
The PRIMES 2012 problem set

Dear PRIMES applicant,

This is the PRIMES 2012 problem set. Please send us your solutions
at primes@math.mit.edu by December 1, 2011.

Note that there is a collection of problems called “General math
problems”, as well as collections corresponding to the three tracks of
PRIMES 2012 – “Advanced math”, “Computer science”, and “Com-
putational biology”. Please solve as many problems as you can in the
General math section, and also in the sections corresponding to the
tracks for which you are applying.

You can type the solutions or write them by hand and then scan
them; please save your work as a DOC, PDF, or JPG file.

Please write not only answers, but also proofs (and partial solu-
tions/results/ideas if you cannot completely solve the problem). Be-
sides the admission process, your solutions will be used to decide which
projects would be most suitable for you if you are accepted to PRIMES.

You are allowed to use any resources to solve these problems, except
other people’s help. This means that you can use calculators, comput-
ers, books, and the Internet. However, if you consult books or Internet
sites, please give us a reference.

Note that some of these problems are tricky. We recommend that
you do not leave them for the last day, and think about them, on and
off, over some time (several days). We encourage you to apply if you
can solve at least 50% of the problems. 1

Enjoy!

1We note, however, that there will be many factors in the admission decision
besides your solutions of these problems.
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General math problems
Problem G1. You draw 4 cards from the regular deck of 52 cards.
(a) What is the chance that all of these cards have different denom-

inations (i.e., values)? Represent the answer as a fraction or a decimal
up to the third digit.

(b) What is the chance all of these cards have different denomina-
tions, and in addition there is no neighbors (for example an 8 and a 9,
a 10 and a Jack, or a queen and a king are neighbors)?

Solution. (a) We assume the cards are labeled by 1, 2, 3, 4. There
are 13 · 12 · 11 · 10 ways to choose the denominations. Once that is
done, there are 44 variants. The total number of ways to choose is
52 · 51 · 50 · 49. So the chance is 12 · 11 · 10 · 64/51 · 50 · 49 = 2816/4165.

(b) Sets of 4 denominations with no neighbors correspond to parti-
tions of 9 into 5 ordered parts out of which all except first and last are
≥ 1. So this is the same as partitions of 6 in 5 ordered parts, or of 11
in 5 positive parts. So we get

(
10
4

)
ways, and the answer is

10 · 9 · 8 · 7 · 44/52 · 51 · 50 · 49 = 1536/7735.

Problem G2. Find the remainder of division of 55555
(i.e., 5 to the

power 5555) by 27.
Solution. Remainders of powers of 5 are periodic with period

φ(27) = 33(3 − 1) = 18, so we need to find the remainder of 5555

under division by 18. Remainders under division by 18 are periodic
with period φ(18) = 6. Since 555 is 3 mod 6, the remainder is the same
as for 53, which is 17. Thus, the remainder mod 27 of the number in
question is the same as 517 = 5−1, which is 11.

Problem G3. Count geometrically different (i.e., inequivalent un-
der rotation) colorings in red and blue of the faces of

(a) a cube
(b) a regular octahedron;
Answer: (a) 10 (b) 23.
Problem G4. One chooses at random an integer 1 ≤ N < 10100

(with equal probability for all choices).
(a) What is the chance (to the third digit precision) that the leading

(leftmost) digit of N2 is 1? What is the chance that this digit is 9?
Are they equal to each other?

(b) What are the exact values of these probabilities in the limit when
10100 is replaced by 10k when k grows indefinitely?

Solution. The leading digit of N2 is 1 if N is between 10m/2 and√
2 · 10m/2 for some m. So the probability is about

√
2−1√
10−1

, which is
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about 0.192. The chance that this digit is 9 is about
√

10−3√
10−1

, which is

about 0.075. So the probability of 1 is much greater.
Problem G5. (a) Show that the number

∑∞
n=0

1

2n2 is irrational.

(b) Describe all strictly increasing sequences of nonnegative integers
b0 < b1 < ... for which

∞∑
n=0

1

2bn

is a rational number.
Solution. The binary expansion has to be periodic starting from

some place, so the sequence bn+1− bn should be periodic starting from
some place.
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Advanced math problems
Problem M1. (a) Find the monic polynomial P (x) with integer

coefficients of smallest degree, such that

P (
√

2 +
√

3 +
√

6) = 0.

