In classical physics, systems are described in terms of observables:

- velocity v
- position p
- energy e
- momentum m

Measurements cannot occur simultaneously, but the order of observation does not matter!

$pm = mp$.
In classical physics, systems are described in terms of observables:
e.g. velocity v, position p, energy e, momentum m, ...
In classical physics, systems are described in terms of observables:
e.g. velocity v, position p, energy e, momentum m, ...
In classical physics, systems are described in terms of observables: e.g. velocity \(v \), position \(p \), energy \(e \), momentum \(m \), . . .

These observables evolve through time by “Hamilton’s equations”.

Measurements cannot occur simultaneously, but...
In classical physics, systems are described in terms of observables:
 e.g. velocity v, position p, energy e, momentum m, …

These observables evolve through time by “Hamilton’s equations”.

Measurements cannot occur simultaneously, but…
The order of observation does not matter!
In classical physics, systems are described in terms of observables:
e.g. velocity v, position p, energy e, momentum m, …

These observables evolve through time by “Hamilton’s equations”.

Measurements cannot occur simultaneously, but… The order of observation does not matter!

$$pm = mp.$$
In quantum physics, systems are also studied in terms of observable quantities: e.g. velocity V, position P, energy E, momentum M, ... These observables evolve through time by "Schrödinger's equations". Measurements cannot occur simultaneously, and... Heisenberg: the order of observation does matter! $PM = MP + \hbar$. Study of such systems is called "non-commutative algebra." Setting $\hbar = 0$, we recover classical physics.
Quantum spaces and non-commutative algebra

▶ In quantum physics, systems are also studied in terms of observable quantities:
e.g. velocity V, position P, energy E, momentum M, …

$PM = MP + \hbar$. Study of such systems is called “non-commutative algebra.”

Setting $\hbar = 0$, we recover classical physics.
In quantum physics, systems are also studied in terms of observable quantities:
e.g. velocity V, position P, energy E, momentum M, …

These observables evolve through time by “Schrödinger’s equations”.

Heisenberg: the order of observation does matter!

$PM = MP + \hbar$. Study of such systems is called “non-commutative algebra.”

Setting $\hbar = 0$, we recover classical physics.
In quantum physics, systems are also studied in terms of observable quantities: e.g. velocity V, position P, energy E, momentum M, …

These observables evolve through time by “Schrödinger’s equations”.

Measurements cannot occur simultaneously, and…
In quantum physics, systems are also studied in terms of observable quantities: e.g. velocity V, position P, energy E, momentum M, …

These observables evolve through time by “Schrödinger’s equations”.

Measurements cannot occur simultaneously, and… Heisenberg: the order of observation does matter!
In quantum physics, systems are also studied in terms of observable quantities: e.g. velocity V, position P, energy E, momentum M, …

These observables evolve through time by “Schrödinger’s equations”.

Measurements cannot occur simultaneously, and… Heisenberg: the order of observation does matter!

$$PM = MP + \hbar.$$
QUANTUM SPACES AND NON-COMMUTATIVE ALGEBRA

- In *quantum* physics, systems are also studied in terms of observable quantities:
e.g. velocity V, position P, energy E, momentum M, ...
- These observables evolve through time by “Schrödinger’s equations”.
- Measurements cannot occur simultaneously, and... Heisenberg: the order of observation *does* matter!

$$PM = MP + \hbar.$$

- Study of such systems is called “non-commutative algebra.”
In *quantum* physics, systems are also studied in terms of observable quantities: e.g. velocity V, position P, energy E, momentum M, ... These observables evolve through time by “Schrödinger’s equations”. Measurements cannot occur simultaneously, and... Heisenberg: the order of observation *does* matter!

\[PM = MP + \hbar. \]

Study of such systems is called “non-commutative algebra.”

