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Abstract. Manin and Schechtman defined the Bruhat order on the type A Weyl group, which is

closely associated to the Symmetric group Sn, as the order of all pairs of numbers in {1, 2, ..., n}. They

proceeded to define a series of higher orders. Each higher order is an order on the subsets of {1, 2, ..., n}

of size k, and can be computed using an inductive argument. It is also possible to define each of these

higher orders explicitly, and therefore know conclusively the lexicographic orders for all k. It is thought

that a closely related concept of lexicographic order exists for the Weyl group of type B, and that a

similar method can be used to compute this series of higher orders. The applicability of this method

is demonstrated in the paper, and we are able to determine and characterize the higher Bruhat order

explicitly for certain n and k. We therefore conjecture the existence of such an order for all n > k, as

well as its accompanying properties.

1. Introduction

A central object of study in Lie theory is the Weyl group. Weyl groups are finite groups which occur

in several guises and with many important applications to representation theory. For example, to any

semisimple Lie group G one can define the Weyl group to be W = N(T )/T for a maximal torus T and

its normalizer N(T ). Alternatively one can recover the Weyl group in a more concrete way as certain

symmetries of a combinatorial object associated to G called a root system.

A useful tool in representation theory is the Bruhat decomposition of G into a finite set of locally closed

pieces Gw indexed by the elements of the Weyl group. Moreover, one can impose an order on W called

the Bruhat order, making W into a ranked poset with a unique minimal element and a unique maximal

one. This order respects the decomposition in the sense that the dimension of Gw is the rank of w, and its

closure contains all the Gw� with w
� ≤ w. For an exposition of the basic properties of Weyl groups, see [H].

Weyl groups are part of a broader class of finite groups called finite Coxeter groups, groups generated

by a finite set of reflections of Euclidean space. Much like the classification of simple Lie groups, finite

Coxeter groups are classified into a finite list of “types.” To any Coxeter group W and generating set S and
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element w ∈ W is associated a reduced expression graph Γ̃w. This is an undirected graph whose vertices

correspond to minimal length presentations of w in terms of elements of S, and whose edges are given by

applying a braid relation to transform one reduced expression into another. It was discovered that all of

the loops in the reduced expression graph are built from loops in the reduced expression graphs of finite

rank 3 Coxeter groups. Furthermore, there is a simplicial complex A known as the Coxeter complex, whose

largest simplices (i.e. chambers) correspond to w ∈ W ; an expression in S corresponds to a path through

the walls of these chambers. For a precise discussion of the Coxeter complex and the reduced expression

graph, we refer to [R].

In [MS], Manin and Schechtman give a different description of the Bruhat order, which generalizes to

higher Bruhat orders. Let C(n, k) denote the set of all subsets of cardinality k in {1, 2, ..., n}. Certain

orderings on C(n, k) denote the set A(n, k) of admissible orderings. One can define a rank function of

admissible orderings, with unique minimal and maximal elements, ρmin and ρmax. Furthermore, this rank

function together with the notion of a “packet flip” gives the set A(n, k) the structure of a ranked poset.

When k = 1, this recovers the usual Bruhat order. Most importantly, there is a way to associate an element

of A(n, k + 1) to a path from ρmin to ρmax in A(n, k).

The purpose of this work is to generalize the higher Bruhat order of Manin and Schechtman to Weyl

groups of other Lie types. This project is motivated by recent work of Ben Elias and Geordie Williamson.

In [E], Elias recasts Manin and Schechtman’s result in terms of Bott-Samelson bimodules. In this inter-

pretation, reduced expressions for the maximal element of W correspond to Bott-Samelson bimodules, and

edges in the reduced expression graphs give morphisms between them (in either direction). In general,

two different paths between the same reduced expressions will produce nonequal morphisms between Bott-

Samelson bimodules. Elias finds that, in type A, the orientation defined by the higher Bruhat order from

MS (and its opposite orientation) are the unique orientations for which two different oriented paths always

produce the same morphism. We call such an orientation “compatible”. In [Soergel calculus],[EW], Elias

and Williamson demonstrate that in type B3 there is also a unique (up to duals) compatible orientation,

and in unpublished calculations, Elias has confirmed the existence of a compatible orientation for Bn for

n small. This suggests that a compatible orientation on reduced expressions should exist for any type B

Coxeter group, and perhaps that the higher Bruhat orders should exist as well.

Also in [Soergel calculus], Elias and Williamson demonstrate that there is no compatible orientation in

type H3. Perhaps this is an indication that higher Bruhat orders are a feature unique to Weyl groups or
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crystallographic groups, but it is too early to make any conjectures.

Now let us describe the structure of this paper. First, we introduce some notation. In Chapter 2 we

explore the case of the type A Weyl group, the recursive method for computing the higher Bruhat orders,

and discuss the properties of this series of higher orders. Then, the notion of standard order, as the type B

analog of lexicographic order in type A, is explored. A description of some additional notation is provided,

and the inductive process of computing a higher order (in which k = a+1) from the previous order (k = a)

is illustrated through the small cases of k = 1, 2, and 3. The general argument that serves as the inductive

step remains valid for all a ≥ 1. However, there are some additional subtleties to this inductive process

for the first few Bruhat orders, which we will discuss in Chapter 7. For all k ≥ 3, the exact same process

of computation of the order on C(n, k + 1), given the order on C(n, k) is valid. We define a certain set of

orders as good orders. We then prove that it is sufficient for the Bruhat order on C(n, k) to be good for

the next higher order, ρmin ∈ A(n, k + 1) to be good. However, this proof requires us to show that the two

aspects that define a higher order r1 ∈ A(n, k) with respect to an order r2 ∈ A(n, k) (namely, the concepts

of the parent and principal aspects) both satisfy the properties claimed. From here, we conclude that the

Standard order satisfies a recursion for all values of n ≥ 4, and use this recursion to show the ultimate result

of a description of the higher Bruhat order on the set C(n, k) for all positive integers n > k. Therefore, we

show that, given the existence of such an order in type B, it must satisfy all the properties we previously

proved.

