Beyond Alternating Permutations: Pattern Avoidance in Young Diagrams and Tableaux

Nihal Gowravaram and Ravi Jagadeesan
MIT PRIMES

Mentor: Joel Lewis

May 19, 2012
We will treat a permutation $w \in S_n$ as a sequence w_1, w_2, \cdots, w_n containing every positive integer $k \leq n$ exactly once.
We will treat a permutation \(w \in S_n \) as a sequence \(w_1, w_2, \cdots, w_n \) containing every positive integer \(k \leq n \) exactly once.

A permutation \(w \) is called *alternating* if

\[
w_1 < w_2 > w_3 < w_4 > \cdots .
\]
We will treat a permutation \(w \in S_n \) as a sequence \(w_1, w_2, \ldots, w_n \) containing every positive integer \(k \leq n \) exactly once.

A permutation \(w \) is called alternating if

\[
 w_1 < w_2 > w_3 < w_4 > \cdots .
\]

For example, 352614 is alternating.
We will treat a permutation \(w \in S_n \) as a sequence \(w_1, w_2, \cdots, w_n \) containing every positive integer \(k \leq n \) exactly once.

A permutation \(w \) is called alternating if

\[
w_1 < w_2 > w_3 < w_4 > \cdots.
\]

For example, 352614 is alternating. Graphically, this is
A permutation w is said to contain a permutation q if there is a subsequence of w order-isomorphic to q. If w does not contain q, then w avoids q.
A permutation w is said to contain a permutation q if there is a subsequence of w order-isomorphic to q. If w does not contain q, then w avoids q. For example, 325641 contains 231.
A permutation w is said to contain a permutation q if there is a subsequence of w order-isomorphic to q. If w does not contain q, then w avoids q.

For example, 325641 contains 231.

Given a permutation q and a positive integer n, let $S_n(q)$ ($A_n(q)$) denote the set of all (alternating) permutations of length n that avoid q.
Pattern Containment in Permutations

- A permutation \(w \) is said to contain a permutation \(q \) if there is a subsequence of \(w \) order-isomorphic to \(q \). If \(w \) does not contain \(q \), then \(w \) avoids \(q \).

 For example, \(325641 \) contains 231.

- Given a permutation \(q \) and a positive integer \(n \), let \(S_n(q) \) \((A_n(q)) \) denote the set of all (alternating) permutations of length \(n \) that avoid \(q \).

- If \(|S_n(p)| = |S_n(q)| \) for all \(n \), we say that \(p \) and \(q \) are Wilf-equivalent.
A permutation w is said to contain a permutation q if there is a subsequence of w order-isomorphic to q. If w does not contain q, then w avoids q. For example, 325641 contains 231.

Given a permutation q and a positive integer n, let $S_n(q)$ ($A_n(q)$) denote the set of all (alternating) permutations of length n that avoid q.

If $|S_n(p)| = |S_n(q)|$ for all n, we say that p and q are Wilf-equivalent.

If $|A_n(p)| = |A_n(q)|$ for all n, we say that p and q are equivalent for alternating permutations.
(Mansour, Deutsch, Reifegerste) If q is a pattern of length 3, then $|A_n(q)|$ is a Catalan number (i.e. of the form $C_k = \frac{(2k)!}{k!(k+1)!}$).

The indices depend on the choice of q and on the parity of n.
Previous Results

- **(Mansour, Deutsch, Reifegerste)** If \(q \) is a pattern of length 3, then \(|A_n(q)| \) is a Catalan number (i.e. of the form \(C_k = \frac{(2k)!}{k!(k+1)!} \)).

- **(Lewis)** For patterns of length 4,

\[
|A_{2n}(1234)| = |A_{2n}(2143)| = \frac{2(3n)!}{n!(n+1)!(n+2)!},
\]

\[
|A_{2n+1}(1234)| = \frac{16(3n)!}{(n-1)!(n+1)!(n+3)!},
\]

\[
|A_{2n+1}(2143)| = \frac{2(3n+3)!}{n!(n+1)!(n+2)!(2n+1)(2n+2)(2n+3)}.
\]
The Main Theorem and Its Motivation

Theorem (Backelin-West-Xin). For all $t \geq k$ and all permutations q of $\{k + 1, k + 2, k + 3, \ldots, t\}$, the patterns $123 \cdots kq$ and $k(k-1)(k-2)\cdots1q$ are Wilf-Equivalent.
The Main Theorem and Its Motivation

Theorem (Backelin-West-Xin). For all $t \geq k$ and all permutations q of \{k + 1, k + 2, k + 3, \ldots , t\}, the patterns $123 \cdots kq$ and $k(k-1)(k-2)\cdots 1q$ are Wilf-Equivalent.

