Suppose A_{\hbar} is a flat family of non-commutative algebras, such that A_0 is commutative.
Suppose A_\hbar is a flat family of non-commutative algebras, such that A_0 is commutative. Then A_0 has an additional operation called a Poisson bracket,

$$\{a, b\} = \lim_{\hbar \to 0} \frac{ab - ba}{\hbar}.$$
Suppose A_\hbar is a flat family of non-commutative algebras, such that A_0 is commutative. Then A_0 has an additional operation called a Poisson bracket,

$$\{a, b\} = \lim_{\hbar \to 0} \frac{ab - ba}{\hbar}.$$

The Poisson algebra $(A_0, \{,\})$ retains a great deal of information about the non-commutative family A_\hbar.
Suppose A_\hbar is a flat family of non-commutative algebras, such that A_0 is commutative. Then A_0 has an additional operation called a Poisson bracket,

$$\{a, b\} = \lim_{\hbar \to 0} \frac{ab - ba}{\hbar}.$$

The Poisson algebra $(A_0, \{,\})$ retains a great deal of information about the non-commutative family A_\hbar. In particular, the Poisson homology HP_0 of A_0 gives an upper bound on the number of irreducible representations of the non-commutative family A_\hbar:

$$\#\text{Irreps}(A_\hbar) \leq \dim HP_0(A_0).$$
Michael Zhang, Yongyi Chen

MIT PRIMES

May 21, 2011
Let A be a commutative algebra over a field \mathbb{F}.
Let A be a commutative algebra over a field \mathbb{F}. A **Poisson bracket** on A is a map $\{,\} : A \times A \to A$ satisfying the following properties:

- **Skew-symmetry:** $\{x, y\} = -\{y, x\}$
- **Bilinearity:** $\{z, ax + by\} = a\{z, x\} + b\{z, y\}$ for all $a, b \in \mathbb{F}$
- **Jacobi Identity:** $\{x, \{y, z\}\} + \{z, \{x, y\}\} + \{y, \{z, x\}\} = 0$
- **Leibniz Rule:** $\{x, yz\} = y\{x, z\} + z\{x, y\}$

We call $(A, \{,\})$ a **Poisson algebra**.
Let A be a commutative algebra over a field \mathbb{F}. A **Poisson bracket** on A is a map $\{,\} : A \times A \to A$ satisfying the following properties:

- Skew-symmetry: $\{x, y\} = -\{y, x\}$
Let A be a commutative algebra over a field \mathbb{F}.

A **Poisson bracket** on A is a map $\{,\}: A \times A \to A$ satisfying the following properties:

- **Skew-symmetry:** $\{x, y\} = -\{y, x\}$
- **Bilinearity:** $\{z, ax + by\} = a\{z, x\} + b\{z, y\}$ for all $a, b \in \mathbb{F}$
Let A be a commutative algebra over a field \mathbb{F}. A **Poisson bracket** on A is a map $(\cdot, \cdot): A \times A \to A$ satisfying the following properties:

- **Skew-symmetry**: $(x, y) = -(y, x)$
- **Bilinearity**: $(z, ax + by) = a(z, x) + b(z, y)$ for all $a, b \in \mathbb{F}$
- **Jacobi Identity**: $(x, (y, z)) + (z, (x, y)) + (y, (z, x)) = 0$
Let A be a commutative algebra over a field \mathbb{F}. A **Poisson bracket** on A is a map $\{,\} : A \times A \to A$ satisfying the following properties:

- Skew-symmetry: $\{x,y\} = -\{y,x\}$
- Bilinearity: $\{z,ax + by\} = a\{z,x\} + b\{z,y\}$ for all $a,b \in \mathbb{F}$
- Jacobi Identity: $\{x,\{y,z\}\} + \{z,\{x,y\}\} + \{y,\{z,x\}\} = 0$
- Leibniz Rule: $\{x, yz\} = y\{x,z\} + z\{x,y\}$
Let A be a commutative algebra over a field \mathbb{F}. A **Poisson bracket** on A is a map $\{,\} : A \times A \to A$ satisfying the following properties:

- **Skew-symmetry**: $\{x, y\} = -\{y, x\}$
- **Bilinearity**: $\{z, ax + by\} = a\{z, x\} + b\{z, y\}$ for all $a, b \in \mathbb{F}$
- **Jacobi Identity**: $\{x, \{y, z\}\} + \{z, \{x, y\}\} + \{y, \{z, x\}\} = 0$
- **Leibniz Rule**: $\{x, yz\} = y\{x, z\} + z\{x, y\}$

We call $(A, \{,\})$ a **Poisson algebra**.
We define a Poisson bracket on $\mathbb{F}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ by

$$\{x_i, x_j \} = \{y_i, y_j \} = 0; \quad \{y_i, x_j \} = \delta_{ij};$$

where δ_{ij} is the Kronecker delta function, equal to 1 if $i = j$ and 0 otherwise.