2. Background: type A Weyl group

The Weyl group of type A is defined by the Coxeter system (W, Sn) where Sn refers to the elementary

transpositions (1 2), (2 3), ..., (n− 1 n).

2.1. Notation.

Notation 2.1. The set I is the set of all integers from 1 to n inclusive, {1, 2, ..., n}.

Notation 2.2. In Sections 2 and 3, the set C(n, k) consists of all subsets of I of cardinality k.

Definition 2.3. The packet P (K) of K = (i1, i2, ..., ik+1) ∈ C(n, k + 1) is the set of {K∧
a } for a =

1, ..., k + 1, where K
∧
a = K − (ia).

Definition 2.4. The lexicographic order on the packet of K = (i1, i2, ..., ik+1) (where i1 < i2 < ... < ik) is

the order K
∧
k+1 < K

∧
k < ... < K

∧
1 . Also, the antilexicographic order is defined as K

∧
1 < K

∧
2 < ... < K

∧
k+1.
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Definition 2.5. An order ρ on the elements of C(n, k) is admissible if it induces lexicographic or an-

tilexicographic order on the packet P (K) for each K ∈ C(n, k + 1). The set of all such ρ is denoted by

A(n, k).

Example 2.6. The order ρ, given by

(2, 3) < (1, 3) < (1, 2) < (1, 4) < (2, 4) < (3, 4)

induces lexicographic order on P (1, 2, 4) = (1, 2) < (1, 4) < (2, 4), P (1, 3, 4) = (1, 3) < (1, 4) < (3, 4), and

P (2, 3, 4) = (2, 3) < (2, 4) < (3, 4), and antilexicographic order on P (1, 2, 3) = (1, 2) < (1, 3) < (2, 3). Thus

ρ ∈ A(3, 2).

Definition 2.7. For an order ρ ∈ A(n, k), we define Inv(ρ) as the set of all K ∈ C(n, k + 1) such that ρ

induces antilexicographic order on P (K). We let inv(ρ) = |Inv(ρ)|.

Definition 2.8. A total order ρ is said to be elementarily equivalent to another order ρ
�
if ρ can be obtained

from ρ by switching pairs of elements J1, J2 ∈ C(n, k) which are not members of a common packet (this is

equivalent to |J1 ∪ J2| ≥ k + 2) [MS].

Definition 2.9. For an order ρ ∈ A(n, k), a chain in ρ is an uninterrupted sequence of members of C(n, k)

comprising P (K) for some K ∈ C(n, k + 1).

Notation 2.10. The order in which the chain of elements comprising P (K) is inverted, but the rest of the

elements retain their positions, is denoted by pK(ρ).

Example 2.11. For the order r given by

(2, 3) < (1, 3) < (1, 2) < (1, 4) < (2, 4) < (3, 4),

we say Inv(r) = (1, 2, 3); r = pK(ρmin), where K = (1, 2, 3).

Notation 2.12. For all such orders r ∈ A(n, k), inv(r) is a rank function on A(n, k) that defines the

structure of the equivalence class B(n, k). Thus, the rank function inv descends to a function on B(n, k),

and every r ∈ B(n, k) is uniquely defined by Inv(r).

Definition 2.13. For r ∈ B(n, k), the set of neighbors N(r) contains all K ∈ C(n, k + 1) such that P (K)

forms a chain with respect to some ρ ∈ r.
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3. Previous research

In a 1989 publication, Manin and Schechtman defined the Bruhat order on the type A Weyl group,

which is closely associated to the Symmetric group Sn, as the order of all pairs of numbers in {1, 2, ..., n}.

Specifically, the Bruhat order on C(n, 1) is the classical Bruhat order on the elements of the symmetric

group Sn. Then C(n, 2) could be interpreted as an order on reduced expressions for w0, the longest element.

Manin and Schechtman proceeded to define a series of higher orders, where each higher order is an order

on the subsets of {1, 2, ..., n} of size k, and can be computed using an inductive argument. Note that the

higher Bruhat order is the partial order (as exhibited by the ranked poset B(n, k) for all k < n) on the set

of total orders.

It is also possible to define each of these higher orders explicitly, and therefore know conclusively the

lexicographic orders for all k. First, it should be noted that for the case in which k = 2, the Bruhat order

gives an order on the elements of the Symmetric group Sn, with respect to the simple generating set (which

in this case is the set of transpositions).

Another critical result regarding type A was proved by Manin and Schechtman, which will be enumerated

in the following three theorems (each pair of which are biconditional).

Theorem 3.1. Given r, r
� ∈ B(n, k), we say that r ≤ r

�
if and only if there exist Ki such that Ki ∈

N(pKi−1 ...pK1(r))− Inv(pKi−1 ...pK1(r)), and r
� = pKm ...pK1(r). This inequality gives a partial order on

B(n, k), and defines the structure of a ranked poset (rank function inv) which has minimal and maximal

elements rmin = π(ρmin) and rmax = π(ρmax), respectively [MS].