Main Results:
For all q, the following sets of patterns are equivalent for alternating permutations.

- $12q$ and $21q$
The Main Theorem and Its Motivation

Theorem (Backelin-West-Xin). *For all* \(t \geq k \) *and all permutations* \(q \) *of* \(\{k + 1, k + 2, k + 3, \cdots, t\} \), *the patterns* \(123 \cdots kq \) *and* \(k(k-1)(k-2)\cdots 1q \) *are Wilf-Equivalent.*

Main Results:
For all \(q \), the following sets of patterns are equivalent for alternating permutations.

- \(12q \) and \(21q \)
- \(123q, 213q \) and \(321q \)
The Main Theorem and Its Motivation

Theorem (Backelin-West-Xin). For all \(t \geq k \) and all permutations \(q \) of \(\{k + 1, k + 2, k + 3, \ldots, t\} \), the patterns \(123 \cdots kq \) and \(k(k-1)(k-2)\cdots1q \) are Wilf-Equivalent.

Main Results:
For all \(q \), the following sets of patterns are equivalent for alternating permutations.

- \(12q \) and \(21q \)
- \(123q, 213q \) and \(321q \)
- (Conjecture) For all \(k \), \(123 \cdots kq \) and \(k(k-1)(k-2)\cdots1q \)
Pattern Avoidance of Young Diagrams

Basic Definitions
Ascents/Descents
Alternation
Permutations
Matrix Extension
Main Theorem
Beyond Alternating Permutations
A **Young diagram** with n rows/columns is a set Y of squares of an $n \times n$ board such that if a square $S \in Y$, then any square above and to the left of S is also in Y.
A *Young diagram* with n rows/columns is a set Y of squares of an $n \times n$ board such that if a square $S \in Y$, then any square above and to the left of S is also in Y.

A *transversal* T of Y is a set of squares of Y that contains exactly one member per row and per column of Y.

\[\text{Diagram showing a transversal of a Young diagram.}\]
Basic Definitions

- A **Young diagram** with n rows/columns is a set Y of squares of an $n \times n$ board such that if a square $S \in Y$, then any square above and to the left of S is also in Y.
- A **transversal** T of Y is a set of squares of Y that contains exactly one member per row and per column of Y.
- T is said to **contain** a $k \times k$ permutation matrix $M = (m_{i,j})$ if there are k rows $r_1 < r_2 < \cdots < r_k$ and k columns $c_1 < c_2 < \cdots < c_k$ of Y such that $(r_k, c_k) \in Y$ and $(r_i, c_j) \in T$ if and only if the entry of $m_{i,j} = 1$.

contains \[
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\]
A Young diagram with n rows/columns is a set Y of squares of an $n \times n$ board such that if a square $S \in Y$, then any square above and to the left of S is also in Y.

A transversal T of Y is a set of squares of Y that contains exactly one member per row and per column of Y.

T is said to contain a $k \times k$ permutation matrix $M = (m_{i,j})$ if there are k rows $r_1 < r_2 < \cdots < r_k$ and k columns $c_1 < c_2 < \cdots < c_k$ of Y such that $(r_k, c_k) \in Y$ and $(r_i, c_j) \in T$ if and only if the entry of $m_{i,j} = 1$.

contains $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
A Young diagram with \(n \) rows/columns is a set \(Y \) of squares of an \(n \times n \) board such that if a square \(S \in Y \), then any square above and to the left of \(S \) is also in \(Y \).

A transversal \(T \) of \(Y \) is a set of squares of \(Y \) that contains exactly one member per row and per column of \(Y \).

