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Abstract

The concept of Stanley depth was originally defined for graded modules over commu-
tative rings in 1982 by Richard P. Stanley. However, in 2009 Herzog, Vladiou, and Zheng
found a property, ndepth, of posets analogous to the Stanley depths of certain modules,
which provides an important link between combinatorics and commutative algebra. Due to
this link, there arises the question of what this ndepth is for certain classes of posets.

Because ndepth was only recently defined, much remains to be discovered about it. In
2009, Biro, Howard, Keller, Trotter and Young found a lower bound for the ndepth of the
poset of nonempty subsets of {1, 2, ..., n} ordered by inclusion. In 2010, Wang calculated
the ndepth of the product of chains nk \ 0. However, ndepth has yet to be studied in relation
to many other commonly found classes of posets. We chose to research the properties of
the ndepths of one such well-known class of posets - the posets which consist of non-empty
partitions of sets ordered by refinement, which we denote as Gi.

We use combinatorial and algebraic methods to find the ndepths for small posets in
Gi. We show that for posets of increasing size in Gi, new depth is strictly non-decreasing,
and furthermore we show that ndepth[Gi] ≥ [8i/29] for all i. We also find that for all i,
ndepth[Gi] ≤ i through the proof that ndepth[Gi+1] ≤ ndepth[Gi] + 1.

∗MIT-PRIMES.
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1 Introduction

What is now called the Stanley depth of a Zn graded module over a commutative ring S was first

defined by R. P. Stanley [1] in 1982 in application to the partitioning of simplicial complexes.

Stanley conjectured that the Stanley depth of such a module was always at least the depth of

the module. There exists no general algorithm for computing Stanley depth, however in 2009

Herzog, Vladoiu, and Zheng [2] established a connection between the Stanley depths of a certain

type of module, the monomial ideal, and an analogous property of related posets (partially or-

dered sets). Posets themselves are combinatorial objects with ties and applications to such varied

fields of mathematics as topology, commutative algebra, representation theory, and group the-

ory. The connection between the Stanley depth of monomial ideals and this new depth of posets

provides an important link between combinatorics and commutative algebra. It naturally raises

the question of what the new depth, which we will call ndepth, is for certain well-known classes

of posets. The study of ndepth not only has the potential to answer questions in commutative

algebra, but also may reveal previously unknown combinatorial properties of various classes of

posets. In 2009, Biro, Howard, Keller, Trotter and Young [3] found the new depth for the poset

of nonempty subsets of {1, 2, ..., n} ordered by inclusion to be at least dn/2e and were able to

use this result to prove that the Stanley depth of a monomial ideal (x1, . . . xn) is greater than or

equal to dn/2e. In 2010, Wang [4] showed that the ndepth of the product of chains nk \ 0 is

(n− 1)dk/2e. We now investigate ndepth for the class, which we will call Gi, of posets of non-

empty partitions of a set of size i ordered by refinement. Through combinatorial and algebraic

approaches, we seek to understand properties of ndepth for this class of posets and ultimately to

find values or bounds for ndepth[Gi] for all i.

We will begin with Section 2, in which we will define terms related to ndepth and posets, as

well as other terms that will be used throughout the paper. Then, in Section 3, we will present

our findings. Subsection 3.1 will show the values of ndepth[Gi] for certain i. Subsection 3.2 will

consist of the proofs of certain properties of the sequence ndepth[Gi] as i increases. The lemmas
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that will be proven in Subsections 3.1 and 3.2 will be used in Subsection 3.3 to prove upper and

lower bounds for ndepth[Gi], first for certain values of i, and then for all i. These bounds are

described by the theorems below.

Theorem 1. For all i, ndepth[Gi] ≤ i− 1.

Theorem 2. If ndepth[Gn] = k, then ndepth[G3n] ≥ min(k + n− 1, 3k, d3(n− 1)/2e).

Theorem 3. For all i, d8/29e ≤ ndepth[Gi].

Theorem 3 relies on lower bounds on ndepth[Gi] for certain i established through the use of

Theorem 2. The proofs of these theorems involve the calculation of ndepth[Gi] for small i as

well as the proof that ndepth[Gi] is nondecreasing in i. We will also establish some limits on the

speed at which ndepth[Gi] grows as i increases, on which Theorem 1 is based.