Thus, the admissible order constitute a set equivalence classes, ranging from ρmin to ρmax. More specif-

ically, the minimal element ρmin is the lexicographic ordering of inversions in C(n, k) and the maximal

element ρmax is the antilexicographic order. These classes are linked through the inversions of the packets

P (K) for K ∈ C(n, k + 1). Given two orderings, r and r
�, such that the poset B(n, k) defines r ≥ r

�, r
� is

the result when the appropriate packets are inverted in the order r. The order of this series of “packet flips”

performed on P (K) for K ∈ C(n, k + 1) is consistent with the higher order (that is, the order induced by

the lexicographic order on C(n, k + 1)).

Theorem 3.2. The map from

{rmin < pK1(rmin) < ... < pKm ...pK1(rmin)}→ ρ = K1...Km

Page 6



Gabriella Studt

defines a bijection from the

{the set of paths from rmin to rmax}→ A(n, k + 1)

where rmin, rmax ∈ B(n, k), and the paths are in accordance with the higher Bruhat order that defines the

structure of the ranked poset on B(n, k); A(n, k+1) denotes the set of all admissible orders on the members

of C(n, k + 1) [MS].

One such series of inversions K, which transform the order on C(n, k) from lexicographic to antilexico-

graphic, is precisely the lexicographic order ρmin ∈ A(n, k + 1).

Theorem 3.3. Every element r ∈ B(n, k) is uniquely defined by the set Inv(r): no two orders r, r
� ∈ B(n, k)

can be the same if there exists K ∈ C(n, k + 1) such that P (K) ∈ Inv(r�) but P (K) �∈ Inv(r); also, two

orders that have the same set of inversions are identical (modulo elementary equivalencies) [MS].

Lemma 3.4. A(n, n− 1) = B(n, n− 1) = {Kn...K1, K1...Kn} where K = (1, ..., n) [MS].

That is, in Type A, the lexicographic order on C(n, n − 1) is precisely the packet of (1, ..., n); the only

other admissible order on C(n, n− 1) is antilexicographic.

3.1. Explicit description of Lexicographic order. From the above statements, lexicographic order on

(n, k) can be explicitly described as follows: For i1 = (a1, ..., ak), i2 = (b1, ..., bk), we have i1 < i2 if and

only if a1 < b1 or ai = bi for i < m and am < bm for some m ≤ k [MS].

In type A, Manin and Schechtman defined the Bruhat order on the Weyl group (closely associated

to the symmetric group Sn), and showed that it is possible to compute such a series of higher orders:

Beginning with all total orders on the members of C(n, 1), we can consider the classical Bruhat order

(a partial order on these total orders), in which the lexicographic element is defined as the total order

1 < 2 < ... < n (akin to the identity permutation), and the antilexicographic element is defined as the

total order n < n − 1... < 1. The aforementioned partially ordered set illustrates the higher Bruhat order

on C(n, 1), and the oriented edges define paths from lexicographic to antilexicographic elements. Each of

these oriented edges corresponds to an inversion of a member of C(n, 2), and so each path corresponds to

a total order on C(n, 2). From these new total orders (including a lexicographic and antilexicographic) we

can similarly define another higher Bruhat order, now on C(n, 2). This process of computing higher Bruhat

orders can be continued until we reach the higher Bruhat order on C(n, k), where k = n− 1.
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We claim that it is possible to similarly define a series of higher Bruhat orders on the Weyl group of

type B. If such an order does exist, we conjecture that it can be constructed in a similar fashion to that

discussed above.

4. Type B Weyl group

WBn is the group of permutations generated by matrices symmetric across the skew diagonal. The Type

B Weyl group WBn is a subgroup of the symmetric group S2n. Specifically, it is a subgroup of 2n by 2n

permutation matrices. The lexicographic order on C(n, 1) can be thought of as the Coxeter group (W, S)

on the simple system S (the set of transpositions (i i + 1) of generators. Thus WBn can be thought of as

symmetric permutations σ of {±1, ...,±n}, with generators (i, i + 1), (−i,−i− 1) as well as (−1, +1). For

all 1 ≤ i ≤ n, σ(−i) = −σ(i). This gives rise to the equivalence classes which we will discuss later.

5. Notation in type B

Notation 5.1. The set I is the set of all nonzero integers from −n to +n inclusive, {−n, ...,−1, +1, ..., +n}.

We begin by clarifying the notation that will be used in subsequent sections to describe the Weyl group

of type B. First, C(n, k) denotes a set of subsets of I, and members of C(n, k) satisfy certain properties.

Notation 5.2. C(n, 1) includes all subsets of I of size 1.

Notation 5.3. C(n, 2) includes all subsets of I of size 2.

Remark 5.4. Until otherwise specified, J refers to a general member of C(n, k): J = (i1, ..., ib) which is a

subset of I.

Notation 5.5. For a positive integer m such that there exist either one or two values of r, 1 ≤ r ≤ b, for

which m = |ir|, then J
∧
m = J − (m) = (i1, ..., ib)− {(ir)}.

Example 5.6. For J = (−5,−1, +4), J
∧
1 = (−5,−1, +4)− {(−1)} = (−5, +4)

Example 5.7. For J = (−3,−2, +2, +3), J
∧
3 = (−3,−2, +2, +3)− {(−3), (+3)} = (−2, +2)

Remark 5.8. For k ≥ 2, the members of C(n, k) can be partitioned into a set of equivalence classes. For

a set of ai of integers where |ai| ≤ n for all 1 ≤ i ≤ b, (a1, ..., ab) and (−a1, ...,−ab) are both members of

C(n, k) and share an equivalence class (which contains no other elements).
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Definition 5.9. The two members J = (a1, ..., ab) and −J = (−a1, ...,−ab) sharing an equivalence class

are said to be complements of each other, as J ∩ −J = ∅. The member J is said to be the representative

element of the complement pair if and only if i1 < 0.

