
The PRIMES 2012 problem set

Dear PRIMES applicant,

This is the PRIMES 2012 problem set. Please send us your solu-
tions as part of your PRIMES application by December 1, 2011. For
complete rules, see http://web.mit.edu/primes/apply.shtml.

Note that this set contains four sections: “General math problems”
(for all three tracks) and three sections corresponding to the three
research tracks of PRIMES 2012 (“Advanced math”, “Computer sci-
ence”, and “Computational biology”). Please solve as many problems
as you can in the General math section, and also in the section(s)
corresponding to the track(s) for which you are applying.

You can type the solutions or write them up by hand and then scan
them. Please attach your solutions to the application as a PDF (pre-
ferred), DOC, or JPG file. The name of the attached file must start
with your last name, for example, “smith-solutions.” Include your full
name in the heading of the file.

Note that there are separate submission instructions for the Com-
puter Science track. See these instructions in the computer science
section.

Please write not only answers, but also proofs (and partial solu-
tions/results/ideas if you cannot completely solve the problem). Be-
sides the admission process, your solutions will be used to decide which
projects would be most suitable for you if you are accepted to PRIMES.

You are allowed to use any resources to solve these problems, except
other people’s help. This means that you can use calculators, comput-
ers, books, and the Internet. However, if you consult books or Internet
sites, please give us a reference.

Note that some of these problems are tricky. We recommend that
you do not leave them for the last day, and think about them, on and
off, over some time (several days). We encourage you to apply if you
can solve at least 50% of the problems. 1

Enjoy!

1We note, however, that there will be many factors in the admission decision
besides your solutions of these problems.
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General math problems
Problem G1. You draw 4 cards from the regular deck of 52 cards.
(a) What is the chance that all of these cards have different denom-

inations (i.e., values)? Represent the answer as a fraction or a decimal
up to the third digit.

(b) What is the chance all of these cards have different denomina-
tions, and in addition there is no neighbors (for example an 8 and a 9,
a 10 and a Jack, or a king and an ace are neighbors, but a 7 and a 9,
or an ace and a 2 are not neighbors)?

Solution. (a) We assume the cards are labeled by 1, 2, 3, 4. There
are 13 · 12 · 11 · 10 ways to choose the denominations. Once that is
done, there are 44 variants. The total number of ways to choose is
52 · 51 · 50 · 49. So the chance is 12 · 11 · 10 · 64/51 · 50 · 49 = 2816/4165.

(b) Sets of 4 denominations with no neighbors correspond to parti-
tions of 9 into 5 ordered parts out of which all except first and last are
≥ 1. So this is the same as partitions of 6 in 5 ordered parts, or of 11
in 5 positive parts. So we get

(
10
4

)
ways, and the answer is

10 · 9 · 8 · 7 · 44/52 · 51 · 50 · 49 = 1536/7735.

Problem G2. Find the remainder of division of 55555
(i.e., 5 to the

power 5555) by 27.
Solution. Remainders of powers of 5 are periodic with period

φ(27) = 33(3 − 1) = 18, so we need to find the remainder of 5555

under division by 18. Remainders under division by 18 are periodic
with period φ(18) = 6. Since 555 is 3 mod 6, the remainder is the same
as for 53, which is 17. Thus, the remainder mod 27 of the number in
question is the same as 517 = 5−1, which is 11.

Problem G3. Count geometrically different (i.e., inequivalent un-
der rotation) colorings in red and blue of the faces of

(a) a cube
(b) a regular octahedron;
Answer: (a) 10 (b) 23.
Problem G4. One chooses at random an integer 1 ≤ N < 10100

(with equal probability for all choices).
(a) What is the chance (to the third digit precision) that the leading

(leftmost) digit of N2 is 1? What is the chance that this digit is 9?
Are they equal to each other?

(b) What are the exact values of these probabilities in the limit when
10100 is replaced by 10k when k grows indefinitely?

Solution. The leading digit of N2 is 1 if N is between 10m/2 and√
2 · 10m/2 for some m. So the probability is about

√
2−1√
10−1

, which is
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about 0.192. The chance that this digit is 9 is about
√

10−3√
10−1

, which is

about 0.075. So the probability of 1 is much greater.
Problem G5. (a) Show that the number

∑∞
n=0

1

2n2 is irrational.