We will then conclude in Section 4 with a discussion of possible directions of further research

into this topic.

2 Definitions, Notation, and Methods

2.1 Posets

A poset (partially ordered set) is a well-known combinatorial object. We denote the relation

between comparable elements of posets as≤. In addition, we use Hasse diagrams to graphically

represent posets. Below, we define concepts related to posets that we will use in this paper.

Definition 1. For any poset, an interval I = [Xa, Xb] is defined to include all elements Xc such

that Xa ≤ Xc ≤ Xb.

Definition 2. An interval partition P of a poset G is a partition of G into non-empty intervals

such that each element of G is in exactly one interval.
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Definition 3. The rank of an element X of G, ρ[X], is defined inductively such that the minimum

value of ρ[X] in every poset is 0, and ρ[X1] = ρ[X2] + 1 if X1 > X2 and there are no elements

X3 such that X1 > X3 > X2.

Definition 4. The depth of an element of G, depth[X], is the maximal length of a chain X >

X1 > X2 > . . . > Xn in G.

Because G is strongly ordered, it is always true that ρ[X] is one less than the length of the

longest chain X > X1 > X2 > . . . > Xn in G; therefore, ρ[X] = depth[X]− 1.

Definition 5. We define a level L of a poset to include all elements of depth L.

Definition 6. A product of two posets A and B is a new poset A × B such that for any pair of

elements x in A and y in B there exists a corresponding element (x, y) in A×B, which satisfies

the property that (x, y) ≤ (x′, y′) in A×B if and only if x ≤ x′ in A and y ≤ y′ in B.

Definition 7. A product of intervals IA × IB, for IA = [x, y] and IB = [x′, y′], is defined as the

interval [(x× x′), (y × y′)].

2.1.1 Refinement

A well-known class of posets is the class of posets of partitions of sets ordered by refinement.

Definition 8. We call the partition of all elements of a set S into non-overlapping subsets a

set-partition.

Definition 9. We define the refinement ordering to order set-partitions such that a set-partition

Xa is finer than Xb if all subsets of Xa are within some subset in Xb.
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We will say if Xa is finer than Xb, then Xb is coarser than Xa and Xa < Xb.

Definition 10. We define a specific class of posets Gi to include the posets which contain, as a

set, all the non-empty set-partitions of a set with i elements, ordered by refinement.

2.2 Ndepth

In [2], Herzog et. al. defined an analog of Stanley depth applicable to posets. Wang [4] called

this new depth ndepth. Ndepth is defined below as it relates to intervals, interval partitions, and

posets.

Definition 11. The ndepth of an interval I = [Xa, Xb], denoted as ndepth[I], is depth[Xb].

Definition 12. The ndepth of an interval partition, ndepth[P ], is defined as:

ndepth[P ] := min[Xa,Xb]∈P depth[Xb] .

Definition 13. The ndepth of a poset, ndepth[G], is defined as:

ndepth[G] := max[P ] ndepth[P ].

2.3 Rotations

Sets can be represented as a series of points around a circle. Each set-partition may be repre-

sented graphically as a grouping of these points, as shown in Figure 1.

(Xb)

(Xa)

Figure 1: Two set-partitions, Xa and Xb, with Xb coarser than Xa.
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Definition 14. We define a rotation of a set-partition, rotn[X], to be a set-partition obtainable

by turning the original partition n times clockwise around the circle.

Definition 15. We define the nth rotation of an interval, I = [Xa, Xb], as [rotn[Xa], rotn[Xb]].

2.4 Classes

We introduce the idea of classes to further categorize set-partitions. Each element in Gi can be

said to belong to exactly one class, determined by the sizes of the subsets in the partition, as

shown in Figure 2.

Definition 16. We define a class (n1, n2, . . . , nk), where n1 ≥ n2 ≥ n3 ≥ . . . ≥ nk, to include

all set-partitions which have subsets of size n1, . . . , nk.

Figure 2: Two set-partitions in class (3,1,1,1). If the left set-partition is X , then the right set-
partition is rot3[X], the rotation of X 3 times clockwise around the circle.