Remark 5.10. From now on, J generally refers to a representative element of C(n, k).

For subsets of the form (−a, +a) ∈ C(n, 2), there are no other members in the equivalence class containing

(−a, +a). Note that C(n, 2) can be thought of as the set of all J of cardinality 2 such that J
∧
|i1|, J

∧
|i2| ∈

C(n, 1). We therefore define subsequent sets C(n, k) in a similar fashion: For k ≥ 2, every J ∈ C(n, k)

satisfies J
∧
|i1|, ..., J

∧
|ia| ∈ C(n, k − 1).

Definition 5.11. The packet P (J) is the set of all J
� ∈ C(n, k − 1) such that J

� ⊂ J or −J
� ⊂ J .

Note that P (J) in some cases does not solely consist of the aforementioned set J
∧
i , although P (J) must

contain J
∧
|ic| ∈ C(n, k − 1) for all 1 ≤ c ≤ b. Therefore, the members J ∈ C(n, k) can be partitioned

into two sets, which we will denote as CA(n, k) (those equivalence classes containing two members) and

CB(n, k) (those equivalence classes containing one member). More precisely, all J ∈ CA(n, k) are of the form

(i1, ..., ik) (where each i ∈ I is distinct), while all J ∈ CB(n, k) are of the form (−j1, ...,−jk−1, +jk−1, ..., +j1)

(where each j ∈ {1, ..., n} is distinct). To recap, C(n, k) = CA(n, k) ∪ CB(n, k), where

CA(n, k) = {k − element subsets S of I : S ∩ −S = ∅}

modulo equivalence (i.e., S − S), and

CB(n, k) = {2(k − 1)− element subsets S of I : S = −S}.

Notation 5.12. For the sake of convenience, we will refer to every J ∈ CB(n, k) simply as (−j1, ...,−jk−1, 0).

Then the packet of J for J ∈ CB(n, k) is P (J) = {(−i1,±i2, ...,±ik)} ∪ {J∧j1 , ..., J
∧
jk−1}.

Example 5.13. The packet of (−4, +3, +1,−2) is

{(−4, +3, +1), (−4, +3,−2), (−4, +1,−2), (+3, +1,−2)}

Example 5.14. The packet of (−4,−2,−1, 0) is

{(−4,−2,−1), (−4,−2, +1), (−4,−1, +2), (−4, +1, +2)} ∪ {(−4,−2, 0), (−4,−1, 0), (−2,−1, 0)}}
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With respect to the notion of a packet P (K) in the type B Weyl group, the notions of elementary

equivalence, neighbor, chain, inversion, and Inv(u) are analogous to those given in type A.

Notation 5.15. By convention, we refer to any equivalence class containing J = (i1, ..., ik) by its repre-

sentative element (J if i1 < 0 and −J if i1 > 0). If we mention by itself a J ∈ C(n, k) where i1 > 0, we are

actually referring to the representative of its equivalence class, which is in this case its complement (−J).

5.1. Parent and child orders.

Definition 5.16. For any J ∈ C(n, k) such that i1 = −n, the child of J is J
∧
n .

Definition 5.17. A parent of J ∈ C(n− 1, k − 1) is a member K ∈ C(n, k) such that K
∧
n = J .

Note that there are two parent inversions for a J ∈ CA and one parent inversion for J ∈ CB .

Notation 5.18. For J = (i1, ..., ik−1) ∈ C(n− 1, k − 1), the operation ∗ is defined as follows: −n∗J refers

to the member (−n, i1, ..., ik−1) ∈ C(n, k), while −n ∗ −J refers to the the member (−n,−i1, ...,−ik−1) ∈

C(n, k).

Definition 5.19. Given a total order ρ = J1...JM where for each 1 ≤ a ≤ M , Ja ∈ C(n, k) and n ∈ Ja, the

child order ρ
∧
n is the order (J1)

∧
n ...(JM )∧n , in which all redundant members (e.g. adjacent complementary

members) have been removed.

Definition 5.20. Given a total order ρ = J1...JM where for each 1 ≤ a ≤ M , Ja ∈ C(n− 1, k − 1), the

parent order ρ
�
, denoted −n ∗ ρ, refers to any total order of {−n ∗ Ja} ∪ {−n ∗ −Ja} for which the child

order of ρ
�
is simply ρ.

5.2. Principal order.

Definition 5.21. With respect to a member J ∈ C(n− 1, k − 1), the two parents −n ∗ J and −n ∗ −J are

said to comprise a conjugate pair.

Definition 5.22. The principal member of a conjugate pair −n ∗ J,−n ∗ −J (where i1 < 0), is −n ∗ −J .

The antiprincipal member of the pair is −n ∗+J .

Definition 5.23. Similarly, for J = (i1, ..., ik) where i1 < 0, the pair −n ∗ −J,−n ∗ +J is said to be in

positive principal order, while the pair −n ∗+J,−n ∗ −J is said to be in negative principal order.
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For the purposes of describing the principal order of a total order, we will use the symbols + and −, to

denote positive and negative principal orders of the pairs within CA (the members of CB are disregarded

when describing the principal order, as they do not form conjugate pairs).