Setting $\hbar = 0$, we recover classical physics.
In order to model mathematically Heisenberg’s principle, …
In order to model mathematically Heisenberg’s principle, …

- We should study algebras A (of observables).
In order to model mathematically Heisenberg’s principle, …

- We should study algebras A (of observables).
- They should come in families A_q.
In order to model mathematically Heisenberg’s principle, …

- We should study algebras A (of observables).
- They should come in families A_q (trad. $q = e^{\hbar}$).
In order to model mathematically Heisenberg’s principle, …

- We should study algebras A (of observables).
- They should come in families A_q (trad. $q = e^{\hbar}$).
- There should be a special value ($\hbar = 0 \iff q = 1$) such that A_1 is commutative.
In order to model mathematically Heisenberg’s principle, …

- We should study algebras A (of observables).
- They should come in families A_q (trad. $q = e^{\hbar}$).
- There should be a special value ($\hbar = 0 \iff q = 1$) such that A_1 is commutative.
- We should study A_q (quantum) by exporting knowledge of $A_{q=1}$ (classical), and vice versa.
A determinant formula for quantum GL(N)

Masahiro Namiki

MIT PRIMES

May 21, 2011
The determinant for $n \times n$ matrix is

$$det(A) = \sum_{\sigma \in S_n} sgn(\sigma)a^{1}_{\sigma(1)} \cdots a^{N}_{\sigma(N)}$$
Determinants

The determinant for \(n \times n \) matrix is

\[
\text{det}(A) = \sum_{\sigma \in S_n} \text{sgn}(\sigma) a_{\sigma(1)}^1 \cdots a_{\sigma(N)}^N
\]

Here, "sgn" is the unique homomorphism \(S_n \rightarrow \{-1, +1\} \) sending each transposition to \(-1\)
DETERMINANTS

The determinant for $n \times n$ matrix is

$$det(A) = \sum_{\sigma \in S_n} sgn(\sigma)a_{\sigma(1)}^1 \cdots a_{\sigma(N)}^N$$

Here, "sgn" is the unique homomorphism $S_n \to \{-1, +1\}$ sending each transposition to -1

$Det \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is $ad - bc$
The determinant for an $n \times n$ matrix is

$$det(A) = \sum_{\sigma \in S_n} sgn(\sigma) a_{\sigma(1)}^1 \cdots a_{\sigma(N)}^N$$

Here, "sgn" is the unique homomorphism $S_n \rightarrow \{-1, +1\}$ sending each transposition to -1.

$\text{Det} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is $ad - bc$

$\text{Det} \begin{pmatrix} a_1^1 & a_2^1 & a_3^1 \\ a_1^2 & a_2^2 & a_3^2 \\ a_1^3 & a_2^3 & a_3^3 \end{pmatrix}$ is

$$a_1^1a_2^2a_3^3 + a_2^1a_3^2a_1^3 + a_3^1a_1^2a_2^3 - a_1^1a_3^2a_2^3 - a_2^1a_1^2a_3^3 - a_3^1a_2^2a_1^3$$

Invertible matrices are characterized by non-zero determinant.
Determinants

The determinant for $n \times n$ matrix is

$$det(A) = \sum_{\sigma \in S_n} sgn(\sigma)a_{\sigma(1)}^1 \cdots a_{\sigma(N)}^N$$

Here, "sgn" is the unique homomorphism $S_n \rightarrow \{-1, +1\}$ sending each transposition to -1

$\text{Det}\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is $ad - bc$

$\text{Det}\begin{pmatrix} a_1^1 & a_2^1 & a_3^1 \\ a_1^2 & a_2^2 & a_3^2 \\ a_1^3 & a_2^3 & a_3^3 \end{pmatrix}$ is $a_1^1a_2^2a_3^3 + a_1^2a_2^3a_3^1 + a_3^1a_2^1a_3^2 - a_1^1a_2^3a_3^2 - a_2^1a_1^2a_3^3 - a_3^1a_2^2a_1^3$

Invertible matrices are characterized by non-zero determinant.
Definition: An algebra over \(\mathbb{C} \) is

\[A \text{ vector space over } \mathbb{C} \]