\(T \) is said to contain a \(k \times k \) permutation matrix \(M = (m_{i,j}) \) if there are \(k \) rows \(r_1 < r_2 < \cdots < r_k \) and \(k \) columns \(c_1 < c_2 < \cdots < c_k \) of \(Y \) such that \((r_k, c_k) \in Y\) and \((r_i, c_j) \in T\) if and only if the entry of \(m_{i,j} = 1 \).

\[
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\]

contains

\[
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\]
Basic Definitions

- A **Young diagram** with \(n \) rows/columns is a set \(Y \) of squares of an \(n \times n \) board such that if a square \(S \in Y \), then any square above and to the left of \(S \) is also in \(Y \).
- A **transversal** \(T \) of \(Y \) is a set of squares of \(Y \) that contains exactly one member per row and per column of \(Y \).
- \(T \) is said to **contain** a \(k \times k \) permutation matrix \(M = (m_{i,j}) \) if there are \(k \) rows \(r_1 < r_2 < \cdots < r_k \) and \(k \) columns \(c_1 < c_2 < \cdots < c_k \) of \(Y \) such that \((r_k, c_k) \in Y\) and \((r_i, c_j) \in T\) if and only if the entry of \(m_{i,j} = 1 \).

\[
\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}
\]

contains

All 4 red squares are in the Young diagram.
Basic Definitions

- A *Young diagram* with \(n \) rows/columns is a set \(Y \) of squares of an \(n \times n \) board such that if a square \(S \in Y \), then any square above and to the left of \(S \) is also in \(Y \).

- A *transversal* \(T \) of \(Y \) is a set of squares of \(Y \) that contains exactly one member per row and per column of \(Y \).

- \(T \) is said to *contain* a \(k \times k \) permutation matrix \(M = (m_{i,j}) \) if there are \(k \) rows \(r_1 < r_2 < \cdots < r_k \) and \(k \) columns \(c_1 < c_2 < \cdots < c_k \) of \(Y \) such that \((r_k, c_k) \in Y\) and \((r_i, c_j) \in T\) if and only if the entry of \(m_{i,j} = 1 \).

is not a copy of \[\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \].
A **Young diagram** with \(n \) rows/columns is a set \(Y \) of squares of an \(n \times n \) board such that if a square \(S \in Y \), then any square above and to the left of \(S \) is also in \(Y \).

A **transversal** \(T \) of \(Y \) is a set of squares of \(Y \) that contains exactly one member per row and per column of \(Y \).

\(T \) is said to **contain** a \(k \times k \) permutation matrix \(M = (m_{i,j}) \) if there are \(k \) rows \(r_1 < r_2 < \cdots < r_k \) and \(k \) columns \(c_1 < c_2 < \cdots < c_k \) of \(Y \) such that \((r_k, c_k) \in Y \) and \((r_i, c_j) \in T \) if and only if the entry of \(m_{i,j} = 1 \).

The square \(X \) is not in the Young diagram.
Basic Definitions

- A **Young diagram** with \(n \) rows/columns is a set \(Y \) of squares of an \(n \times n \) board such that if a square \(S \in Y \), then any square above and to the left of \(S \) is also in \(Y \).
- A **transversal** \(T \) of \(Y \) is a set of squares of \(Y \) that contains exactly one member per row and per column of \(Y \).
- \(T \) is said to **contain** a \(k \times k \) permutation matrix \(M = (m_{i,j}) \) if there are \(k \) rows \(r_1 < r_2 < \cdots < r_k \) and \(k \) columns \(c_1 < c_2 < \cdots < c_k \) of \(Y \) such that \((r_k, c_k) \in Y\) and \((r_i, c_j) \in T\) if and only if the entry of \(m_{i,j} = 1 \). Otherwise, we say that \(T \) **avoids** \(M \).
Basic Definitions

- A *Young diagram* with n rows/columns is a set Y of squares of an $n \times n$ board such that if a square $S \in Y$, then any square above and to the left of S is also in Y.
- A *transversal* T of Y is a set of squares of Y that contains exactly one member per row and per column of Y.
- T is said to *contain* a $k \times k$ permutation matrix $M = (m_{i,j})$ if there are k rows $r_1 < r_2 < \cdots < r_k$ and k columns $c_1 < c_2 < \cdots < c_k$ of Y such that $(r_k, c_k) \in Y$ and $(r_i, c_j) \in T$ if and only if the entry of $m_{i,j} = 1$. Otherwise, we say that T *avoids* M.
- If permutation matrices M and M' are such that, for all Young diagrams Y, the number of transversals of Y avoiding M is the same as the number avoiding M', we say that M and M' are *shape-Wilf equivalent*.
Given a transversal $T = \{(i, b_i)\}$ of a Young diagram, we say that i is *an ascent of T* (descent) when it is an ascent (descent) of $b_1 b_2 \cdots$.
Given a transversal $T = \{(i, b_i)\}$ of a Young diagram, we say that i is an ascent of T (descent) when it is an ascent (descent) of $b_1 b_2 \cdots$.