3 Results

3.1 Values of ndepth[Gi]

For values of i up to 4, there are simple solutions for the value of ndepth[Gi], shown in Table 1.

i 1 2 3 4
ndepth[Gi] - 1 1 2

Table 1: Values of ndepth[Gi] for i up to 4

For values of i greater than 4, it is useful to establish a relationship between the properties of

a set-partition and the depth of the corresponding element in Gi.
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Lemma 1. The depth of a set-partition with n subsets in class (s1, s2, . . . , sn) is
n∑

i=1

(si − 1).

Proof. Within the poset of all partitions of a set of size i, the rank of a partition of a set of size i

into n subsets is i− n, and so the depth of such a partition is i− n+ 1. Since the posets Gi are

identical to these posets with the removal of the bottom level, the depth of the partition of the set

of size i into n subsets within Gi is i − n. Because the sum of the numbers of points in all the

subsets adds to the total number of points in the set, i− n = (
n∑

i=1

si)− n =
n∑

i=1

(si − 1).

Lemma 2. We have that ndepth[G5] = 3.

F

D E

B C

A
Classes A,B,C,D,E,F.

(A) x1
[5]

(B) x5
[4,1]

(C) x10
[3,2]

(D) x15
[2,2,1]

(E) x10
[3,1,1]

(F) x10
[2,1,1,1]

Figure 3: Hasse diagram of the relationship between classes of elements in G5.

(C) (C)

(D) (E) (D) (E)

(F) (F)

Figure 4: Structure of intervals of the form [(F ), (C)], as named in Figure 3.
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Proof. Figure 3 represents the relationship between the 6 classes of elements in G5 as a Hasse

diagram.

The ndepth of the poset is n if and only if n is the maximal level for which it is possible to

partition the set so that no interval has a maximal element with level l ≤ n.

A possible partitioning of G5 such that no interval has a maximal element with level l ≤ 3 is

as follows:

Let all elements of the form (F ) be in an interval of the form [(F ), (C)] such that the intervals

shown in Figure 4 and all rotations of each of the intervals shown in Figure 4 are intervals in

the partition of Gi. Also, include all elements of form (D) which are not already within one

of the previously described intervals of the form [(F ), (C)] in an interval of form [(D), (B)].

All elements of the form (D) which are not already within an interval of form [(F ), (C)] are

rotations of one another, and all elements of form (B) are also rotations of each other, so 5

intervals [(D), (B)] may be made containing all remaining elements of form (D) which are non-

overlapping rotations of each other. These intervals are non-overlapping. Each rotation of an

interval overlaps with no other rotation of the interval, and because the two intervals in Figure 4

are not rotations of each other, none of their rotations overlap.

The only remaining element in the poset is element A, which may be placed in an interval by

itself to complete an interval partition of ndepth 3. Thus, ndepth[G5] ≥ 3.

It is impossible to create an interval partition of ndepth 4. There is only one element at level

4, so there can be at most one interval of depth greater than 3, but G5 cannot be partitioned into

only a single interval. Therefore, ndepth[G5] is 3, as shown in Table 2.
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i 1 2 3 4 5
ndepth[Gi] - 1 1 2 3

Table 2: Known values of ndepth[Gi]

3.2 Properties of ndepth[Gi]

Lemma 3. The sequence ndepth[Gi] is non-decreasing in i.

Proof. Suppose for some i that ndepth[Gi] = l. It is sufficient to show that ndepth[Gi+1] ≥ l.

There exists some partition L of Gi such that ndepth[L] = l. We will use the partition L to

construct a partition L′ of Gi+1 such that ndepth[L′] = l. This will imply the result.

Recall that Gi+1 represents partitions of a set of i + 1 points. We pick one of these points to

be a “special point”. We say that a partition g in Gi+1 “contains” the special point if the special

point is in a subset containing 2 or more points.

Consider all the elements of Gi+1 which do not contain the special point. These elements

form a subposet of Gi+1 which is isomorphic to Gi. Therefore, we can use the partition L to

partition this subposet.