(b) Describe all strictly increasing sequences of nonnegative integers
b0 < b1 < ... for which

∞∑
n=0

1

2bn

is a rational number.
Solution. The binary expansion has to be periodic starting from

some place, so the sequence bn+1− bn should be periodic starting from
some place.
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Advanced math problems
Problem M1. (a) Find the polynomial P (x) with integer coeffi-

cients and leading coefficient 1 of smallest degree, such that

P (
√

2 +
√

3 +
√

6) = 0.

(b) Let p, q, r be three distinct primes. Find the polynomial P (x)
with integer coefficients and leading coefficient 1 of smallest degree,
such that

P (
√
p+
√
q +
√
r) = 0.

Solution. Suppose x =
√
a+
√
b+ k

√
ab. Then

(x−
√
a−
√
b−k
√
ab)(x+

√
a−
√
b+k
√
ab) = (x−

√
b)2−a(1+k

√
b)2 =

(x2 + b− a− k2ab)− 2
√
b(x+ ak)

So the equation for x is

(x2 + b− a− k2ab)2 − 4b(x+ ak)2 = 0,

or

x4 − 2(a+ b+ k2ab)x2 − 8abkx+ (b− a− k2ab)2 − 4a2bk2 = 0.

For (a), we plug in a = 2, b = 3, k = 1, and get

x4 − 22x2 − 48x− 23 = 0.

To solve (b), let x =
√
p +
√
q +
√
r and w = x2 − (p + q + r) =√

a+
√
b+ k

√
ab for a = 4pq, b = 4pr, k = 1

p
. Plugging this in, we get

w4−4(pq+pr+qr)w2−16pqrw+16(p2r2+q2r2+p2q2−2pqr(p+q+r)) = 0

Problem M2. Let d be a positive integer. Let w be a word in letters
x and y of length d (e.g., xxyxy is a word of length 5). Let an(w) be the
number of words in x, y which don’t contain w as a subword (i.e., the
number of words which are not of the form awb where a, b are words).

(a) Find the generating function for an(xd−1y) (where xm is x re-
peated m times). I.e., find the function given by the power series

∞∑
n=0

ant
n,

as a rational function of t.
(b) Show that an(xd) 6= an(xd−1y) for some n, and compute the

generating function of an(xd) (You may first consider the case d = 2).
(c) Classify words w of length d for which an(w) = an(xd−1y) for all

n (i.e. describe, as explicitly as you can, what these words are).
Hint. Try to find recursions for an(w).
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Solution. Let us say that a word w is self-overlapping if w =
ua = bu for some shorter word u. For example, xd for d ≥ 2 is self-
overlapping, and so is xyxy, but xd−1y is not self-overlapping. If w is
not self-overlapping, then it is clear that an(w) satisfies the recursion

an = 2an−1 − an−d, n ≥ 1,

where ai := 0 for i < 0. This means that the generating function for
an(w) is

fd(t) =
1

1− 2t+ td

On the other hand, words without xd are words of the form yi1xj1 ...yinxjnyin+1 ,
where jk ≤ d − 1, so it is easy to see that the generating function for
an(xd−1) is

gd(t) =
1

1− t− t−td

1−td

=
1− td

1− 2t+ td+1
.

In general, if w is self-overlapping of length d, then an > 2an−1− an−d,
since the word wa with missing first letter may contain w as a subword
even if a does not contain w as a subword. So an(w) 6= an(xd−1y). This
solves all parts of the problem.

Problem M3. Let A be a matrix 100× 100 whose entries are 0 or
1, each chosen randomly by flipping a coin (head=0, tail=1).

(a) What is the chance that the determinant of A is odd? (Compute
up to third digit precision).

(b) Let A be an n×n matrix whose entries are determined by flipping
a coin, and pn be the probability that detA is odd. What is the limit
of pn as n→∞?

Solution. detA is odd if an only if A is invertible mod 2. The
number of such matrices is (2n− 1)(2n− 2)...(2n− 2n−1), so the chance
that the determinant is odd is

pn =
n∏

k=1

(1− 2−k).

The limit is thus

p∞ =
∞∏

k=1

(1− 2−k).

Problem M4. Let (an)n≥0 be a sequence of nonnegative real num-
bers such that

an+1 ≤
1

2
(an + an−1). (∗)

Show that (an)n≥0 converges.
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Hint: Show that for any n ≥ i− 1, one has an ≤ max(ai, ai−1). Set
a := limsupn→∞an, and deduce that one of any two consecutive terms
of the sequence must be larger than or equal to a. Now assume that
there is a subsequential limit b < a, with ank

converging to b, and show
that the inequality (*) cannot hold for large enough k.