6. Standard Order in Type B

We now wish to consider the analog in the type B case of the higher Bruhat order on the Weyl group

of type A. In doing so, we seek an order analogous in the type B Weyl group to the lexicographic order

in the type A Weyl group. We will call such an order the Standard order in type B. Note that in type

A, the higher bruhat order on the equivalence classes of admissible total orders of C(n, 1) is the classical

bruhat order on the elements of the symmetric group Sn. Because the Weyl group of type B is given by

the Coxeter system (W, S2n), we define the standard order S(n, 1) as the identity permutation:

−n < ... < −1 < +1 < ... < +n.

Notation 6.1. S(n, k) denotes the standard order, commonly referred to as ρmin, which is a total order on

the elements of C(n, k).

Notation 6.2. S
−1(n, k), commonly referred to as ρmax, denotes the opposite order of the elements in

C(n, k) as that of S(n, k).

7. Construction of standard order S(n, k) for small k

7.1. k=1. As stated previously, the standard order S(n, 1) on C(n, 1) is defined for convenience as the

order

−n,−(n− 1), ...,−1, +1, ..., +(n− 1), +n

In the following section, we will show how this order can be computed for a larger value of k, and indicate

the properties of the standard order.

7.2. k=2.

Theorem 7.1. For two distinct inversions J1 = (a1, a2) ∈ C(n, 2) and J2 = (b1, b2) ∈ C(n, 2), J1 < J2 if

either a1 < b1 or a1 = b1 and a2 < b2. Otherwise, J1 > J2.
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Proposition 7.2. The standard order S(n, 2) on C(n, 2) for n ≥ 2 reduces to the classical Bruhat order

in the Type B Weyl group. So given S(n − 1, 1) = J1...J2M for 2M = |C(n, 2)|, we claim the order

S(n, 2) = (−n ∗ J1)...(−n ∗ JM ); (−n, 0); (−n ∗ JM+1)...(−n ∗ J2M ); S(n− 1, 2).

As a base case, one can easily see that the permutation σ = {1,−1} of {−1, 1} requires only the inversion

(−1, 0). Next, consider the set

(−m,−(m− 1), ...,−1, +1..., +(m− 1), +m).

The permutation (-m +m) arises from the series of transpositions

(−m − (m− 1))(−(m− 1) − (m− 2))...(m− 2 m− 1)(m− 1 m),

which corresponds to performing the series of inversions

(−m,−(m− 1)), (−m,−(m− 2)), ..., (−m,−1), (−m, 0), (−m, +1), ..., (−m, +(m− 2)), (−m, +(m− 1)).

Thus, by the inductive hypothesis, the permutation

{+m, +(m− 1), ..., +1,−1, ...,−(m− 1),−m}

is given by the inversions

(−m ∗ S(m− 1, 1)); S(m− 1, 2)

where −m ∗ S(m− 1, 1) is an order. (In general, note that −n ∗ S(n− 1, k− 1) is an order containing each

parent of each member of S(n − 1, k − 1), and whose child order is S(n − 1, k − 1).) Note also that for

a > b > 0, (−a,−b) precedes (−a, +b), and so each of the conjugate pairs within −m ∗ S(m − 1, 1) have

negative principal order. Note that members of conjugate pairs are not adjacent to each other. We can

then make the following statement regarding the standard order:

S(n, 2) = [
+(n−1)Y

i=−(n−1)

(−n, i)]; S(n− 1, 2)

Note that the non-recursive description of the standard order offered by theorem 7.1 follows directly from

this statement.

7.3. Split order.
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Definition 7.3. A total order ρ of the elements in C(n, k) is called split if it can be written with left,

middle, and right parts σ1, τ , and σ2, respectively, where σ1σ2 = S(n− 1, k) and τ = −n ∗±rho
�
for some

total order ρ
�
on the elements of C(n− 1, k− 1). Alternatively, this means that a split order can be written

in the following way:

ρ = J1...Ja;−n ∗ (J �1...J
�
M ); Ja+1...JN

(or −n ∗ (J �1...J
�
M ); J1...JN if there is no left part; J1...JN ; (J �1...J

�
N ) if there is no right part) where J

�
i ∈

C(n− 1, k − 1) for all 1 ≤ i ≤ M , Jj ∈ C(n− 1, k) for all 1 ≤ j ≤ N .

Theorem 7.4. Given a split order ρ such that it is possible to invert the packet P (−n∗+Ja) or P (−n∗−Ja),

we can invert both of these packets in sequence to obtain another split order.

Proof. Begin with a split order, ρ which has middle part −n ∗ (J �1...J
�
M ) and right part Ja...JN . (Note that

Ja is therefore the first member of the right part.) The union of packets P (−n ∗ −Ja) and P (−n ∗ −Ja) is

the set consisting of the inversion Ja and the parents of the packet P (Ja); the intersection of the packets

P (−n ∗ −Ja) and P (−n ∗ −Ja) is the set containing only Ja. Therefore, if we are initially able to invert

the members of P (−n ∗ −Ja) (or respectively P (−n ∗ +Ja)), it is because the parents of P (Ja) which are

members of P (−n ∗ −J) (resp. P (−n ∗ +J)) form a chain within the middle part of ρ. The middle part

of ρ is composed only of adjacent conjugate pairs −n ∗ −J and −n ∗+J for each J ∈ C(n− 1, k − 1), and

furthermore all (−n ∗ J
�) ∈ P (−n ∗ −Ja) (resp. (−n ∗ J

�) ∈ P (−n ∗+Ja)) are second in their respective

conjugate pairs. Thus, the inversion of P (−n ∗ −Ja) (resp. P (−n ∗ +Ja)) results in an order in which Ja

now resides between the other members of P (−n ∗+Ja) (on the left, unchanged in order) and P (−n ∗−Ja)

