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WHAT IS GCD?

The greatest common divisor, or GCD, of two integers is the
largest integer that divides both of them.

I Many algorithms use GCD calculation, one of the more
famous being the RSA encryption algorithm.

I Several algorithms have been devised to efficiently
calculate GCD for integers.
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EUCLIDEAN DOMAINS

We can extend our definition of GCD to arbitrary Euclidean
domains.

I A Euclidean domain E is a principal ideal domain with a
function f such that for any nonzero a and b in E, there
exists q and r in E with a = bq + r and f (r) < f (b). This
function is called a norm, and q is called the quotient of a
and b.

I The integers are an example of a Euclidean domain with
norm f (a) = |a|.

I We work in Z[
√

2] and Z[
√

3].



FINDING GCD IN EUCLIDEAN DOMAINS

What are some ways of efficiently calculating GCD in
Euclidean domains?

I Option 1: Calculate a quotient

I Option 2: Divide out by a small prime
I Option 3: Approximate division
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OPTION 1: CALCULATING THE QUOTIENT

I The quotient of elements in Z[
√

2] is calculated as follows:
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I Rounding each component to the nearest integer gives the
quotient.

I Quotient calculation is identical in Z[
√

3].
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OPTION 2: DIVISION BY A SMALL PRIME

I We use primes of norm 2 because it is easiest to check for
divisibility.

I Primes with small components have the fastest
implemented division.

I We use 1 +
√

3 for Z[
√

3] and 2±
√

2 for Z[
√

2].
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OPTION 3: APPROXIMATE DIVISION

I Calcuation of the quotient limits the Euclidean algorithm’s
runtime.

I A possible solution to this is to approximate the quotient
quickly.

I Current implementations for Z[
√

2] and Z[
√

3] involves
bitshifting the components of each number by about half
their bitsize and approximating the quotient with these.
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COMPARING ALGORITHMS



FUTURE RESEARCH

There are many directions in which this research can be taken:
I Extend ideas to Z[

√
d] for squarefree d.

I Improve performance of the new ‘binary’ and
‘approximate division’ algorithms.

I Find worst cases for the Euclidean algorithm in Z[
√

d].
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