An AD-Young diagram is a triple $\mathcal{Y} = (Y, A, D)$ of a Young diagram Y with n rows, and disjoint sets $A, D \subseteq [n - 1]$ such that if $i \in A \cup D$, then the ith and $(i + 1)$st rows of Y have the same length.
Given a transversal $T = \{(i, b_i)\}$ of a Young diagram, we say that i is an ascent (descent) of T when it is an ascent (descent) of $b_1 b_2 \cdots$.

An AD-Young diagram is a triple $\mathcal{Y} = (Y, A, D)$ of a Young diagram Y with n rows, and disjoint sets $A, D \subseteq [n-1]$ such that if $i \in A \cup D$, then the ith and $(i+1)$st rows of Y have the same length.

$$Y = \begin{array}{cccccccc}
\text{\cellcolor{yellow}} & \text{\cellcolor{yellow}} \\
\text{\cellcolor{yellow}} & \text{\cellcolor{yellow}} \\
\text{\cellcolor{yellow}} & \text{\cellcolor{yellow}} \\
\text{\cellcolor{yellow}} & \text{\cellcolor{yellow}} \\
\text{\cellcolor{yellow}} & \text{\cellcolor{yellow}} \\
\text{\cellcolor{yellow}} & \text{\cellcolor{yellow}} \\
\text{\cellcolor{yellow}} & \text{\cellcolor{yellow}} \\
\text{\cellcolor{yellow}} & \text{\cellcolor{yellow}} \\
\end{array}$$

$A = \{1\}$ \hspace{1cm} $D = \{3\}$
Given a transversal $T = \{(i, b_i)\}$ of a Young diagram, we say that i is an ascent of T (descent) when it is an ascent (descent) of $b_1 b_2 \cdots$.

An AD-Young diagram is a triple $\mathcal{Y} = (Y, A, D)$ of a Young diagram Y with n rows, and disjoint sets $A, D \subseteq [n - 1]$ such that if $i \in A \cup D$, then the ith and $(i + 1)$st rows of Y have the same length.

A valid transversal of \mathcal{Y} is a transversal T of Y such that if $i \in A (D)$, then i is an ascent (descent) of T.

$Y = \begin{array}{cccccccc}
\text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} \\
\text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} \\
\text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} \\
\text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} \\
\text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} \\
\text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} \\
\text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} \\
\text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} & \text{Y} \\
\end{array}$

$A = \{1\}$ $D = \{3\}$
Given a transversal $T = \{(i, b_i)\}$ of a Young diagram, we say that i is an ascent of T (descent) when it is an ascent (descent) of $b_1 b_2 \cdots$.

An \textit{AD-Young diagram} is a triple $\mathcal{Y} = (Y, A, D)$ of a Young diagram Y with n rows, and disjoint sets $A, D \subseteq [n - 1]$ such that if $i \in A \cup D$, then the ith and $(i + 1)$st rows of Y have the same length.

A \textit{valid transversal} of \mathcal{Y} is a transversal T of Y such that if $i \in A \ (D)$, then i is an ascent (descent) of T.

\[
\begin{array}{c}
Y = \\
A = \{1\} \\
D = \{3\}
\end{array}
\]
Given a transversal $T = \{(i, b_i)\}$ of a Young diagram, we say that i is an ascent of T (descent) when it is an ascent (descent) of $b_1 b_2 \cdots$.

An AD-Young diagram is a triple $\mathcal{Y} = (Y, A, D)$ of a Young diagram Y with n rows, and disjoint sets $A, D \subseteq [n - 1]$ such that if $i \in A \cup D$, then the ith and $(i + 1)$st rows of Y have the same length.

A valid transversal of \mathcal{Y} is a transversal T of Y such that if $i \in A \ (D)$, then i is an ascent (descent) of T. Pattern avoidance is exactly as in Young diagrams.
Given a transversal $T = \{(i, b_i)\}$ of a Young diagram, we say that i is an ascent of T (descent) when it is an ascent (descent) of $b_1 b_2 \cdots$.

An AD-Young diagram is a triple $\mathcal{Y} = (Y, A, D)$ of a Young diagram Y with n rows, and disjoint sets $A, D \subseteq [n - 1]$ such that if $i \in A \cup D$, then the ith and $(i + 1)$st rows of Y have the same length.