With a multiplication map \(m: A \times A \to A \) with the properties:

\[a \cdot (bc) = (ab) \cdot c \]
\[a \cdot (b + c) = a \cdot b + a \cdot c \]
\[(a + b) \cdot c = a \cdot c + b \cdot c \]
\[a \cdot (\lambda b) = \lambda \cdot (ab) \]

With a unit 1 \(\in A \) such that

\[1 \cdot a = a \cdot 1 = a \forall a \]

\(e.g.) \mathbb{C} \text{ itself} \)

\(\text{Mat}_2(\mathbb{C}) \) (\(= 2 \times 2 \) matrices)

\(\mathbb{C}[x, y] \) (\(= \text{polynomials in two variables} \))

\(\mathbb{C}[x, y] / (xy = yx) \)
Definition: An algebra over \mathbb{C} is

- A vector space over \mathbb{C}
ALGEBRA

Definition: An algebra over \(\mathbb{C} \) is

- A vector space over \(\mathbb{C} \)
- With a multiplication map \(m: \mathbb{A} \times \mathbb{A} \to \mathbb{A} \)

with the properties:

\[
\begin{align*}
 a \cdot (bc) &= (ab) \cdot c \\
 a \cdot (b + c) &= a \cdot b + a \cdot c \\
 (a + b) \cdot c &= a \cdot b + a \cdot c \\
 a \cdot (\lambda b) &= \lambda \cdot (ab)
\end{align*}
\]
ALGEBRA

Definition: An algebra over \(\mathbb{C} \) is

- A vector space over \(\mathbb{C} \)
- With a multiplication map \(m: A \times A \to A \) with the properties:
 \[
 a \cdot (bc) = (ab) \cdot c \\
 a \cdot (b + c) = a \cdot b + a \cdot c \\
 a \cdot (\lambda b) = \lambda \cdot (ab)
 \]
- With a unit \(1 \in A \) such that
 \[
 1 \cdot a = a \cdot 1 = a \quad \forall a
 \]
Definition: An algebra over \mathbb{C} is

- A vector space over \mathbb{C}
- With a multiplication map $m: A \times A \to A$ with the properties:
 \[a \cdot (bc) = (ab) \cdot c \]
 \[a \cdot (b + c) = a \cdot b + a \cdot c \]
 \[(a + b) \cdot c = a \cdot b + a \cdot c \]
 \[a \cdot (\lambda b) = \lambda \cdot (ab) \]
- With a unit $1 \in A$ such that
 \[1 \cdot a = a \cdot 1 = a \quad \forall a \]
- E.g.)
 - \mathbb{C} itself
 - $\text{Mat}_2(\mathbb{C})$ (= 2 × 2 matrices)
 - $\mathbb{C}[x, y]$ (= polynomials in two variables)
 - $= \mathbb{C}\langle x, y \rangle/(xy = yx)$
\[A_q(\text{Mat}_N) = \mathbb{C}\langle a^i_j \mid i = 1, 2 \cdots N, \ j = 1, 2 \cdots N \rangle / \text{Relations} \]
\[A_q(\text{Mat}_N) = \mathbb{C}\langle a^i_j \mid i = 1, 2 \cdots N, \ j = 1, 2 \cdots N \rangle/\text{Relations} \]

The R-Matrix:
\[
R^{ij}_{kl} = q^{\delta_{ij}}\delta_{ik}\delta_{jl} + (q - q^{-1})\theta(i - j)\delta_{il}\delta_{jk}
\]

which
\[
\theta(s) = \begin{cases}
1 & \text{if } s > 0 \\
0 & \text{otherwise}
\end{cases} \\
\delta_{mn} = \begin{cases}
1 & \text{if } m = n \\
0 & \text{if } m \neq n
\end{cases}
\]
\(A_q(\text{Mat}_N) \)

\[
A_q(\text{Mat}_N) = \mathbb{C}\langle a^i_j \mid i = 1, 2 \cdots N, j = 1, 2 \cdots N \rangle / \text{Relations}
\]

