Degrees of Regularity of Colorings of the Integers

Alan Zhou

MIT PRIMES

May 19, 2012
Original problem: For a given homogeneous equation, how many colors can be used to color the nonzero integers, or the appropriate ring, so that all such colorings give a monochromatic solution?
Original problem: For a given homogeneous equation, how many colors can be used to color the nonzero integers, or the appropriate ring, so that all such colorings give a monochromatic solution?

- (Schur, 1916) Schur’s theorem
Background

Original problem: For a given homogeneous equation, how many colors can be used to color the nonzero integers, or the appropriate ring, so that all such colorings give a monochromatic solution?

- (Schur, 1916) Schur’s theorem
- (van der Waerden, 1927) van der Waerden’s theorem
Original problem: For a given homogeneous equation, how many colors can be used to color the nonzero integers, or the appropriate ring, so that all such colorings give a monochromatic solution?

- (Schur, 1916) Schur’s theorem
- (van der Waerden, 1927) van der Waerden’s theorem
- (Rado, 1933) Rado’s theorem
We consider the general equation

\[a_1 x_1 + a_2 x_2 + \cdots + a_k x_k = n \]
We consider the general equation

\[a_1 x_1 + a_2 x_2 + \cdots + a_k x_k = n \]

The equation is *regular under a coloring* if there is a solution \(x_1, x_2, \ldots, x_n \) in which \(x_1, x_2, \ldots, x_n \) all have the same color. Such a solution is said to be monochromatic.
We consider the general equation

\[a_1 x_1 + a_2 x_2 + \cdots + a_k x_k = n \]

The equation is \textit{regular under a coloring} if there is a solution \(x_1, x_2, \ldots, x_n \) in which \(x_1, x_2, \ldots, x_n \) all have the same color. Such a solution is said to be monochromatic.

For example,

\[x + y = 2z \]

is regular under every coloring.
Definitions and Examples

The equation is m-regular if for all colorings c with m colors, the equation is regular under c.

Intuitively, the smaller the value of m, the more likely it is for an equation to be m-regular.

The equation is regular if it is m-regular for all m.

Examples:

$x + y = z$ is regular: 1 2 3 4 5

$x + 2y = 4z$ is 2-regular, but not 3-regular.

1 2 3 4 5 6 7 8 9 . . .
Definitions and Examples

The equation is \textit{m-regular} if for all colorings \(c\) with \(m\) colors, the equation is regular under \(c\).

- Thus, every equation is 1-regular.

\[x + y = z \] is regular: 1 2 3 4 5
\[x + 2y = 4z \] is 2-regular, but not 3-regular.

1 2 3 4 5 6 7 8 9 . . .
Definitions and Examples

The equation is \textit{m-regular} if for all colorings \(c\) with \(m\) colors, the equation is regular under \(c\).

- Thus, every equation is 1-regular.
- Intuitively, the smaller the value of \(m\), the more likely it is for an equation to be \(m\)-regular.
Definitions and Examples

The equation is m-regular if for all colorings c with m colors, the equation is regular under c.

- Thus, every equation is 1-regular.
- Intuitively, the smaller the value of m, the more likely it is for an equation to be m-regular.

The equation is regular if it is m-regular for all m.
Definitions and Examples

The equation is \textit{m-regular} if for all colorings \(c \) with \(m \) colors, the equation is regular under \(c \).

- Thus, every equation is 1-regular.
- Intuitively, the smaller the value of \(m \), the more likely it is for an equation to be \(m \)-regular.

The equation is \textit{regular} if it is \(m \)-regular for all \(m \).

Examples:
- \(x + y = z \) is regular: 1 2 3 4 5/5
The equation is *m-regular* if for all colorings *c* with *m* colors, the equation is regular under *c*.

- Thus, every equation is 1-regular.
- Intuitively, the smaller the value of *m*, the more likely it is for an equation to be *m*-regular.

The equation is *regular* if it is *m*-regular for all *m*.

Examples:

- *x + y = z* is regular: 1 2 3 4 5/5
- *x + 2y = 4z* is 2-regular, but not 3-regular.

 1 2 3 4 5 6 7 8 9 ...
More Examples

- The equation $x_1 + x_2 + x_3 = 4x_4$ is 3-regular but not 4-regular.

 \[1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ \ldots\]
The equation $x_1 + x_2 + x_3 = 4x_4$ is 3-regular but not 4-regular.

In fact, there are infinitely many colorings with no monochromatic solutions.
More Examples

- The equation $x_1 + x_2 + x_3 = 4x_4$ is 3-regular but not 4-regular.

 1 2 3 4 5 6 7 8 9 10 \ldots

 In fact, there are infinitely many colorings with no monochromatic solutions.

