Divide out by a small prime

» Option 3: Approximate division
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OPTION 1: CALCULATING THE QUOTIENT

» The quotient of elements in Z[v/2] is calculated as follows:

atbv2 _ (a+bv2)(c—dv2) _ ac—2bd + (be—ad)V2
cHdv2 T [y T 2242
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e
OPTION 1: CALCULATING THE QUOTIENT

» The quotient of elements in Z[v/2] is calculated as follows:

atbv2 _ (a+bv2)(c—dv2) _ ac—2bd + (be—ad)V2
cHdv2 T [y T 2242

» Rounding each component to the nearest integer gives the
quotient.

» Quotient calculation is identical in Z[/3].
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OPTION 2: DIVISION BY A SMALL PRIME

» We use primes of norm 2 because it is easiest to check for
divisibility.
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.
OPTION 2: DIVISION BY A SMALL PRIME

» We use primes of norm 2 because it is easiest to check for
divisibility.

» Primes with small components have the fastest
implemented division.

» We use 1 + /3 for Z[v/3] and 2 + /2 for Z[v/2].
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OPTION 3: APPROXIMATE DIVISION

» Calcuation of the quotient limits the Euclidean algorithm’s
runtime.
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e
OPTION 3: APPROXIMATE DIVISION

» Calcuation of the quotient limits the Euclidean algorithm’s
runtime.

» A possible solution to this is to approximate the quotient
quickly.

» Current implementations for Z[/2] and Z[v/3] involves
bitshifting the components of each number by about half
their bitsize and approximating the quotient with these.



e
COMPARING ALGORITHMS

Algorithm Type
Euclidean Binary Approx.
100 145 2.70 1.46
w
3 200 2.88 537 2.90
M
g 300 436 8.62 478
§ 400 7 '
g 6.48 12.57 6.64
500 8.21 15.96 8.65
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FUTURE RESEARCH

There are many directions in which this research can be taken:
» Extend ideas to Z[v/d] for squarefree d.
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e
FUTURE RESEARCH

There are many directions in which this research can be taken:
» Extend ideas to Z[v/d] for squarefree d.

» Improve performance of the new ‘binary” and
‘approximate division” algorithms.

» Find worst cases for the Euclidean algorithm in Z[/d].
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