What remains is to partition the elements that contain the special point. For all n ≤ i + 1,

let all set-partitions which contain only one subset of size n which includes the special point be

elements at the bottom of an interval. Let the top of each interval be the element containing that

subset of size n as well as one subset containing all the rest of the points.

We claim that these intervals partition the elements that contain the special point and have

depth less than l. All such elements are in some interval, since each contains the special point in

some subset of size n, with some partition of the other points that is coarser than the partition of
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all the other points into a subset but finer than the empty partition of those points. Furthermore

no two such intervals overlap, since each interval contains the special point in a unique subset of

points, and no two elements in different intervals share this subset.

Let L′ be the partition obtained by partitioning Gi+1 into the intervals described above. The

value ndepth[L′] is equal to the minimum of the ndepth of all intervals and of all sub-partitions

in L′. The ndepth of the partition of the elements of Gi+1 which do not contain the special

point l, since the partition of those elements is isomorphic to L. The ndepth of the partition

of the elements which do contain the special point is i − 1, since all the top elements of the

intervals within the partition contain two subsets, and all elements which are set partitions into

two subsets are in level i−1. Since ndepth[L′] is the minimum of the ndepth of its sub-partitions,

ndepth[L′] = min[l, i − 1]. For all i, l ≤ i − 1, since l = ndepth[Gi] and max[ndepth[Gi]] =

i− 1. Thus, ndepth[L′] = l, and if ndepth[Gi] = l, then ndepth[Gi+1] ≥ l.

Lemma 4. If ndepth[Gi] = l − 1, then ndepth[Gi+1] ≤ l.

Proof. It suffices to show that if Gi+1 has ndepth l, then ndepth[Gi] ≥ l − 1.

There is a partition P of Gi+1 with depth l. The set of i+1 points contains the set of i points

as well as a special point. Partition P can include 3 types of intervals: those in which neither the

bottom nor the top element contains the special point, those in which the top element but not the

bottom element contains the special point, and those in which the bottom and top elements both

contain the special point. Construct a partition P ′ of Gi with depth l − 1 as follows.

The intervals in P which do not include the special point may be viewed as intervals in P ′ by

removing the special point from each element within the interval. The ndepth of each of these
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new intervals is at least l.

The intervals in P which contain the special point in the top element but not the bottom ele-

ment contain a set-partition on the level below the top element which resembles the top element,

except in that it does not contain the special point. This element has depth of at least l − 1. In

the intervals in P , all the elements which do not contain the special point are within the interval

between this element and the bottom element. If the special point is removed from each element

in these intervals, they can be seen as intervals in P ′. The ndepths of each of these intervals is at

least l − 1.

The two kinds of intervals described above do not overlap, because the intervals which gen-

erate them do not overlap in P . In addition, all elements in Gi must be contained within these

intervals, since all elements in Gi+1 not containing the special point are in one of the intervals in

P from which these intervals were derived. Therefore these intervals partition Gi completely.

Partition P ′ of Gi has depth l − 1. Thus if ndepth[Gi] = l − 1, then ndepth[Gi+1] ≤ l.

3.3 Bounds for ndepth[Gi]

Theorem 1. For all i ≥ 2, ndepth[Gi] ≤ i− 1.

Proof. We know from Lemma 4 that ndepth[Gi+1] ≤ ndepth[Gi] + 1. Therefore, the greatest

possible difference ndepth[Gia ]−ndepth[Gib ] between two values of i, ib and ia, is ia−ib. Since

we have the initial case that ndepth[G2] = 1, ndepth[Gi] ≤ i− 1 for all i ≥ 2.

Theorem 2. If ndepth[Gn] = k, then ndepth[G3n] ≥ min(k + n− 1, 3k, d3(n− 1)/2e).
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Proof. There is a partition P of Gn which has ndepth k. We will construct a partition P ′ of G3n

such that ndepth[P ′] ≥ min(k+n−1, 3k, d3(n−1)/2e). Let posetsGA,GB, andGC be isomor-

phic to Gn through particular isomorphisms fA, fB, and fC , respectively, and let clusters A, B,

and C be sets of n points, the partitions of which are ordered in GA, GB, and GC , respectively.

Let G3n be the product GA ×GB ×GC .