The R-Matrix:

\[
R^{ij}_{kl} = q^{\delta_{ij}} \delta_{ik} \delta_{jl} + (q - q^{-1}) \theta(i - j) \delta_{il} \delta_{jk}
\]

which

\[
\theta(s) = \begin{cases}
1 & \text{if } s > 0 \\
0 & \text{otherwise}
\end{cases}
\]

\[
\delta_{mn} = \begin{cases}
1 & \text{if } m = n \\
0 & \text{if } m \neq n
\end{cases}
\]

\[
R^{22}_{22} = q^1 \cdot 1 \cdot 1 + (q - q^{-1}) \cdot 0 \cdot 1 \cdot 1 = q
\]
\[A_q(\text{Mat}_N) \]
\[A_q(\text{Mat}_N) = \mathbb{C}\langle a_i^j \mid i = 1, 2 \cdots N, j = 1, 2 \cdots N \rangle/\text{Relations} \]

The R-Matrix:
\[R_{kl}^{ij} = q^{\delta_{ij}}\delta_{ik}\delta_{jl} + (q - q^{-1})\theta(i - j)\delta_{il}\delta_{jk} \]

which
\[\theta(s) = \begin{pmatrix} 1 & \text{if } s > 0 \\ 0 & \text{otherwise} \end{pmatrix} \]
\[\delta_{mn} = \begin{pmatrix} 1 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{pmatrix} \]

\[R_{22}^{22} = q^{1 \cdot 1 \cdot 1} + (q - q^{-1}) \cdot 0 \cdot 1 \cdot 1 = q \]
\[\begin{pmatrix} q & 0 & 0 & 0 \\ 0 & 1 & q - q^{-1} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & q \end{pmatrix} \]
\(A_q(\text{Mat}_N) \)

\[
A_q(\text{Mat}_N) = \mathbb{C}\langle a^i_j \mid i = 1, 2 \cdots N, \ j = 1, 2 \cdots N \rangle/\text{Relations}
\]

The R-Matrix:

\[
R^{ij}_{kl} = q^{\delta_{ij}\delta_{ik}\delta_{jl}} + (q - q^{-1})\theta(i - j)\delta_{il}\delta_{jk}
\]

which

\[
\theta(s) = \begin{cases} 1 & \text{if } s > 0 \\ 0 & \text{otherwise} \end{cases} \quad \delta_{mn} = \begin{cases} 1 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}
\]

\[
R^{22}_{22} = q^{1\cdot1\cdot1} + (q - q^{-1})\cdot0\cdot1\cdot1 = q
\]

\[
\begin{pmatrix} q & 0 & 0 & 0 \\ 0 & 1 & q - q^{-1} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & q \end{pmatrix}
\]

Relations: for all \(i, j = 1 \cdots N \)

\[
\sum_{k,l,m,o} R^{ij}_{kl}a^l_mR^{mk}_{no}a^o_p = \sum_{s,u,t,v} a^i_sR^{sj}_{tu}a^u_vR^{vt}_{np}
\]
\[A_q(\text{Mat}_N) = \mathbb{C} \langle a^i_j \mid i = 1, 2 \cdots N, \ j = 1, 2 \cdots N \rangle / \text{Relations} \]

The R-Matrix:
\[R_{ij}^{kl} = q^{\delta_{ij}} \delta_{ik} \delta_{jl} + (q - q^{-1}) \theta(i - j) \delta_{il} \delta_{jk} \]

which
\[\theta(s) = \begin{pmatrix} 1 & \text{if } s > 0 \\ 0 & \text{otherwise} \end{pmatrix} \quad \delta_{mn} = \begin{pmatrix} 1 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{pmatrix} \]

\[R_{22}^{22} = q^1 \cdot 1 \cdot 1 + (q - q^{-1}) \cdot 0 \cdot 1 \cdot 1 = q \]
\[\begin{pmatrix} q & 0 & 0 & 0 \\ 0 & 1 & q - q^{-1} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & q \end{pmatrix} \]