- The equation $x_1 + 2x_2 + 3x_3 - 5x_4 = 0$ is completely regular.
Goals

- Determine degrees of regularity for various other equations
Goals

- Determine degrees of regularity for various other equations
- Characterize equations that are regular under certain colorings
Lemma

If an equation is regular under the periodic coloring with period p and p distinct colors, it is regular under all colorings of period p.
Lemma

If an equation is regular under the periodic coloring with period p and p distinct colors, it is regular under all colorings of period p.

- This behavior is expected: replace does not change regularity, especially reducing the number of colors.
Lemma

All homogeneous linear equations are regular under any periodic coloring of any period p.
Lemma

All homogeneous linear equations are regular under any periodic coloring of any period p.

Idea: Find a solution, and since the equation is homogeneous, multiply everything by p.
Shift non-homogeneous equation: \(y_i = x_i + \gamma. \)

\[
a_1 y_1 + a_2 y_2 + \cdots + a_k y_k = n + S \gamma,
\]

where \(S \) is the sum of the coefficients: \(S = a_1 + a_2 + \cdots + a_k. \)
Shift non-homogeneous equation: $y_i = x_i + \gamma$.

$$a_1 y_1 + a_2 y_2 + \cdots + a_k y_k = n + S \gamma,$$

where S is the sum of the coefficients: $S = a_1 + a_2 + \cdots + a_k$.

Lemma

With respect to periodic colorings this equation is equivalent to the main equation.
Theorem

The main equation is regular under the coloring of period p with p distinct colors if and only if there exists γ such that $n \equiv S\gamma \pmod{p}$.
The main equation is regular under the coloring of period \(p \) with \(p \) distinct colors if and only if there exists \(\gamma \) such that \(n \equiv S\gamma \pmod{p} \).

The main equation is regular if and only if \(S \) divides \(n \).
For any periodic coloring of period \(p \), the main equation has a monochromatic solution if and only if there is one in \(\mathbb{Z}/p\mathbb{Z} \).
Discussion

For any periodic coloring of period p, the main equation has a monochromatic solution if and only if there is one in $\mathbb{Z}/p\mathbb{Z}$.

- This suggests an analogous result for other algebraic structures colored by equivalence class.
For any periodic coloring of period p, the main equation has a monochromatic solution if and only if there is one in $\mathbb{Z}/p\mathbb{Z}$.

- This suggests an analogous result for other algebraic structures colored by equivalence class.
- This also presents an inexact criterion for regularity under a periodic coloring with less than p colors.
For any periodic coloring of period p, the main equation has a monochromatic solution if and only if there is one in $\mathbb{Z}/p\mathbb{Z}$.

- This suggests an analogous result for other algebraic structures colored by equivalence class.
- This also presents an inexact criterion for regularity under a periodic coloring with less than p colors.

Conjecture

*The main equation is regular under any binary periodic coloring of period $p > 2$.***
We now consider the degree of regularity of the general equation.

\[a_1 x_1 + a_2 x_2 + \cdots + a_k x_k = n \]
We now consider the degree of regularity of the general equation.

\[a_1 x_1 + a_2 x_2 + \cdots + a_k x_k = n \]

Lemma

If \(k \) divides \(S \) and does not divide \(n \), then the equation is not \(k \)-regular.
We now consider the degree of regularity of the general equation.

\[a_1 x_1 + a_2 x_2 + \cdots + a_k x_k = n \]

Lemma

If \(k \) divides \(S \) and does not divide \(n \), then the equation is not \(k \)-regular.

This gives a measure of how far from regular the equation is.
It turns out that this is often not strong at all.
It turns out that this is often not strong at all.

Lemma

When \(a_1, a_2, a_3, \ldots\) have the same sign, the equation is not 2-regular when \(S\) does not divide \(n\).
It turns out that this is often not strong at all.

Lemma

When \(a_1, a_2, a_3, \ldots\) have the same sign, the equation is not 2-regular when \(S\) does not divide \(n\).

Conjecture

The coloring used in the proof of the previous lemma is the only one that breaks regularity for a binary coloring.
Future Research

- Work with other types of colorings, e.g. equidistributed colorings, example colorings shown earlier.
Future Research

- Work with other types of colorings, e.g. equidistributed colorings, example colorings shown earlier.
- Find degrees of regularity for specific equations, e.g. $ax + by = z$ for various $a, b, x^2 + y^2 = z^2$.
Future Research

- Work with other types of colorings, e.g. equidistributed colorings, example colorings shown earlier.
- Find degrees of regularity for specific equations, e.g. $ax + by = z$ for various a, b, $x^2 + y^2 = z^2$.
- Find some structure on colorings and/or equations.
Future Research

- Work with other types of colorings, e.g. equidistributed colorings, example colorings shown earlier.
- Find degrees of regularity for specific equations, e.g. \(ax + by = z \) for various \(a, b, x^2 + y^2 = z^2 \).
- Find some structure on colorings and/or equations. A basic example of this was the shifting property for periodic colorings.
Acknowledgements

- Tanya Khovanova
- Jacob Fox
- MIT PRIMES