Global positioning of interphase chromosomes mediated by local chromatin interactions

Ashwin Murali Second Annual MIT PRIMES Conference, May 20, 2012

Chromosomes have preferential positions in the nucleus

Bolzer et al., Plos Biol, 2005

-- gene-rich chromosomes are toward the center of the nucleus --gene-poor chromosomes are towards the nuclear periphery.

Hi-C measures spatial contacts between chromosomes and obtains a contact map

Lieberman-Aiden and van Berkum et al., Science, 2009

Hi-C identifies two genomic compartments

-- gene-rich regions interact more with other gene-rich regions, and less with genepoor regions

-- gene-poor regions interact more with other gene-poor regions, and less with generich regions

Lieberman-Aiden and van Berkum et al., Science, 2009

Can preferential interaction between chromosomal loci determine the global positioning of whole chromosomes?

-- Like domains attract while different domains repel.

-- Red represents gene-rich loci while blue represents gene-poor loci

Can preferential interaction between chromosomal loci determine the global positioning of whole chromosomes?

Polymer simulation initialized with postmitotic-like chromosome conformations

Simulating the chromosomes within the nucleus

We let the chromosomes decondense within the spherical nucleus allowing for intermolecular forces and domain interactions.

Observations

- -- Spiral starting conformations quickly decondense after the start of the simulation
- -- Non-overlapping initial conformations are crucial for obtaining meaningful simulations
- -- Nucleus must be sufficiently large for a given number of monomers
- -- Randomization is key to avoid starting conformation bias in simulations

Future Directions

- -- Explore different functional forms of the potential energy
- Calibrate simulated contact probabilities between polymers with experimental Hi-C data on chromosomal contacts.
- -- Measure radial distribution of simulated chromosomes.
- -- Investigate other factors that may contribute to chromosomal positioning
- -- Contrast with previous constraint based models of chromosomal positioning.

Thanks to our mentors, Geoffrey Fudenberg, Maxim Imakaev, Professor Leonid Mirny and MIT PRIMES