Relations: for all \(i, j = 1 \cdots N \)
\[\sum_{k,l,m,o} R_{kl}^{ij} a_m^l R_{no}^{mk} a_p^o = \sum_{s,u,t,v} a_s^i R_{tu}^{sj} a_v^u R_{np}^{vt} \]

e.g.) \[a_1^2 a_2^1 = a_2^1 a_1^2 + (1 - q^{-2}) a_1^1 a_2^2 + (q^{-2} - 1) a_2^2 a_2^2 \]
THE QUANTUM DETERMINANT

For $q = 1$, $A_q(\text{Mat}_N) = \mathbb{C}[a^i_j | i, j = 1, \ldots N]$ is a polynomial algebra. (e.g. $a^2_1a^1_2 = a^1_2a^2_1 + (1 - q^{-2})a^1_1a^2_2 + (q^{-2} - 1)a^2_2a^2_2$)
THE QUANTUM DETERMINANT

For \(q = 1 \), \(A_q(\text{Mat}_N) = \mathbb{C}[a^i_j \mid i, j = 1, \ldots N] \) is a polynomial algebra. (e.g. \(a_1^2a_2^1 = a_2^1a_1^2 + (1 - q^{-2})a_1^1a_2^2 + (q^{-2} - 1)a_2^2a_2^2 \))

For \(q \neq 1 \), \(A_q(\text{Mat}_N) \) is a non-commutative algebra.
THE QUANTUM DETERMINANT

For $q = 1$, $A_q(Mat_N) = \mathbb{C}[a^i_j | i, j = 1, \ldots N]$ is a polynomial algebra. (e.g. $a_1^2a_2^1 = a_2^1a_1^2 + (1 - q^{-2})a_1^1a_2^2 + (q^{-2} - 1)a_2^2a_2^2$)

For $q \neq 1$, $A_q(Mat_N)$ is a non-commutative algebra.

However it has a central element (i.e. an element which commutes with all other elements) called the quantum determinant det_q.
THE QUANTUM DETERMINANT

For \(q = 1 \), \(A_q(Mat_N) = \mathbb{C}[a^i_j \mid i, j = 1, \ldots N] \) is a polynomial algebra. (e.g. \(a_1^2a_2^1 = a_2^1a_1^2 + (1 - q^{-2})a_1^1a_2^2 + (q^{-2} - 1)a_2^2a_2^2 \))

For \(q \neq 1 \), \(A_q(Mat_N) \) is a non-commutative algebra.

However it has a central element (i.e. an element which commutes with all other elements) called the quantum determinant \(\det_q \).

Kolb-Stokman '08: "It would be interesting to write the quantum determinant explicitly in terms of the generators \(\{a^i_j\} \)

\[\ldots \] This seems to be a non-trivial combinatorial task."
THE QUANTUM DETERMINANT

For $q = 1$, $A_q(\text{Mat}_N) = \mathbb{C}[a^i_j \mid i, j = 1, \ldots N]$ is a polynomial algebra. (e.g. $a_1^2 a_2^1 = a_2^1 a_1^2 + (1 - q^{-2})a_1^1 a_2^2 + (q^{-2} - 1)a_2^2 a_2^2$)

For $q \neq 1$, $A_q(\text{Mat}_N)$ is a non-commutative algebra.

However it has a central element (i.e. an element which commutes with all other elements) called the quantum determinant \det_q.

Kolb-Stokman ’08: “It would be interesting to write the quantum determinant explicitly in terms of the generators $\{a^i_j\}$ … This seems to be a non-trivial combinatorial task.”

Kulish-Sasaki ’92: found an explicit formula for $N = 2$ only.

We sought a formula for the central element in the form:
THE QUANTUM DETERMINANT

For $q = 1$, $A_q(Mat_N) = \mathbb{C}[a^i_j \mid i, j = 1, \ldots N]$ is a polynomial algebra. (e.g. $a^2_1 a^1_2 = a^1_2 a^2_1 + (1 - q^{-2})a^1_1 a^2_2 + (q^{-2} - 1)a^2_2 a^2_1$)

For $q \neq 1$, $A_q(Mat_N)$ is a non-commutative algebra.