A valid transversal of \mathcal{Y} is a transversal T of Y such that if $i \in A$ (D), then i is an ascent (descent) of T. Pattern avoidance is exactly as in Young diagrams.

Given a permutation matrix M and an AD-Young diagram \mathcal{Y}, let $S_{\mathcal{Y}}(M)$ denote the set of valid transversals of \mathcal{Y} that avoid M.

Pattern Avoidance in Alternating Permutations

Pattern Avoidance of Young Diagrams

Basic Definitions

Ascents/Descents

Alternation Permutations

Matrix Extension

Main Theorem

Beyond Alternating Permutations
An AD-Young diagram $\mathcal{Y} = (Y, A, D)$ with Y a Young diagram with n columns is called x-alternating if it satisfies the property that if $i \leq n - x$, then $i \in A$ if and only if $i + 1 \in D$.

$$Y = \begin{array}{ccccccc}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & \bullet & \\
\bullet & \\
\end{array}$$
An AD-Young diagram $\mathcal{Y} = (Y, A, D)$ with Y a Young diagram with n columns is called x-alternating if it satisfies the property that if $i \leq n - x$, then $i \in A$ if and only if $i + 1 \in D$.
An AD-Young diagram \(\mathcal{Y} = (Y, A, D) \) with \(Y \) a Young diagram with \(n \) columns is called \(x \)-alternating if it satisfies the property that if \(i \leq n - x \), then \(i \in A \) if and only if \(i + 1 \in D \).

\[
\begin{align*}
Y &= \\
A &= \{1\} \\
D &= \{2\}
\end{align*}
\]

is 1-alternating.
An AD-Young diagram $\mathcal{Y} = (Y, A, D)$ with Y a Young diagram with n columns is called x-alternating if it satisfies the property that if $i \leq n - x$, then $i \in A$ if and only if $i + 1 \in D$.

$$Y = \begin{array}{cccccc}
\end{array}$$
An AD-Young diagram $\mathcal{Y} = (Y, A, D)$ with Y a Young diagram with n columns is called x-\textit{alternating} if it satisfies the property that if $i \leq n - x$, then $i \in A$ if and only if $i + 1 \in D$.

$Y = \begin{array}{cccccccc}
\text{ Yellow boxes } \\
\end{array}$

$A = \{2\}$

$D = \emptyset$
An AD-Young diagram $\mathcal{Y} = (Y, A, D)$ with Y a Young diagram with n columns is called x-alternating if it satisfies the property that if $i \leq n - x$, then $i \in A$ if and only if $i + 1 \in D$.

$Y =$

$A = \{2\}$

$D = \emptyset$

is 4-alternating.
Alternating AD-Young Diagrams

- An AD-Young diagram $\mathcal{Y} = (Y, A, D)$ with Y a Young diagram with n columns is called x-alternating if it satisfies the property that if $i \leq n - x$, then $i \in A$ if and only if $i + 1 \in D$.

- If M and M' are permutation matrices such that for all x-alternating AD-Young diagrams \mathcal{Y}, we have $|S_{\mathcal{Y}}(M)| = |S_{\mathcal{Y}}(M')|$, then we say that M and M' are shape-equivalent for x-alternating AD-Young diagrams.
We can treat a permutation b of length n as a transversal $\{(i, b_i)\}$ of the $n \times n$ Young diagram.
We can treat a permutation b of length n as a transversal $\{(i, b_i)\}$ of the $n \times n$ Young diagram.

We can treat an alternating permutation b of length $2n$ as a valid transversal $\{(i, b_i)\}$ of the 2-alternating AD-Young diagram (Y, A, D) with Y the $2n \times 2n$ square, $A = \{1, 3, 5, \ldots, 2n-1\}$, and $D = \{2, 4, 6, \ldots, 2n-2\}$. The permutation 352614 is
We can treat a permutation b of length n as a transversal $\{(i, b_i)\}$ of the $n \times n$ Young diagram.

We can treat an alternating permutation b of length $2n$ as a valid transversal $\{(i, b_i)\}$ of the 2-alternating AD-Young diagram (Y, A, D) with Y the $2n \times 2n$ square, $A = \{1, 3, 5, \ldots, 2n - 1\}$, and $D = \{2, 4, 6, \ldots, 2n - 2\}$.