(on the right, reversed in order). Since the order of other members within P (−n ∗+Ja) is unchanged, the

current order can also accommodate the inversion of this packet. Next, since Ja is now to the left of the

other members of P (−n ∗+Ja) and P (−n ∗ −Ja), and the rest of the middle part of ρ is disjoint with Ja,

we can now move Ja to the left part of ρ. Finally, it’s possible to reconcile each of the conjugate pairs from

P (−n ∗+Ja)∪P (−n ∗ −Ja) so that the members of each pair are adjacent once again. The resulting order

is, therefore, a split order. �

Notation 7.5. For J ∈ C(n− 1, k), the notation −n∗±J refers to the parent inversion(s) to J . Thus, for

J ∈ CA(n− 1, k), −n ∗ ±J denotes the union −n ∗ −J,−n ∗ +J . For J ∈ CB(n− 1, k), −n ∗ ±J denotes

−n ∗ J .

Lemma 7.6. Two inversions (−n ∗+K
∧
a ) and (−n ∗ −K

∧
b ) commute if a �= b.
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Proof. Two inversions J1, J2 ∈ C(n, k − 1) commute if they are not part of a common packet P (K) ⊂

C(n, k). Since any such K has k elements, two inversions with a total of k + 1 or more distinct ele-

ments cannot be contained within the same packet. In the case of the two inversions in question, |(−n ∗

+K
∧
r ) ∪ (−n ∗ −K

∧
s )| = |{−n, +i1, ..., +ir−1, +ir+1, ..., +ik−1} ∪ {+n, +i1, ..., +is−1, +is+1, ..., ik−1}| =

|{−n, +n, +i1, ..., +ik−1}| = k + 1. Thus, two such inversions commute. �

Theorem 7.7. Given a split order ρ such that either the members of P (−n∗+Ja+1) = −n∗+(Ja+1)
∧
ik−1 , ...,−n∗

+(Ja+1)
∧
i1 , J or the members of P (−n∗−Ja+1) = −n∗−(Ja+1)

∧
ik−1 , ...,−n∗−(Ja+1)

∧
i1 , J form a chain with

respect to ρ, we can invert both of these packets in sequence to obtain another order which is also split.

Proof. Case 1 (possible to invert −n ∗+Ja+1): the initial split order ρ must be elementarily equivalent to

an order in which the members of P (−n ∗ Ja+1) form a chain. Note that all conjugate pairs are grouped

together, and so the only possible good order satisfying this condition induces the following order on P (−n∗

±Ja+1): −n ∗−(Ja+1)
∧
ik−1 ,−n ∗+(Ja+1)

∧
ik−1 , ...,−n ∗−(Ja+1)

∧
i1 ,−n ∗+(Ja+1)

∧
i1 , Ja+1. By lemma 7.5, this

is elementarily equivalent to −n∗−(Ja+1)
∧
ik−1 ...−n∗−(Ja+1)

∧
i1 ,−n∗+(Ja+1)

∧
ik−1 , ...,−n∗+(Ja+1)

∧
i1 , Ja+1.

Thus, p−n∗+Ja+1(ρ) = −n ∗ −(Ja+1)
∧
ik−1 ...− n ∗ −(Ja+1)

∧
i1 , Ja+1,−n ∗+(Ja+1)

∧
i1 , ...,−n ∗+(Ja+1)

∧
ik−1 . In

this resulting order, the members of P (−n∗−Ja+1) form a chain, and so the inversion of this packet results

in the order p−n∗−Ja+1p−n∗+Ja+1(ρ) which induces the following order on −n ∗±Ja+1:

Ja+1,−n ∗ −(Ja+1)
∧
i1 ,−n ∗+(Ja+1)

∧
i1 , ...,−n ∗ −(Ja+1)

∧
ik−1 ,−n ∗+(Ja+1)

∧
ik−1 .

Note that this order is elementarily equivalent to −n∗−(Ja+1)
∧
i1 ,−n∗+(Ja+1)

∧
i1 , ...,−n∗−(Ja+1)

∧
ik−1 ,−n∗

+(Ja+1)
∧
ik−1 . By lemma 7.6, Ja+1 is disjoint with the other members of the middle part, so it can be pushed

up to the left part of the split order. Note that the left part of the split order is now J1...Ja+1, the right

part is Ja+2, ..., JN , and the middle part is simply the parent order of pJa+1(ρ). Therefore, the resulting

order is J1...Ja+1; pJa+1(ρ); Ja+2, ..., JN , which is also split.

Case 2 (possible to invert −n∗−Ja+1): note that this case is similar to the previous one, except that we first

invert P (−n∗−Ja+1) and then P (−n∗+Ja+1), to obtain the resulting order J1...Ja+1; pJa+1(ρ); Ja+2, ..., JN .

Case 3: Given a Ja+1 ∈ CB(n− 1, k − 1), there is only the single parent packet P (−n ∗ Ja+1). We begin

with this packet in standard order. Note that there is only one member of the packet (namely Ja+1 which

does not belong to the middle part of the split order. �
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By thm. 7.7, we can continue this process, inverting through the parents of J1, ..., JN until we reach the

order J1, ..., JN ;−n ∗ (J �M , ..., J
�
1). Then we need only invert the packets within the left part, J1, ..., JN , in

order to have completely reversed the initial order, and get the order JN , ..., J1; J
�
M , ..., J

�
1.