Example:

$$\{xy, y^2 \} = x\{y, y^2 \} + y\{x, y^2 \} = 0 + y(-2y) = -2y^2.$$
We define a Poisson bracket on $\mathbb{F}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ by

$$\{x_i, x_j\} = \{y_i, y_j\} = 0;$$

$$\{y_i, x_j\} = \delta_{ij},$$

where δ_{ij} is 1 if $i = j$ and 0 otherwise.
We define a Poisson bracket on $\mathbb{F}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ by

- $\{x_i, x_j\} = \{y_i, y_j\} = 0$;
- $\{y_i, x_j\} = \delta_{ij} := \begin{cases} 1, & \text{if } i = j \\ 0, & \text{otherwise.} \end{cases}$
We define a Poisson bracket on \(\mathbb{F}[x_1, \ldots, x_n, y_1, \ldots, y_n] \) by

- \(\{x_i, x_j\} = \{y_i, y_j\} = 0; \)

- \(\{y_i, x_j\} = \delta_{ij} := \begin{cases} 1, & \text{if } i = j \\ 0, & \text{otherwise}. \end{cases} \)

Example

\[
\{xy, y^2\} = x\{y, y^2\} + y\{x, y^2\} \\
= 0 + y(2y\{x, y\}) \\
= -2y^2.
\]
An n-dimensional representation of a finite group G is a homomorphism $\rho : G \rightarrow GL(n)$.
An n-dimensional representation of a finite group G is a homomorphism $\rho : G \to GL(n)$.

Example

Let

$$G = \text{Dic}_n := \langle a, b \mid a^{2n} = 1, b^4 = 1, b^{-1}ab = a^{-1} \rangle.$$
An n-dimensional **representation** of a finite group G is a homomorphism $\rho: G \to GL(n)$.

Example

Let

$$G = \text{Dic}_n := \langle a, b \mid a^{2n} = 1, b^4 = 1, b^{-1}ab = a^{-1} \rangle.$$

Let ω be a primitive $(2n)$th root of unity in a field \mathbb{F}, and let $\rho: G \to GL(2, \mathbb{F})$ be defined by:
An n-dimensional **representation** of a finite group G is a homomorphism $\rho : G \to GL(n)$.

Example

Let

$$G = \text{Dic}_n := \langle a, b \mid a^{2n} = 1, b^4 = 1, b^{-1}ab = a^{-1} \rangle.$$

Let ω be a primitive $(2n)$th root of unity in a field \mathbb{F}, and let $\rho : G \to GL(2, \mathbb{F})$ be defined by:

$$\rho(a) = \begin{bmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{bmatrix} \quad \text{and} \quad \rho(b) = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}.$$
An n-dimensional representation of a finite group G is a homomorphism $\rho : G \rightarrow GL(n)$.

Example

Let

$$G = \text{Dic}_n := \langle a, b \mid a^{2n} = 1, b^4 = 1, b^{-1}ab = a^{-1} \rangle.$$

Let ω be a primitive $(2n)$th root of unity in a field \mathbb{F}, and let $\rho : G \rightarrow GL(2, \mathbb{F})$ be defined by:

$$\rho(a) = \begin{bmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{bmatrix} \quad \text{and} \quad \rho(b) = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}.$$

Then ρ is a representation of G.
Let $R = \mathbb{F}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ and let G be a group acting on R.
Let $R = \mathbb{F}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ and let G be a group acting on R.

Definition

We denote by R^G the invariant polynomial algebra of R with respect to G, i.e. the set of all $r \in R$ such that $g \cdot r = r$ for all $g \in G$.
Let $R = \mathbb{F}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ and let G be a group acting on R.

Definition

We denote by R^G the invariant polynomial algebra of R with respect to G, i.e. the set of all $r \in R$ such that $g \cdot r = r$ for all $g \in G$.