Call a subset varied if it contains elements in two or three different clusters, and non-varied

if it contains only elements within a single cluster. There exist three types of set-partitions: those

containing only non-varied subsets within one or two of the three clusters, those containing only

non-varied subsets within all three clusters, and those which contain varied subsets.

For every interval I in P , construct an interval I ′ in P ′ as follows: Taking the bottom element

in I , we choose the corresponding element in A by using fA. By the inclusion map this specifies

an element in G3n, which is the bottom element of I ′. Taking the top element in I , we choose

the corresponding element in A by using fA. We add the set of all points in cluster B to get a set

partition of G3n, which is the top element of I ′.

The intervals in P ′ which can be formed the same way I ′ was formed compose a class c1 of

intervals which have a bottom element containing only subsets in cluster A, and a top element

containing clusterB as a subset as well as non-varied subsets in clusterA. BecauseA ∼= B ∼= C,

we can use a method similar to the one described above to construct a class of intervals, c2,

with bottom elements containing only subsets in cluster B and top elements containing a subset

including all of cluster C and subsets in cluster B, through fB. Similarly, we can construct a

class of intervals, c3, with bottom elements containing only subsets in cluster C and top elements

containing a subset including all of cluster A and subsets in cluster C, through fC .
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For every interval I in P , use fA to create an interval with the corresponding elements in GA.

Say that all possible intervals created in this way comprise a partition P ′A of A. Then for every

I use fB to create an interval with the corresponding elements in GB, and let these intervals be

in a partition P ′B of B. Finally for every I use fC to create an interval with the corresponding

elements in GC which is in a parition, P ′C , of C. We can then create a class c4 of intervals which

are the products of all possible combinations of one interval in P ′A, one interval in P ′B, and one

interval in P ′C .

Finally, we create a class c5 of all intervals which have a bottom element including only

varied subsets, and a top element including those same subsets as well as a non-varied subset

containing all the points in A not already contained in a subset, a non-varied subset containing

all the points in B not already contained in a subset, and a non-varied subset containing all the

points in C not already contained in a subset.

All set-partitions which contain only subsets which are non-varied and entirely within one

or two clusters are included within some interval described in c1, c2, or c3. The intervals in c1

include all set-partitions with non-varied subsets in both A and B or in A alone, the intervals

in c2 include all set-partitions with non-varied subsets in both B and C or in B alone, and the

intervals in c3 include all set-partitions with non-varied subsets in both C and A or in C alone.

All set-partitions containing non-varied subsets within each of the three clusters are within

some interval in c4. This is true because A, B, and C are each completely partitioned by P ′A,

P ′B, and P ′C , respectively, and the products of the intervals in the partitions will include all

possible combinations of subsets in each of the partitions, which include all non-empty non-

varied subsets.
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All set-partitions with some positive number of varied subsets will be in an interval with

a bottom element consisting of only those varied subsets and a top element with those varied

subsets as well as subsets containing all of the rest of the points in each cluster. Thus, all set-

partitions in G3n containing a varied subset are within some interval in c5.

All set-partitions in G3n are therefore included in some interval in the 5 classes.

The intervals in each of these classes do not overlap with intervals in other classes. All

intervals in c5 contain only set-partitions including varied subsets. These do not occur in any of

the other classes of intervals; thus, the intervals in c5 do not overlap with the intervals in the other

classes. All intervals in c4 contain only set-partitions with only non-varied subsets in all three

clusters, which also do not occur in any other class. Finally, the intervals in each of c1, c2, and c3

do not overlap with intervals in the other two classes because the set-partitions in the intervals in

each class include non-empty subsets in a unique combination of clusters. Intervals in c1 contain

only set-partitions with subsets in A or A and B; intervals in c2 contain only set-partitions with

subsets in B or B and C; intervals in c3 have only set-partitions with subsets in C or C and A.