A permutation b avoids a pattern q if and only if its corresponding transversal avoids q's permutation matrix.
Alternating Permutations as Transversals

- We can treat a permutation b of length n as a transversal $\{(i, b_i)\}$ of the $n \times n$ Young diagram.

- We can treat an alternating permutation b of length $2n$ as a valid transversal $\{(i, b_i)\}$ of the 2-alternating AD-Young diagram (Y, A, D) with Y the $2n \times 2n$ square, $A = \{1, 3, 5, \cdots, 2n - 1\}$, and $D = \{2, 4, 6, \cdots, 2n - 2\}$.

- A permutation b avoids a pattern q if and only if its corresponding transversal avoids q’s permutation matrix.

- Similarly, alternating permutations of odd length, can be treated as valid transversals of 1-alternating AD-Young diagrams.
Theorem (Babson-West). If M and M' are permutation matrices that are shape-Wilf equivalent, and P is an permutation matrix of positive dimensions, then the matrices

$$\begin{bmatrix} M & 0 \\ 0 & P \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} M' & 0 \\ 0 & P \end{bmatrix}$$

are shape-Wilf equivalent.
Theorem (Babson-West). If \(M \) and \(M' \) are permutation matrices that are shape-Wilf equivalent, and \(P \) is an permutation matrix of positive dimensions, then the matrices

\[
\begin{bmatrix}
M & 0 \\
0 & P
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
M' & 0 \\
0 & P
\end{bmatrix}
\]

are shape-Wilf equivalent.

Theorem. If \(M \) and \(M' \) are permutation matrices that are shape-Equivalent for \(x \)-alternating AD-Young diagrams, and \(P \) is an \(r \times r \) permutation matrix, then the matrices

\[
\begin{bmatrix}
M & 0 \\
0 & P
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
M' & 0 \\
0 & P
\end{bmatrix}
\]

are shape-equivalent for \(x + r \)-alternating AD-Young diagrams.
Theorem (Backelin-West-Xin). For all k, the permutation matrices of the permutations $(k-1)(k-2)(k-3)\cdots 1k$ and $k(k-1)(k-2)\cdots 1$ are shape-Wilf equivalent.
The Main Theorem Revisited

Theorem (Backelin-West-Xin). For all k, the permutation matrices of the permutations $(k - 1)(k - 2)(k - 3)\cdots 1k$ and $k(k - 1)(k - 2)\cdots 1$ are shape-Wilf equivalent.

Theorem. The permutation matrices corresponding to the permutations 12 and 21 are shape-equivalent for 1-alternating AD-Young diagrams.
The Main Theorem Revisited

Theorem (Backelin-West-Xin). For all k, the permutation matrices of the permutations $(k - 1)(k - 2)(k - 3) \cdots 1$ and $k(k - 1)(k - 2) \cdots 1$ are shape-Wilf equivalent.

Theorem. The permutation matrices corresponding to the permutations 12 and 21 are shape-equivalent for 1-alternating AD-Young diagrams.

Theorem. The permutation matrices corresponding to the permutations 213 and 321 are shape-equivalent for 1-alternating AD-Young diagrams.
The Main Theorem Revisited

Theorem (Backelin-West-Xin). For all \(k \), the permutation matrices of the permutations \((k - 1)(k - 2)(k - 3) \cdots 1k\) and \(k(k - 1)(k - 2) \cdots 1\) are shape-Wilf equivalent.

Theorem. The permutation matrices corresponding to the permutations 12 and 21 are shape-equivalent for 1-alternating AD-Young diagrams.

Theorem. The permutation matrices corresponding to the permutations 213 and 321 are shape-equivalent for 1-alternating AD-Young diagrams.

Corollary. For all \(t > 2 \) and all permutations \(q \) of \(\{3, 4, 5, \cdots, t\} \), the patterns 12\(q \) and 21\(q \) are equivalent for alternating permutations. For all \(t > 3 \) and all permutations \(q \) of \(\{4, 5, 6, \cdots, t\} \), the patterns 123\(q \), 213\(q \) and 321\(q \) are equivalent for alternating permutations.
Beyond Alternating Permutations

Pattern Avoidance in Alternating Permutations
Pattern Avoidance of Young Diagrams

Motivation
Reading Words
321 Avoidance
Proof
321 Applications
Data for \(l = 0 \)
Investigating \(l = 0 \)
Repetitive Patterns
Further Work
Motivation