Example

Let S_2 act on $R = \mathbb{F}[x_1, x_2, y_1, y_2]$ by permuting indices (e.g. $(12) \cdot x_1 = x_2$). Then R^{S_2} is generated by the invariants $x_1 + x_2$, $y_1 + y_2$, $x_1 x_2$, $y_1 y_2$ and $x_1 y_1 + x_2 y_2$.
Example

Let $C_n = \langle g \mid g^n = 1 \rangle$ act on $R = \mathbb{F}[x, y]$ in the following way, where ω is a primitive nth root of unity:

$$g \cdot x = \omega x \quad \text{and} \quad g \cdot y = \omega^{-1}y.$$
Example

Let $C_n = \langle g \mid g^n = 1 \rangle$ act on $R = \mathbb{F}[x, y]$ in the following way, where ω is a primitive nth root of unity:

$$g \cdot x = \omega x \quad \text{and} \quad g \cdot y = \omega^{-1} y.$$

Then R^{C_n} is generated by $x^n, y^n,$ and xy.
Definition

For any Poisson algebra A, we denote by $\{A, A\}$ the linear span of all elements $\{f, g\}$ for $f, g \in A$.

P. Etingof and T. Schedler proved using algebraic geometric methods (D-modules) that for $F = \mathbb{C}$ or \mathbb{Q}, $\text{HP}_0(A)$ is finite-dimensional in many examples, including those coming from group invariants. We compute $\text{HP}_0(A)$ when $F = F_p$. In this case, $\text{HP}_0(A)$ is infinite-dimensional.
PROBLEM STATEMENT AND PAST RESULTS

Definition
For any Poisson algebra A, we denote by $\{A, A\}$ the linear span of all elements $\{f, g\}$ for $f, g \in A$.

Definition
The Poisson homology $HP_0(A)$ of a Poisson algebra A, is

\[HP_0(A) := A / \{A, A\}. \]
Problem statement and past results

Definition

For any Poisson algebra A, we denote by $\{A, A\}$ the linear span of all elements $\{f, g\}$ for $f, g \in A$.

Definition

The Poisson homology $HP_0(A)$ of a Poisson algebra A, is

$$HP_0(A) := A / \{A, A\}.$$

- P. Etingof and T. Schedler proved using algebraic geometric methods (D-modules) that for $\mathbb{F} = \mathbb{C}$ or \mathbb{Q}, HP_0 is finite-dimensional in many examples, including those coming from group invariants.
Problem statement and past results

Definition

For any Poisson algebra A, we denote by $\{A, A\}$ the linear span of all elements $\{f, g\}$ for $f, g \in A$.

Definition

The Poisson homology $HP_0(A)$ of a Poisson algebra A, is

$$HP_0(A) := A / \{A, A\}.$$

- P. Etingof and T. Schedler proved using algebraic geometric methods (D-modules) that for $\mathbb{F} = \mathbb{C}$ or \mathbb{Q}, HP_0 is finite-dimensional in many examples, including those coming from group invariants.

- We compute HP_0 when $\mathbb{F} = \mathbb{F}_p$. In this case, HP_0 is infinite-dimensional.
We form a grading

\[A/\{A,A\} := \bigoplus_{n \geq 0} A_n \]

into finite-dimensional pieces \(A_n \) consisting of homogeneous polynomials of degree \(n \).
We form a grading

\[A / \{ A, A \} := \bigoplus_{n \geq 0} A_n \]

into finite-dimensional pieces \(A_n \) consisting of homogeneous polynomials of degree \(n \).

Definition

We consider the **Hilbert Series** \(h(HP_0; t) := \sum \dim A_n t^n \).
We form a grading

\[A/\{A,A\} := \bigoplus_{n \geq 0} A_n \]

into finite-dimensional pieces \(A_n \) consisting of homogeneous polynomials of degree \(n \).

Definition

We consider the **Hilbert Series** \(h(HP_0; t) := \sum \dim A_n t^n \)

This is just a generating function with formal variable \(t \) formed from the grading.
We have examined the 2-dimensional case $\mathbb{F}[x, y]^G$.