The intervals within each class also do not overlap amongst themselves. A set-partition in c1

is within an interval which may be uniquely found through the partition of the points in A within

the set-partition. The partition of A within the set-partition can be mapped to an element in G

through f−1A , and this element in G is within a single interval in G. Since there is a one-to-one

correlation between intervals in G and intervals in class c1 through the method used to generate

c1, it must be true that each element in A, which maps to an element in G, which is in exactly

one interval in G, must be within exactly one interval in the class c1. The same is true for c2 and

c3 by a similar argument.
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No two intervals in c4 share a set-partition, because the interval in which a set-partition in c4

is can be uniquely determined as a product of three intervals. For each of A, B, and C, select the

set of subsets of the set-partition which exist within that cluster, and take the product of the three

intervals, in P ′A, P ′B, and P ′C , respectively, to which these sets of subsets belong.

Finally, no two intervals in c5 contain the same set-partition, because the interval in which

a set-partition in c5 is can be uniquely determined to be the interval with a bottom element

including only the varied subsets which exist within that set-partition.

Thus, we can construct a partition P ′ including all of the intervals in all 5 classes described

above, which will completely partition G3n.

The ndepths of intervals in c1, c2, and c3 are at least k + n − 1. Intervals in c1 have a top

element with subsets in A which have a total depth of at least k, as well as a subset containing

all points in B which has a depth of n− 1, for a total depth of at least k + n− 1. By similarity,

intervals in c2 and c3 also have a top element with depth of at least k + n− 1.

The ndepths of intervals in c4 are at least 3k, since the top element of each of the intervals

includes some set of subsets in each of A, B, and C, each with a total depth of at least k, for a

total depth of at least 3k.

The ndepths of intervals in c5 are at least d3(n − 1)/2e, because there are 3n points in total

in the set, and each top element of an interval in c5 is a complete partition of these points,

with a minimum ndepth of 3n/2, unless the bottom element leaves only one point in a cluster

uncontained. In that case, it is possible to have up to three uncontained points in the top element,

one for each cluster, and the minimum possible ndepth for these top elements is d3(n − 1)/2e,

which is then also the minimum ndepth of the intervals in c5.
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The ndepth of P ′ is therefore at least min(k+n−1, 3k, d3(n−1)/2e). Since ndepth[G3n] ≥

ndepth[P ′], we must have ndepth[G3n] ≥ min(k + n− 1, 3k, d3(n− 1)/2e).

Theorem 3. For all i, ndepth[Gi] ≥ 8i/29.

Proof. From Theorem 2, we know that in the sequence ndepth[Gi], ndepth[G3i] ≥

min(ndepth[Gi] + i− 1, 3 · ndepth[Gi], d3(i− 1)/2e) for all i. Since min(ndepth[Gi] + i− 1,

3·ndepth[Gi], d3(i)−1)/2e) increases as ndepth[Gi] increases, we know that if ndepth[Gi] ≥ d

for some integer d and some i, then ndepth[G3i] ≥ min(d + i − 1, 3d, d3(i − 1)/2e). We will

now show that ndepth[Gi] ≥ 8i/29 for all i, using Theorem 2, Lemma 3, and Lemma 4.

In order to show this linear lower bound, we first establish lower bounds for ndepth[Gi]

for certain i. If we have an integer d such that ndepth[Gi] ≥ d and d ≤ (i − 1)/2, then

since ndepth[G3i] ≥ min(d + i − 1, 3d, d3(i − 1)/2e) and min(d + i − 1, 3d, d3(i − 1)/2e) =

3d in this case, we have that ndepth[G3i] ≥ 3d. Repeating this argument, we can show that

ndepth[G9i] ≥ 9d. Continuing by induction, we see that for all d and i such that ndepth[Gi] ≥ d

and d ≤ (i− 1)/2, and for all integer n, we have that 3n · d ≤ ndepth[Gi·3n].

We know from Table 2 that ndepth[G4] = 2, ndepth[G5] = 3, and ndepth[G6] ≥ 3. There-

fore, we know that ndepth[G12] ≥ 5, ndepth[G15] ≥ 6, and ndepth[G18] ≥ 8. Based on these

values, we know that ndepth[G12·3n ] ≥ 5 · 3n, ndepth[G15·3n ] ≥ 6 · 3n, and ndepth[G18·3n ] ≥

8 · 3n. These values are shown in Figure 5 as points on, respectively, the green line, y = 5x/12;

the orange line, y = 2x/5; and the red line, y = 4x/9. We will call these points bounded points.
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Figure 5: For n an integer, lower bounds for ndepth[Gi] for: i = 3n · 18, in red; i = 3n · 15, in
orange; i = 3n · 12, in green; and all i, in blue. The dotted lines represent restrictions on values
of i between the colored points based on the fact that ndepth[Gi] is non-decreasing and the fact
that ndepth[Gi+1] ≤ ndepth[Gi] + 1.

