Pat Long, Jesse Klimov Mentor: Jean Yang

Characterizing Social Networks and their Queries

Second Annual MIT PRIMES Conference, May 20, 2012

Current Problems with Social Network Programming

- » Data leaks
 - > Complex policies data can slip through
- » Programmer Frustration
 - > Difficult to manage sensitive data

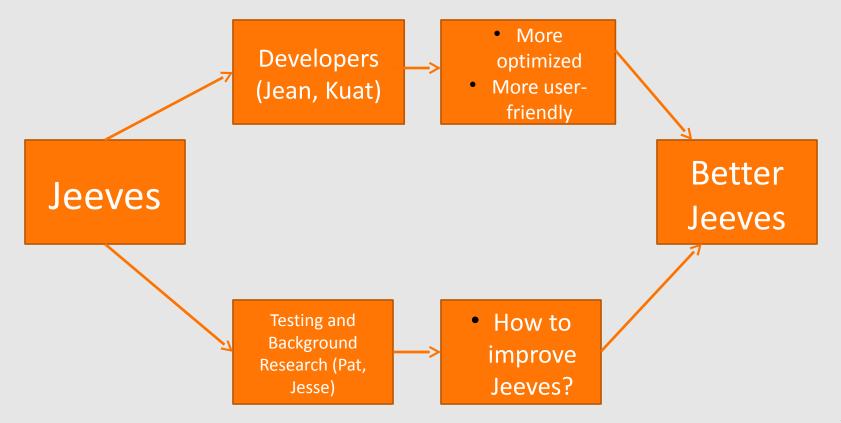
Characteristics of Social Networks

- » High clustering coefficient
- » Very tightly linked
- » Hubs
- » 80/20 rule
- » Scale-free
- » Small diameter

Jeeves – A Proposed Solution

- » Scala library for managing sensitive data
- » Adds policies and level variables
- » Z3 Solver (Microsoft research project)

///Error: Constraint Environment
///Eval: False
////Access Denied
////This will be reported

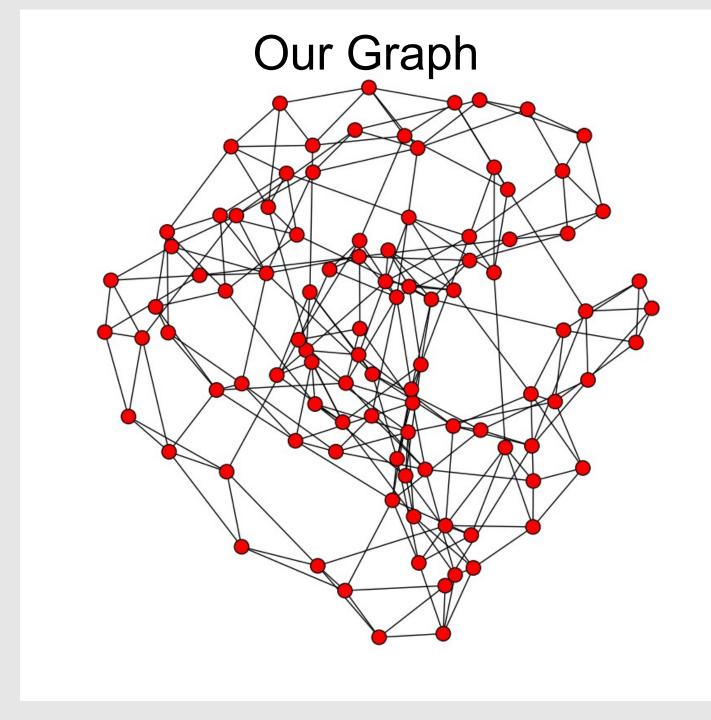

Project Goals – Social Network Simulation

- » Testing Jeeves's capabilities for real world applications
- » Many simplifying assumptions
 - > Jeeves is still at an early stage
- » Queries
 - > A few key categories
 - > Many constraints per query

Our Project

- » Designed a framework to demonstrate how Jeeves can manage privacy policies
- » Generated and analyzed social networks
 - > Verified realistic properties
- » Ran queries over these networks

Overview of the Jeeves Project



Progress and Results (Design)

- » Created a toy social network
 - >Contains mock users with enough properties to test out the effectiveness of Jeeves as a tool in real-world situations
- » Loaded n users and performed simple tests on each of them

Network Generation

- » We used NetworkX, a Python Package to generate network graphs
 - Developed by Los Alamos National Laboratory
 - Chose it because it is written in python, an easy language for rapid development
- » Used Newman-Watts-Strogatz algorithm for generating realistic social networks
- » Generated graph with 100 nodes and ~5 edges per node

>

Are the Graphs Realistic?

- » We looked at different graphs metrics to ensure out graphs were realistic.
 - > Directedness: Not directed
 - > Degree Distribution (Scale-free network)
 - > Clustering Coefficient: C = 0.343
 - > Small-World Phenomenon

+ Diameter = 7 (n = 100)

Progress and Results (Testing)

- » Aimed at designing a semi-realistic infrastructure to confirm hypotheses about constraint complexity and performance
 - Created testing daemon to allow for easily running a variety of tests
- » ~3/4 second to solve levels with non-trivial policies (not constant)
- » 606 constraints loaded each time
 - > Jeeves creates many constraints to represent the heap as Z3 does not support advanced datatypes

Future Plans

- » Create daemon to run tests against
 - > Self sufficient runs on server where we can connect to it and tell it to execute tests
- » Add weighted distribution of query activities for more realistic tests
 - > Periodically, each user would randomly pick a new query activity from table of typical user queries (see next page)
- » Perform tests on larger social networks (500,1000,... users)

Distribution of Queries in Social Networks (Simplified)

Universal search	4.5%
Browse profiles	38.5%
Browse home page	36.3%
List of friends	12.3%
Browse friend updates	3.0%
Browse member communities	2.8%
Profile editing	2.6%

Future Plans (contd...)

- » Test corner cases
- » Compare the efficiency of the Jeeves model to other models (also run networks with a size more comparable to that of a small real social network)
- » Extend tests to more realistically model a social network
 - > Simulating typical user actions on a social network
 - > Time these actions to resemble user activity on a normal social network
 - > Add more complex rules and queries

Conclusion

- » Currently, queries are just tests to see the relationship between expected scaling and actual scaling
- » We perform these queries on a simulated social network
- » Currently, Jeeves is too slow to manage a social network's data privacy
 - > Jeeves is currently unoptimized
 - >Needs to balance its usage of the Z3 solver (slow, but can handle complex policies) with evaluating policies in Scala (faster, but can't handle as complex policies)

Acknowledgements

- » Our mentor, Jean Yang, for guiding us through the project
- » Jean Yang and Kuat Yessenov for developing the Jeeves library
- » Dr. Khovanova and other PRIMES staff for organizing the PRIMES program
- » Our parents for providing transportation to and from weekly meetings