However it has a central element (i.e. an element which commutes with all other elements) called the quantum determinant \det_q.

Kolb-Stokman '08: "It would be interesting to write the quantum determinant explicitly in terms of the generators $\{a^i_j\}$. . . This seems to be a non-trivial combinatorial task."

Kulish-Sasaki '92: found an explicit formula for $N = 2$ only.

We sought a formula for the central element in the form:

$$z = \det_q = \sum_{\sigma \in S_n} \text{sgn}(\sigma) q^{f(\sigma)} a^1_{\sigma(1)} \cdots a^N_{\sigma(N)}.$$
Solving for f

for $N = 2$
SOLVING FOR f

for $N = 2$

\[\det_q = a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2 \]
SOLVING FOR f

for $N = 2$

$$det_q = a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2$$

Since $det_q \cdot a_j^i - a_j^i \cdot det_q = 0$, $det_q \cdot a_2^1 - a_2^1 \cdot det_q = 0$
SOLVING FOR f

for $N = 2$

$$det_q = a^1_1 a^2_2 - t_{(12)} a^1_2 a^2_1$$

Since $det_q \cdot a^i_j - a^i_j \cdot det_q = 0$, $det_q \cdot a^1_2 - a^1_2 \cdot det_q = 0$

$$\Leftrightarrow (a^1_1 a^2_2 - t_{(12)} a^1_2 a^2_1) \cdot a^1_2 - a^1_2 \cdot (a^1_1 a^2_2 - t_{(12)} a^1_2 a^2_1) = 0$$
Solving for f

for $N = 2$

\[\det_q = a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2 \]

Since \(\det_q \cdot a_j^i - a_j^i \cdot \det_q = 0 \), \(\det_q \cdot a_2^1 - a_2^1 \cdot \det_q = 0 \)

\[\Leftrightarrow \quad (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) \cdot a_2^1 - a_2^1 \cdot (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) = 0 \]
SOLVING FOR f

for $N = 2$

$$\text{det}_q = a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2$$

Since $\text{det}_q \cdot a_j^i - a_j^i \cdot \text{det}_q = 0$, \quad $\text{det}_q \cdot a_2^1 - a_2^1 \cdot \text{det}_q = 0$

$$\Leftrightarrow \quad (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) \cdot a_2^1 - a_2^1 \cdot (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) = 0$$

$$a_2^1 \cdot (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) - a_2^1 \cdot (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) + \alpha = 0$$
Solving for f

for $N = 2$

$$det_q = a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2$$

Since $det_q \cdot a_j^i - a_j^i \cdot det_q = 0$, $det_q \cdot a_2^1 - a_2^1 \cdot det_q = 0$

$$\Leftrightarrow (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) \cdot a_2^1 - a_2^1 \cdot (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) = 0$$

$$a_2^1 \cdot (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) - a_2^1 \cdot (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) + \alpha = 0$$

In this case,

$$\alpha = (1 - q^2 + t_{(12)} - t_{(12)} q^{-2})(a_2^1 a_1^1 a_2^2 - a_2^1 a_2^2 a_2^2) = 0$$
SOLVING FOR \(f \)

for \(N = 2 \)

\[
\det_q = a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^1
\]

Since \(\det_q \cdot a_j^i - a_j^i \cdot \det_q = 0 \), \(\det_q \cdot a_2^1 - a_2^1 \cdot \det_q = 0 \)

\[
\Leftrightarrow \quad (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^1) \cdot a_2^1 - a_2^1 \cdot (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^1) = 0
\]

\[
a_2^1 \cdot (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^1) - a_2^1 \cdot (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^1) + \alpha = 0
\]

In this case,

\[
\alpha = (1 - q^2 + t_{(12)} - t_{(12)} q^{-2})(a_2^1 a_1^1 a_2^2 - a_2^1 a_2^2 a_2^2) = 0
\]

So, \(t_{(12)} = q^2 \), \(f((12)) = 2 \)
In order to generalize this computation for all \(n \), we need to know all the formulas for commuting two elements \(a_i^j a_m^r \).
SOLVING FOR f

In order to generalize this computation for all n, we need to know all the formulas for commuting two elements $a_i^m a_n^j$.