- Joel’s question in his paper.
Motivation

- Joel’s question in his paper.
- Bijection from permutations to Young tableaux
 - Definition of tableau
 - Entries increase left to right; top to bottom
Motivation

- Joel’s question in his paper.
- Bijection from permutations to Young tableaux

Definition of tableau

- Entries increase left to right; top to bottom
- l: Number of adjacent edges between adjacent rows
- k: Number of cells per row (except top row)
- n: Total number of cells/values in the permutation
- Ex. $(2, 4, 10)$; $l = 2, k = 4, n = 10$
Reading word: $124(10)357968$

Pattern avoidance is exactly as in permutations.
- Reading word: 124(10)357968
- Pattern avoidance is exactly as in permutations.
- Define $U_{n}^{k,l}(r)$ to be the set of permutations p that fill tableau of the form (l, k, n) and such that p avoids r.
Pattern avoidance in alternating permutations

Pattern avoidance of Young diagrams

Beyond alternating permutations

Motivation

Pattern avoidance is exactly as in permutations.

Define $U_n^{k,l}(r)$ to be the set of permutations p that fill tableau of the form (l, k, n) and such that p avoids r.

Alternating permutation pattern avoidance is a special case: $A_n(r) = U_n^{2,1}(r)$.

Reading word: 124(10)357968

Reading Words

321 Avoidance

Proof

321 Applications

Data for $l = 0$

Investigating $l = 0$

Repetitive Patterns

Further Work
Theorem. For $t > 1$, we have

$$\left| U_{kt+1}^{k,1}(321) \right| = \sum_{i=k(t-1)+2}^{kt} \left| U_{i}^{k,1}(321) \right|.$$
Theorem. For \(t > 1 \), we have

\[
\left| U_{kt+1}^{k,1}(321) \right| = \sum_{i=k(t-1)+2}^{kt} \left| U_{i}^{k,1}(321) \right|.
\]

Example when \(k = 3 \):

\[
\left| U_{3t+1}^{3,1}(321) \right| = \left| U_{3t-1}^{3,1}(321) \right| + \left| U_{3t}^{3,1}(321) \right|
\]

Some data:

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_{n}^{3,1}(321))</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>19</td>
<td>28</td>
<td>90</td>
<td>207</td>
<td>297</td>
</tr>
</tbody>
</table>
$l = 1$: one edge shared between adjacent rows

\[a_{kt} \quad a_{kt-1} \quad \cdots \quad a_{kt-2} \]

\[a_1 \quad a_2 \quad \cdots \quad a_k \]
Claim: \(a_{kt} = kt + 1 \).

- Assume for sake of contradiction that \(a_{kt} < kt + 1 \).
Claim: \(a_{kt} = kt + 1 \).

- Assume for sake of contradiction that \(a_{kt} < kt + 1 \).
- Since \(a_{kt+1} < a_{kt} \), we have \(a_{kt+1} \neq kt + 1 \).
Outline of Proof Regarding 321 Avoidance

Claim: \(a_{kt} = kt + 1 \).

- Assume for sake of contradiction that \(a_{kt} < kt + 1 \).
- Since \(a_{kt+1} < a_{kt} \), we have \(a_{kt+1} \neq kt + 1 \).
- So, for some \(i < kt \), we have \(a_i = kt + 1 \).
Claim: \(a_{kt} = kt + 1 \).

- Assume for sake of contradiction that \(a_{kt} < kt + 1 \).
- Since \(a_{kt+1} < a_{kt} \), we have \(a_{kt+1} \neq kt + 1 \).
- So, for some \(i < kt \), we have \(a_i = kt + 1 \).
- Then, \(a_i a_{kt} a_{kt+1} \) is order-isomorphic to 321, contradiction.
Define a *consecutive block* to be a subsequence $a_i a_{i+1} \cdots a_j$ of $a_1 a_2 \cdots a_n$, such that the values a_k are consecutive and in increasing order for $i < k < j$.

We remove the largest consecutive block with anchor (last value) a_{kt} for each permutation in $U_{kt+1}^k(321)$; suppose that the block has length s. Then,
Define a *consecutive block* to be a subsequence $a_i a_{i+1} \cdots a_j$ of $a_1 a_2 \cdots a_n$, such that the values a_k are consecutive and in increasing order for $i < k < j$.