Solution. Let us show that for any n ≥ i − 1, one has an ≤
max(ai, ai−1) by induction in n. Clearly, this holds for n = i − 1, i,
which provides the base of induction. Assume it holds for n − 2 and
n− 1. By inequality (*), it also holds for n, so we are done.

Clearly, an is bounded. Let a = limsupn→∞(an). By the above, one
of any two consecutive terms of the sequence is ≥ a. So if b < a were
another subsequential limit with ank

→ b, then for any ε > 0, for large
enough k we would have had

ank
< (a+ b)/2, a ≤ ank−1 ≤ a+ ε, a ≤ ank+1 ≤ a+ ε,

Thus for ε < (a − b)/2, we would have had ank+1 >
1
2
(ank−1 + ank

), a
contradiction.

Problem M5. In his Care of Magical Creatures class, Hagrid
showed his students magical amoebas. These creatures can inhabit
cells of the first quadrant of an infinite checkerboard, labeled by (i, j),
i, j ∈ Z≥0 (at most one amoeba per cell). If a magical amoeba occupies
a cell (i, j) and the adjacent cells (i+ 1, j) and (i, j + 1) above and to
the right are empty, then it can divide, and the two daughter amoebas
will inhabit the two adjacent cells (while the cell (i, j) becomes vacant).
Initially, there is just one magical amoeba living at (0, 0). Is it possible
that the amoebas will ever vacate the entire 3 by 3 square in the corner
of the board (i.e., the cells with 0 ≤ i, j ≤ 2)?

Hint. Define a function on the set of configurations of amoebas that
does not change when they divide.

Solution. For a configuration S of amoebas, let f(S) =
∑

s∈S 2−(is+js).
Then f is preserved under division. So for the initial configuration
f = 1, and for the configuration when all cells are inhabited, f =∑

n≥0(n+ 1)2−n = 4. For the 3 by 3 square, f = 3 1
16

, so for its comple-

ment f = 15
16

, which is less than 1. Hence it is < 1 for any configuration
in which the square is empty. So the square can never be vacated.
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Computational biology problems
Problem B1.
A bacteria in a certain population lives one or two days. On the next

day after it is born, it divides with probability p > 0 and survives to
the following day with probability q > 0 (otherwise it dies). On the
second day, it divides with probability r > 0 (otherwise it dies).

(a) Find the condition on p, q, r under which the population will
survive (if the initial number of bacteria is very large). In particular,
determine if it will survive if:

(1) p = q = r = 1/3?
(2) p = 1/3, q = r = 1/2?
(b) Find the average rate of growth or decay of the population (i.e.,

how many times it grows or shrinks per day) as a function of p, q, r.
(c) If the population starts with 1 billion bacteria which are 1 day

old, how soon, on average, will the population become extinct if p =
q = r = 1/4?

Solution. Let an be the number of 1 day old bacteria, and bn be
the number of 2 year old bacteria on the n-the day. Then

bn+1 = qan, an+1 = 2pan + 2rbn.

So

an+1 = 2pan + 2qran−1.

The characteristic equation for this recursion is x2 − 2px − 2qr = 0,
with roots x± = p±

√
p2 + 2qr. It’s clear that |x−| < |x+|, So the rate

of growth or decay of the population is x+. Thus the condition that the
population survives is x+ ≥ 1, i.e. p+

√
p2 + 2qr ≥ 1, or p+ qr ≥ 1/2.

(This can also be seen directly: the transition case is when the recursion
has a constant solution). So in case (1) the population does not survive,
and in case (2) it does.

For p = q = r = 1/4, the rate of decay is (1 +
√

3)/4, which is about
0.683. So the population will become extinct in about− log(109)/ log(0.683),
or approximately 54 days.

Problem B2. PRIMES student Mary is working on a computa-
tional biology project, generating random DNA strings, 10 nucleotides
long (the nucleotides A,C,G,T in each position are chosen indepen-
dently and randomly, with probability 1/4 each). Being annoyed by
her 12-year-old sister’s loud music, Mary deletes all strings that contain
a sequence GAGA in them.

(a) What percentage of strings, on average, will Mary delete? (com-
pute with precision 0.1%).
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(b) What percentage of the strings, on average, will Mary delete, if
the string consists of 20 nucleotides?

Hint. Find a recursion for the number aN of GAGA-free strings of
length N . You can also solve (a) directly, and use a computer to solve
(b).