7.4. k=3. We begin with the order S(n, 2) = −n ∗ S(n − 1, 1); S(n − 1, 2) and we wish to find the set

of inversions that will transform this order to S
−1(n, 2) = S

−1(n − 1, 2);−n ∗ S
−1(n − 1, 1) (this order of

inversions is the same as the order on S(n, 3)). Therefore, we claim that the series σa = −n∗(−a∗S(a−1, 1))

of inversions for a = n− 1, n− 2, ..., 1 is such an order.

Proof. We will show by induction that it is possible to perform such a series of inversions in steps, inverting

members of σn−1, of σn−2,...,σ2, and a finally inverting (−n,−1, 0).

Inductive Hypothesis 7.8. After the inversion of the members of a series σa for some a ≥ 2, the order

on the members of C(n, 2) is

−(n−1)∗S(n−2, 1), ...,−a∗S(a−1, 1); (−n, +(n−1)), ..., (−n, +a);−n∗S(a−1, 1); (−n,−a), ..., (−n,−(n−1)); S(a−1, 2).

Base case: ρmin = S(n, 2) = −n∗S(n−1, 1); S(n−1, 2), so the members of σn−1 = −n∗(−(n−1)∗S(n−

2, 1)) are the leftmost members of the right part of ρmin. As such, it is possible to invert these members

of a split order. This yields the order −(n − 1) ∗ S(n − 2, 1); (−n, +(n − 1));−n ∗ S(n − 2, 1); (−n,−(n −

1)); S(n − 2, 2), as predicted by the inductive hypothesis for a = n − 1. After inverting the members in

some of these series σn−1, ..., σb+1 for some b > 2, assume that the resulting order is that stated in the

hypothesis. Then we next invert the members of σb, and obtain

−(n−1)∗S(n−2, 1), ...,−b∗S(b−1, 1); (−n, +(n−1)), ..., (−n, +b);−n∗S(b−1, 1); (−n,−b), ..., (−n,−(n−1)); S(b−1, 2).

Therefore, after inverting σ2, the resulting order is

−(n−1)∗S(n−2, 1), ...,−2∗S(1, 1); (−n, +(n−1)), ..., (−n, +2);−n∗S(1, 1); (−n,−2), ..., (−n,−(n−1)); (−1, 0).

Now, if we simply invert the packet P (−n,−1, 0), the resulting order is elementarily equivalent to

S(n− 1, 2);−n ∗ S
−1(n− 1, k − 1).

We can see that the left part of the order S(n, 3) is σn−1, ..., σ2; (−n,−1, 0). �
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Therefore, from the computations above, we obtain the following about the standard order:

S(n, 3) = (−n ∗ S(n− 1, 2)); S(n− 1, 3)

where for J ∈ C(n− 1, 2), (−n∗+J) precedes (−n∗−J) if and only if J = (+j1,−j2) for some j1, j2 > 0. (In

other words, the principal order of each conjugate pair (−n∗+J), (−n∗−J) is positive for all J = (−j1,−j2),

negative for all J = (−j1, +j2).)

Notation 7.9. Given an order ρ, the inversion of the two packets P (−n ∗ J) and P (−n ∗ −J) is denoted

by p−n∗±J(ρ).

7.5. k ≥ 4. Beginning with the first conjugate pair (which has positive principal order), the principal order

of the conjugate pairs alternates between positive and negative.

7.6. Recursion.

Theorem 7.10. For all k ≥ 2, the standard order S(n, k) is given by the following recursion:

S(n, k) = (−n ∗ S(n− 1, k − 1)); S(n− 1, k)

. For k ≥ 4, the principal order of S(n, k) is the repeating pattern +,−,−, +.

Lemma 7.11. The packets of two members J1, J2 ∈ C(n, k) are said to be disjoint if their packets do not

intersect (P (J1) ∩ P (J2) = ∅). This is equivalent to |J1 ∪ J2| ≥ k + 2.

Proof: Let J1 = (i1, .., ik) and J2 = (j1, ..., jk) be two members of C(n, k) whose packets are disjoint.

Then if J1 ∪ J2 ≤ k + 1 there exists some a, b, 1 ≤ a, b ≤ k such that (J1)
∧
ia

= (J2)
∧
jb

. But this is a

contradiction, as we defined J1, J2 as having non-intersecting packets. Therefore, the given statements are

equivalent.

8. Proof

Assumption 8.1. S(n, k−1) = −n∗S(n−1, k−2); S(n−1, k−1), S(n, k) = −n∗S(n−1, k−1); S(n−1, k−1)

(where in the latter case −n∗ denotes a principal order of conjugate pairs with the repeating pattern of

+−−+)

Assumption 8.2. The principal order of ρmin initially allows us to invert the packets of −n ∗ Ji and

−n ∗ −Ji for all Ji < (−(n− 1),−(n− 2), ...,−(n− k + 2), 0).
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Inductive Hypothesis 8.3. S(n, a) is a split order for all a ≤ k

Lemma 8.4. for order ρ ∈ B(n, k) and K ∈ CA(n− 1, k), inversion of P (−n ∗K) and P (−n ∗ −K) (in

whichever order is possible) (a) is the parent order of the pK(ρ∧n), and (b) preserves principal status of each

of the conjugate pairs

8.1. Inversions on P (J) for J ∈ CA. In the case where J ∈ CA(n− 1, k), there are two parents, namely

−n ∗ J and −n ∗ −J . Therefore, the packets of the parents contain: P (−n ∗ J) ∪ P (−n ∗ −J) = {−n ∗

J
∧
ik

, ...,−n ∗ Ji1
∧
, J}∪ {−n ∗ −J

∧
ik

, ...,−n ∗ −Ji1
∧
, J}. Since by the inductive hypothesis the two members

of each conjugate pair are adjacent, we know that the order induced by ρ on −n∗±J is either −n∗J
∧
ik

,−n∗

−J
∧
ik

...,−n ∗ Ji1
∧
,−n ∗ −Ji1

∧
, J or −n ∗ −J

∧
ik

,−n ∗ J
∧
ik

...,−n ∗ −Ji1
∧
,−n ∗ Ji1

∧
, J .