Because ndepth[Gi] is non-decreasing and ndepth[Gi+1] ≤ ndepth[Gi] + 1, we can place

bounds on the values ndepth[Gi] for intermittent values of i. In general, the lowest ratios of

ndepth[Gi]/i can be found at the intersections of the lines representing these restrictions. Con-

sider, for n an integer, any bounded point (18 · 3n, 8 · 3n), on the red line in Figure 5, and the

next bounded point, which is at (12 · 3n+1, 5 · 3n+1) and on the green line. Because ndepth[Gi]

is non-decreasing, we know that for all i ≥ 18 · 3n, it must be true that ndepth[Gi] ≥ 8 · 3n. All

points satisfying this are above the line ndepth[Gi] ≥ 8 · 3n, which is shown as a horizontal dot-

ted line in Figure 5. Similarly, because ndepth[Gi+1] ≤ ndepth[Gi] + 1 for all i, we must have

ndepth[Gi] ≥ i−7 ·3n+1. All points satisfying this are above the line ndepth[Gi] ≥ i−7 ·3n+1,

which is shown as a dotted line with slope 1 in Figure 5. The intersection of these lines occurs at

(29 · 3n, 8 · 3n), and thus the lowest possible ratio of ndepth[Gi] to i between these two points is

8/29. Using a similar method, we find that the lowest possible ratio of ndepth[Gi] to i between
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a bounded point on the green line and the next point on the orange line is 5/14, and the lowest

possible ratio of ndepth[Gi] to i between a bounded point on the orange line and the next point

on the red line is 3/8. Since 3/8 > 5/14 > 8/29, we can say that for all i, ndepth[Gi] ≥ 8/29.

This linear lower bound is shown in Figure 5 as the blue line.

4 Discussion, Conclusion and Further Work

In this paper we have applied the concept of ndepth to posets, Gi, of set-partitions ordered by

refinement. We developed tools to better understand the properties of set-partitions and interval

partitions, and employed these ideas to find ndepth[Gi] for small values of i and to find bounds

for ndepth[Gi] for all i. These results are significant because they extend the idea of ndepth,

developed in [2] and [3], to a class of posets which it had not formerly been applied to. In a

broader sense, these results are also notable because they expand on the idea of Stanley depth,

which is an important concept linking algebraic topology and combinatorics.

Due to the linear upper and lower bounds that we have obtained, we expect the sequence

ndepth[Gi] to be roughly linear. More specifically, based on the known values of ndepth[Gi],

we expect that ndepth[Gi] ≈ i/2. Theorem 2 seems to further encourage this conclusion, since

k + n− 1, 3k, and d3(n− 1)/2e are most nearly equal when k ≈ n/2, leading to a state where

min(ndepth[Gi] + i− 1, 3 · ndepth[Gi], d3(i− 1)/2e) fluctuates between the three values.

Short of finding the sequence ndepth[Gi] itself, work could be done to narrow the bounds

on the values of ndepth[Gi] for large i. In particular, we are interested in using the reverse of

the process used to prove Theorem 2 to prove an upper bound for ndepth[Gi]. We would like to

show that given a poset Gi·n with known ndepth k, there must be a partition of a smaller poset

Gi with a ndepth of at least some value d. If so, this could show that if ndepth[Gi] ≤ d, then

18



ndepth[Gn·i] ≤ k. Using the same method as in Theorem 3, it would be possible to use this

result to find a lower upper bound for all i.

Other directions for future work include the calculation of ndepth[Gi] for values i ≥ 6, either

with the methods we used in the proof of Lemma 2 or with computational software programs,

and investigation of the properties of the partitions of Gi which yield the maximal ndepth.
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