Michael Zhang, Yongyi Chen MIT PRIMES
We have examined the 2-dimensional case \(\mathbb{F}[x, y]^G \). We proved:
We have examined the 2-dimensional case \(\mathbb{F}[x, y]^G \). We proved:

Theorem

If \(G = \text{Cyc}_n \) acts by
\[
\begin{bmatrix}
\omega & 0 \\
0 & \omega^{-1}
\end{bmatrix}
\]
where \(\omega \) is a primitive \(n \)th root of unity, for \(p > n \),
\[
h(\text{HP}_0(A); t) = \sum_{m=0}^{n-2} t^{2m} + \frac{t^{2p-2}(1 + t^{np})}{(1 - t^{2p})(1 - t^{np})}
\]

For small \(p \) coprime with \(n \), we prove a similar, but more complicated formula.
We have examined the 2-dimensional case $\mathbb{F}[x, y]^G$. We proved:

Theorem

If $G = \text{Cyc}_n$ acts by

$$\begin{bmatrix}
\omega & 0 \\
0 & \omega^{-1}
\end{bmatrix}$$

where ω is a primitive nth root of unity, for $p > n$, $h(\text{HP}_0(A); t) = \sum_{m=0}^{n-2} t^{2m} + \frac{t^{2p-2}(1 + t^{np})}{(1 - t^{2p})(1 - t^{np})}$

For small p coprime with n, we prove a similar, but more complicated formula.
Subgroups of $SL_2(\mathbb{C})$ have integers attached called "exponents" m_i, and a Coxeter number h.
Subgroups of $SL_2(\mathbb{C})$ have integers attached called "exponents" m_i, and a Coxeter number h.
We have the well-known:

Theorem

For subgroups G of $SL_2(\mathbb{C})$, and $A = \mathbb{C}[x, y]^G$, the Hilbert series of $HP_0(A)$ is: $h(HP_0; t) = \sum t^{2(m_i-1)}$
Subgroups of $SL_2(\mathbb{C})$ have integers attached called "exponents" m_i, and a Coxeter number h.
We have the well-known:

Theorem

For subgroups G of $SL_2(\mathbb{C})$, and $A = \mathbb{C}[x,y]^G$, the Hilbert series of $HP_0(A)$ is: $h(HP_0; t) = \sum t^{2(m_i-1)}$

Conjecture

For subgroups G of $SL_2(\mathbb{C})$, and $A = \mathbb{F}_p[x,y]^G$, the Hilbert series of $HP_0(A)$ is

$$h(HP_0(A); t) = \sum t^{2(m_i-1)} + t^{2(p-1)} \frac{1 + t^h}{(1 - t^a)(1 - t^b)},$$

and a and b are degrees of the primary invariants.
We will try to prove the afore-mentioned conjecture for subgroups of $SL_2(\mathbb{C})$. These are the dicyclic group Dic_n and the exceptional groups E_6, E_7, E_8.
We will try to prove the afore-mentioned conjecture for subgroups of $SL_2(\mathbb{C})$. These are the dicyclic group Dic_n and the exceptional groups E_6, E_7, E_8.

The conjecture is a theorem already for large p. We will prove it for all $p > h$.

We will try to prove the afore-mentioned conjecture for subgroups of $SL_2(\mathbb{C})$. These are the dicyclic group Dic_n and the exceptional groups E_6, E_7, E_8.

The conjecture is a theorem already for large p. We will prove it for all $p > h$.

We intend to extend our analysis of HP_0 to polynomial algebras of higher dimension, such as $\mathbb{F}[x_1, x_2, y_1, y_2]^G$.
In MAGMA, we computed the Poisson homology of cones of smooth plane curves. Based on these computations we make the following:
In MAGMA, we computed the Poisson homology of cones of smooth plane curves. Based on these computations we make the following:

Conjecture

Let A be the algebra $\mathbb{F}_p[x, y, z]/Q(x, y, z)$ of functions on the cone X of a smooth plane curve of degree d (that is, Q is nonsingular, and homogeneous of degree d). Then,

$$h(HP_0(A); t) = \frac{(1 - t^{d-1})^3}{(1 - t)^3} + t^{p+d-3}f(t^p)$$

where

$$f(z) = (1 - z)^{-2}(2g - (2g - 1)z + \sum_{j=0}^{d-2} z^j)$$

where $g = \frac{(d-1)(d-2)}{2}$ is the genus of the curve.
Thank you to the MIT PRIMES program for making this all possible.
Thank you to the MIT PRIMES program for making this all possible.

Thank you to Pavel Etingof and Travis Schedler for the proposal of the problem and their advice throughout the project.
Thank you to the MIT PRIMES program for making this all possible.

Thank you to Pavel Etingof and Travis Schedler for the proposal of the problem and their advice throughout the project.

Thank you to our mentor, David Jordan, for being a great teacher, providing guidance and taking the significant time to help us out.