(b) Let p, q, r be three distinct primes. Find the monic polynomial
P (x) with integer coefficients of smallest degree, such that

P (
√
p+
√
q +
√
r) = 0.

Solution. Suppose x =
√
a+
√
b+ k

√
ab. Then

(x−
√
a−
√
b−k
√
ab)(x+

√
a−
√
b+k
√
ab) = (x−

√
b)2−a(1+k

√
b)2 =

(x2 + b− a− k2ab)− 2
√
b(x+ ak)

So the equation for x is

(x2 + b− a− k2ab)2 − 4b(x+ ak)2 = 0,

or

x4 − 2(a+ b+ k2ab)x2 − 8abkx+ (b− a− k2ab)2 − 4a2bk2 = 0.

For (a), we plug in a = 2, b = 3, k = 1, and get

x4 − 22x2 − 48x− 23 = 0.

To solve (b), let x =
√
p +
√
q +
√
r and w = x2 − (p + q + r) =√

a+
√
b+ k

√
ab for a = 4pq, b = 4pr, k = 1

p
. Plugging this in, we get

w4−4(pq+pr+qr)w2−16pqrw+16(p2r2+q2r2+p2q2−2pqr(p+q+r)) = 0

Problem M2. Let d be a positive integer. Let w be a word in x
and y of length d. Let an(w) be the number of words in the letters x, y
which don’t contain w as a subword.

(a) Find the generating function for an(xd−1y) (where xm is x re-
peated m times). I.e., find the function given by the power series

∞∑
n=0

ant
n,

as a rational function of t.
(b) Show that an(xd) 6= an(xd−1y) for some n, and compute the

generating function of an(xd) (You may first consider the case d = 2).
(c) Classify words w of length d for which an(w) = an(xd−1y) for all

n (i.e. describe, as explicitly as you can, what these words are).
Hint. Try to find recursions for an(w).
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Solution. Let us say that a word w is self-overlapping if w =
ua = bu for some shorter word u. For example, xd for d ≥ 2 is self-
overlapping, and so is xyxy, but xd−1y is not self-overlapping. If w is
not self-overlapping, then it is clear that an(w) satisfies the recursion

an = 2an−1 − an−d, n ≥ 1,

where ai := 0 for i < 0. This means that the generating function for
an(w) is

fd(t) =
1

1− 2t+ td

On the other hand, words without xd are words of the form yi1xj1 ...yinxjnyin+1 ,
where jk ≤ d − 1, so it is easy to see that the generating function for
an(xd−1) is

gd(t) =
1

1− t− t−td

1−td

=
1− td

1− 2t+ td+1
.

In general, if w is self-overlapping of length d, then an > 2an−1− an−d,
since the word wa with missing first letter may contain w as a subword
even if a does not contain w as a subword. So an(w) 6= an(xd−1y). This
solves all parts of the problem.

Problem M3. Let A be a matrix 100× 100 whose entries are 0 or
1, each chosen randomly by flipping a coin (head=0, tail=1).

(a) What is the chance that the determinant of A is odd? (Compute
up to third digit precision).

(b) Let A be an n×n matrix whose entries are determined by flipping
a coin, and pn be the probability that detA is odd. What is the limit
of pn as n→∞?.

Solution. detA is odd if an only if A is invertible mod 2. The
number of such matrices is (2n− 1)(2n− 2)...(2n− 2n−1), so the chance
that the determinant is odd is

pn =
n∏

k=1

(1− 2−k).

The limit is thus

p∞ =
∞∏

k=1

(1− 2−k).

Problem M4. Let (an)n≥0 be a sequence of nonnegative real num-
bers such that

(0.1) an+1 ≤
1

2
(an + an−1).

Show that (an)n≥0 converges.
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Hint: Show that for any n ≥ i− 1, one has an ≤ max(ai, ai−1). Set
a := limsupn→∞an, and deduce that one of any two consecutive terms
of the sequence must be larger than or equal to a. Now assume that
there is a subsequential limit b < a, with ank

converging to b, and show
that the inequality (0.1) cannot hold for for large enough k.