Solution. The numbers aN satisfy the recursion

an = 4an−1 − an−4 + an−6 − an−8 + ...

so their generating function is

f(t) =
1 + t2

1− 4t+ t2 − 4t3 + t4
,

and a10 = 1021231, a20 = 1031703489136. So Mary will delete about
2.6% of strings in the first case, and about 6.2% in the second case.

Problem B3. When DNA strands are left unattended, they want to
pair up. There are four types of nucleotides: A, C, G and T. So math-
ematically the fragment of DNA is a string in the alphabet A, C, G, T.
These nucleotides are matched to each other. When two DNA strands
pair up, A on one strand always matches T and C matches G. So it is
logical that if there are two complementary DNA pieces on the same
fragment, they will find each other and pair up. They form a hydrogen
bond. For example, a piece AACGT matches perfectly another piece
TTGCA. Suppose a substring of DNA consists of a piece AACGT and
somewhere later the reverse of the match: ACGTT. Such a string is
called an inverted repeat. The DNA fragment we mentioned contains a
string AACGT****ACGTT, where stars denote any nucleotides. Two
pieces AACGT and ACGTT are complementary and not too far from
each other in space. So it is easy for them to find each other and to
bond to form a so-called stem-loop or a hairpin structure. For some
particular loops the orientation in space becomes awkward and one of
the nucleotides rips off, this might lead to a mutation and an illness.

Suppose a DNA strand consists of 100 million nucleotides. Sup-
pose a strand is formed randomly from nucleotides and A appear with
probability a, C with probability c, G with probability g, T with prob-
ability t. (a) Find the probability that the strand contains a piece
AACGTGTGGACGTT, that can form a hairpin structure as first five
nucleotides can pair up with the last five. Provide the formula and
calculate the answer if a = c = g = t = 1/4. (b) Find the probability
that the strand contains a piece *****GTGG*****, that can form a
hairpin structure as first five nucleotides can be any nuclaotides, by
they have to pair up with the last five to form a hairpin structure that
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is responsible for Sickle-cell anemia. Provide the formula and calculate
the answer if a = c = g = t = 1/4.

Solution
(a) the probability p that the given word appears in a particular

place is a3c2g5t4. So the probability that it doesn’t appear is 1 − p.
The probability that there are no such structures is (1− p)N , where N
is the number of nucleotides.

(b) The probability that the middle is GTGG is g3t. The probability
that two fixed places pair up is 2ac + 2gt. We need to pair up in five
places so the probability that such a structure appears in a particular
place is (2ac+ 2gt)5g3t. Finish as in a).

Problem B4.
Find the first 500 digits of Pi online and write a program to convert

them to letters of the alphabet. Please see the explanation in problems
C2 and C3.

Problem B5. A test consists of 5 true or false questions. After
the test (answering all 5 questions), John gets his score: the number
of correct answers. John doesn’t know any answer, but is allowed to
take the same test several times. Can John work out a strategy that
guarantees that he can figure out all the answers

(a) after the 5th attempt?
(b) after the 4th attempt?
(c) Find the smallest number of attempts needed if the test has 8

questions
In (b) and especially (c), you may find a computer helpful.
Solution. For 5 attempts: First we ask the base question. Then we

change the first four answers one by one. Hence, we know the first four
answers. The fifth answer is calculated because we know the total.
For 4 attempts. First we ask the base test. Suppose questions are
ABCDE. Next I describe what we change relative to the base test.
The next three tests are: DE, BD, CD. If we sum the results of the
last three tests we get the parity of BCDE. Hence, we know the parity
of A, hence we know A. Hence we know the number of correct answers
in BCDE. Hence, we know the number of correct answers in every pair
of questions. It is impossible for all the numbers of correct answers to
be 1. But, is the number is 0 or 2, we know each of them, so we can
resolve the rest. The proof that we can’t do better in three tests. It
doesn’t matter in which order we do tests. Let’s call the first test the
base test. Changing four answers for the next test gives the same info
as changing one. The same for two and three. So, we consider changing
one or two. Also, we shouldn’t do the same test twice. Suppose the
answer for the first test is 2. So up to a permutation the next two
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questions could be: 1) A, B, we can’t resolve CDE, if it has one or
two correct. 2) A, BC, if the answer to BC is 1, we can’t resolve it.
3) A, AB, we can’t resolve CDE. 4) AB, CD, if the answer to AB is
1, we can’t resolve it. 5) AB, AC, if DE has one correct answer, we
can’t resolve it.

In (c) the answer should be 6.
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