Therefore, by lemma ? the former order is elementarily equivalent to −n ∗ J
∧
ik

, ...,−n ∗ J
∧
i1 ,−n ∗

−J
∧
ik

, ...,−n ∗ −J
∧
i1 , J , and the latter order is elementarily equivalent to −n ∗ −J

∧
ik

, ...,−n ∗ −J
∧
i1 ,−n ∗

J
∧
ik

, ...,−n ∗ J
∧
i1 , J . In the first case, by our hypothesis, the packet P (−n ∗ −J) is in standard order,

and so we can invert it. p−n∗−J(ρ) then induces the following order on −n ∗ ±J : −n ∗ J
∧
ik

, ...,−n ∗

J
∧
i1 , J,−n∗−J

∧
i1 , ...,−n∗−J

∧
ik

. Notice that this new order induces standard order on the packet P (−n∗J),

and so we can invert through this packet to obtain pJ−n∗J pJ−n∗−J (ρ), which now induces the order

J,−n ∗ +J
∧
i1 , ...,−n ∗ +J

∧
ik

,−n ∗ −J
∧
i1 , ...,−n ∗ −J

∧
ik

on −n ∗ ±J . But this order is elementarily equiv-

alent to the following order: −n ∗ J
∧
i1 ,−n ∗ −J

∧
i1 , ...,−n ∗ J

∧
ik

,−n ∗ −J
∧
ik

, J .

By similar reasoning, with the latter order, we can perform the inversions in the opposite order (pJ−n∗−J pJ−n∗J (ρ),

which yields the order p−n∗±J(ρ) = −n∗−J
∧
i1 ,−n∗J∧i1 , ...,−n∗−J

∧
ik

,−n∗J∧ik
, J . Thus, for J ∈ CA(n− 1, k),

the child order induced on p−n∗±J(ρ) by −n ∗±J is the order induced on pJ(ρ∧n) by J .

8.2. Inversions on P (J) for J ∈ CB. In the case where J ∈ CB(n− 1, k), there is only one parent

inversion P (−n∗J), so the inversion of p−n∗±J(ρ) simply inverts the order of all the members of the packet

P (−n ∗ J). Thus, for J ∈ CB(n− 1, k), the child order induced on p−n∗±J(ρ) by −n ∗ ±J is the order

induced on J by pJ(ρ∧n).

Remark 8.5. To recap: From a total order ρ on C(n, k + 1), inverting the parents of J ∈ C(n− 1, k),

namely −n ∗ ±J , alters the principal status of the these members if and only if J ∈ CB. Furthermore,

p−n∗±J(ρ) is always a parent order of pJ(ρ∧n).

Thus, if we begin with the child order ρk−1 = S(n− 1, k− 1) and perform an inversion on it, the parents

of this inversion can be performed on ρk = S(n, k), resulting in a middle part who is the parent of the
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child order after the inversion. We can therefore continue this process, and find that, for each inversion

performed on ρk−1, we can perform its parent on ρk. Then, if we begin with Standard order ρmin = S(n, k) =

(J1...JM ); (J �1...J
�
N ) and invert every packet P (K) until the order becomes ρmax = (J �N ...J

�
1); (JM ...J1), the

series of K gives the Higher Standard order S(n, k+1), whose middle part is the parent order of S(n−1, k).

Corollary 8.6. The series of inversions p−n∗+Kmp−n∗−Kmp−n∗−Km−1p−n∗+Km−1 ...p−n∗−K1p−n∗+K1(ρ)

where Ka ∈ CA(n− 1, k − 1) for each 1 ≤ a ≤ m, ρ ∈ C(n, k) is the parent order of pKm ...pK1(ρ
∧
n).

8.3. Statement of S(n,n-1). The higher Bruhat order induces the following order for the packet of

k = n− 1, which is analogous to the order induced on the members of the packet, P (−n,−(n− 1), ..., 0):

Order induced on packet =

8
>><

>>:

J
∧
ik

, ..., J
∧
i1 , if J ∈ CA(n, k)

−n ∗ ρ; J∧j1 ;−n ∗ ρ
�; (−n, i1, .., ik)∧i1 , .., (−n, i1, .., ik)∧ik

if J ∈ CB(n, k)

where ρ is the order on all such (i1, ..., ik−2, ik−1) where |ia| = ja, for which ik−2, ik−1 have the same sign;

ρ
� is the corresponding order on (i1, ..., ik−2,−ik−1) for which ik−2, ik−1 do not have the same sign.

9. Conjectures

The standard order on each C(n, n− 2) is not uniquely determined. However, once it is defined we have

the standard order on C(n, n− 1). From here we can uniquely deduce C(n + i, n− 1) for any positive i.

Theorem 9.1. For the elements of C(n, n), we find that the first inversion is J1 = (−n + (n− 1) − (n−

2) + ... + 3 − 2 − 1) for n even; (−n + (n− 1) − (n− 2) + ...− 3 + 1 + 2) for n odd. Furthermore, if

the inversions J1, ..., J2k−1 have a common descendent (i1,±i2, ...,±ik) of rank k, the inversion Jn−i+1 is

the inversion Ji with the signs of the i1, ..., ik flipped.
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