Solution. Let us show that for any n ≥ i − 1, one has an ≤
max(ai, ai−1) by induction in n. Clearly, this holds for n = i − 1, i,
which provides the base of induction. Assume it holds for n − 2 and
n− 1. By the inequality (0.1), it also holds for n, so we are done.

Clearly, an is bounded. Let a = limsupn→∞(an). By the above, one
of any two consecutive terms of the sequence is ≥ a. So if b < a were
another subsequential limit with ank

→ b, then for any ε > 0, for large
enough k we would have had

ank
< (a+ b)/2, a ≤ ank−1 ≤ a+ ε, a ≤ ank+1 ≤ a+ ε,

Thus for ε < (a − b)/2, we would have had ank+1 >
1
2
(ank−1 + ank

), a
contradiction.

Problem M5. In his Care of Magical Creatures class, Hagrid
showed his students magical amoebas. These creatures can inhabit
cells of the first quadrant of an infinite checkerboard, labeled by (i, j),
i, j ∈ Z≥0 (at most one amoeba per cell). If a magical amoeba occupies
a cell (i, j) and the adjacent cells (i+ 1, j) and (i, j + 1) above and to
the right are empty, then it can divide, and the two daughter amoebas
will inhabit the two adjacent cells. Initially, there is just one magical
amoeba living at (0, 0). Is it possible that the amoebas will ever vacate
the entire 3 by 3 square in the corner of the board (i.e., the cells with
0 ≤ i, j ≤ 2)?

Hint. Define a function on the set of configurations of amoebas that
does not change when they divide.

Solution. For a configuration S of amoebas, let f(S) =
∑

s∈S 2−(is+js).
Then f is preserved under division. So for the initial configuration
f = 1, and for the configuration when all cells are inhabited, f =∑

n≥0(n+ 1)2−n = 4. For the 3 by 3 square, f = 3 1
16

, so for its comple-

ment f = 15
16

, which is less than 1. Hence it is < 1 for any configuration
in which the square is empty. So the square can never be vacated.
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Computational biology problems
Problem B1.
A bacteria in a certain population lives one or two days. On the next

day after it is born, it divides with probability p > 0 and survives to
the following day with probability q > 0 (otherwise it dies). On the
second day, it divides with probability r > 0 (otherwise it dies).

(a) Find the condition on p, q, r under which the population will
survive (if the initial number of bacteria is very large). In particular,
determine if it will survive if:

(1) p = q = r = 1/3?
(2) p = 1/3, q = r = 1/2?
(b) Find the average rate of growth or decay of the population (i.e.,

how many times it grows or shrinks per day) as a function of p, q, r.
(c) If the population starts with 1 billion bacteria which are 1 day

old, how soon, on average, will the population become extinct if p =
q = r = 1/4?

Solution. Let an be the number of 1 day old bacteria, and bn be
the number of 2 year old bacteria on the n-the day. Then

bn+1 = qan, an+1 = 2pan + 2rbn.

So

an+1 = 2pan + 2qran−1.

The characteristic equation for this recursion is x2 − 2px − 2qr = 0,
with roots x± = p±

√
p2 + 2qr. It’s clear that |x−| < |x+|, So the rate

of growth or decay of the population is x+. Thus the condition that the
population survives is x+ ≥ 1, i.e. p+

√
p2 + 2qr ≥ 1, or p+ qr ≥ 1/2.

(This can also be seen directly: the transition case is when the recursion
has a constant solution). So in case (1) the population does not survive,
and in case (2) it does.

For p = q = r = 1/4, the rate of decay is (1 +
√

3)/4, which is about
0.683. So the population will become extinct in about− log(109)/ log(0.683),
or approximately 54 days.

Problem B2. Gnomes have n genes. The probability that the k-th
gene is mutated is pk. Mutations are recessive, i.e., a gnome baby is
born sick if a certain gene is mutated in both parents. What is the
probability that a gnome baby will be born healthy, if all mutations
happen independently?

Solution: The chance that the the k-th gene is mutated in both
parents is p2

k, so the probability that it does not happen is 1 − p2
k. So
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the probability of a healthy baby is
n∏

k=1

(1− p2
k).
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