We remove the largest consecutive block with anchor (last value) a_{kt} for each permutation in $U_{kt+1}^k (321)$; suppose that the block has length s. Then,

$$a_{kt+1} a_{kt+2} a_{kt+3} a_{kt+4} \cdots$$

is sent to

$$a_{kt-t+1} a_{kt-t+2} \cdots a_{kt-s} a_{kt+1}.$$
The other direction of inserting a consecutive block is clear. Thus, the bijection holds.
The other direction of inserting a consecutive block is clear. Thus, the bijection holds.

\[
\left| U_{kt+1}^{k,1}(321) \right| = \sum_{i=k(t-1)+2}^{kt} \left| U_{i}^{k,1}(321) \right|.
\]
Further Application of (321)-avoidance

- This gives us a nice enumeration of $U_{n}^{k,l}(321)$ for $n = kt + 1$.
- What about $n = kt + m$?
This gives us a nice enumeration of $U_{n}^{k,l}(321)$ for $n = kt + 1$.

What about $n = kt + m$?

A similar removal of a consecutive block likely holds, but the procedure of “collapsing” the highest row into the row under it may result in a row with more than k elements:
This gives us a nice enumeration of $U_{n}^{k,l}(321)$ for $n = kt + 1$.

What about $n = kt + m$?

A similar removal of a consecutive block likely holds, but the procedure of “collapsing” the highest row into the row under it may result in a row with more than k elements:
Further Application of (321)-avoidance

- This gives us a nice enumeration of $U_{n}^{k,l}(321)$ for $n = kt + 1$.

- What about $n = kt + m$?

- A similar removal of a consecutive block likely holds, but the procedure of “collapsing” the highest row into the row under it may result in a row with more than k elements:

\[
\begin{array}{cccc}
6 & 7 & 9 & \\
1 & 5 & 10 & 11 \\
2 & 3 & 4 & 8 \\
\end{array}
\quad
\begin{array}{cccc}
1 & 5 & 6 & 7 & 9 \\
1 & 5 & 6 & 7 & 9 \\
2 & 3 & 4 & 8 \\
\end{array}
\]

- Thus, we will likely need to define new classes (different from $U_{n}^{k,l}$) to describe such tableaux, and so, the recursion for this case is likely more complicated, but not intractable.
Data for $l = 0$

- Now we turn to the $l = 0$ case.
Now we turn to the $l = 0$ case.

For $k = 3$:

<table>
<thead>
<tr>
<th></th>
<th>1342</th>
<th>1243</th>
<th>2341</th>
<th>3124</th>
<th>2134</th>
<th>4123</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>37</td>
<td>38</td>
<td>38</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>90</td>
<td>94</td>
<td>94</td>
<td>180</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>9</td>
<td>180</td>
<td>190</td>
<td>190</td>
<td>180</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>10</td>
<td>725</td>
<td>806</td>
<td>806</td>
<td>1330</td>
<td>1400</td>
<td>1400</td>
</tr>
</tbody>
</table>
Investigating $l = 0$

- Only avoidance patterns of a particular structure show nontrivial repetitions for $n = m$ and $n = m + 1$ for large n.
- Let q be a permutation of length t that is structurally dictated as a single down-step followed by $t - 2$ up-steps, i.e. $q = b123 \cdots (b - 1)(b + 1) \cdots (t - 1)t$ with $b \neq 1$.
- We shall call such patterns *repetitive patterns*.
Theorem. For \(k \geq t - 1 \) and \(q \) a repetitive pattern, we have

\[
\left| U_{km+(t-2)}^{k,0}(q) \right| = \left| U_{km+(t-1)}^{k,0}(q) \right| = \left| U_{km+t}^{k,0}(q) \right| = \cdots = \left| U_{km+k}^{k,0}(q) \right|
\]

- The approach to this is a bijective proof.
- Based on the pattern \(q \), we perform an insertion of the proper value into a corresponding location.
- This serves as a surprising result for no other patterns contain repeats; for all other patterns \(q \),

\[
\left| U_{n}^{k,0}(q) \right| < \left| U_{n+1}^{k,0}(q) \right|
\]

(except for patterns of the form \(123 \cdots t \) of course).
The result in the previous slide is quite nice, but it is very limited. However, checking numerical data indicates that a similar theorem holds for $l > 0$.
Acknowledgements

Thanks to

- Our mentor Joel Lewis for his valuable insight and guidance.
- The PRIMES program for making this experience possible.
- Our parents for their support.

Thanks to all of you for listening.