Using the information, we made a program which will change arbitrary order of elements in the right order.

(Right order means $(m > i) \ or \ (i = m \ and \ n > j)$).
Solving for f

In order to generalize this computation for all n, we need to know all the formulas for commuting two elements $a_i^j a_m^n$.

Using the information, we made a program which will change arbitrary order of elements in the right order.

(Right order means $(m > i)$ or $(i = m \text{ and } n > j)$).

We made this program organize

\[
det_q \cdot a_2^1 - a_2^1 \cdot det_q \text{ for } N = 3, 4, 5, 6.
\]
SOLVING FOR \(f \)

In order to generalize this computation for all \(n \), we need to know all the formulas for commuting two elements \(a_i^i a_m^m \).

Using the information, we made a program which will change arbitrary order of elements in the right order.

(Right order means \((m > i) \) or \((i = m \) and \(n > j \))).

We made this program organize
\[
\det_q \cdot a_2^1 - a_2^1 \cdot \det_q \quad \text{for } N = 3, 4, 5, 6.
\]

We also set a program to solve the equations that we got from this.
(such as \(1 - q^2 + t_{(12)} - t_{(12)}q^{-2} = 0 \) in \(N = 2 \))
SOLVING FOR \(f \)

In order to generalize this computation for all \(n \), we need to know all the formulas for commuting two elements \(a_i^ja_m^j \).

Using the information, we made a program which will change arbitrary order of elements in the right order.

(Right order means \((m > i) \text{ or } (i = m \text{ and } n > j)\)).

We made this program organize
\[
det_q \cdot a_1^1 - a_1^2 \cdot \det_q \quad \text{for } N = 3, 4, 5, 6.
\]

We also set a program to solve the equations that we got from this.
(such as \(1 - q^2 + t_{(12)} - t_{(12)}q^{-2} = 0 \text{ in } N = 2 \))

Thus, we got the exponents for each of the permutations.
LIST

A part of data for $N = 4$

<table>
<thead>
<tr>
<th>Cycle notation</th>
<th>Permutation notation</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(1, 2)$</td>
<td>$[2, 1, 3, 4]$</td>
<td>q^2</td>
</tr>
<tr>
<td>$(2, 3)$</td>
<td>$[1, 3, 2, 4]$</td>
<td>q^2</td>
</tr>
<tr>
<td>$(3, 4)$</td>
<td>$[1, 2, 4, 3]$</td>
<td>q^2</td>
</tr>
<tr>
<td>$(1, 3, 2)$</td>
<td>$[3, 1, 2, 4]$</td>
<td>q^3</td>
</tr>
<tr>
<td>$(1, 3)$</td>
<td>$[3, 2, 1, 4]$</td>
<td>q^4</td>
</tr>
<tr>
<td>$(1, 2, 3)$</td>
<td>$[2, 3, 1, 4]$</td>
<td>q^4</td>
</tr>
<tr>
<td>$(1, 4, 3, 2)$</td>
<td>$[4, 1, 2, 3]$</td>
<td>q^4</td>
</tr>
<tr>
<td>$(1, 4, 3)$</td>
<td>$[4, 2, 1, 3]$</td>
<td>q^5</td>
</tr>
<tr>
<td>$(1, 3, 4, 2)$</td>
<td>$[3, 1, 4, 2]$</td>
<td>q^5</td>
</tr>
<tr>
<td>$(1, 2, 3, 4)$</td>
<td>$[2, 3, 4, 1]$</td>
<td>q^6</td>
</tr>
<tr>
<td>$(1, 2, 4)$</td>
<td>$[2, 4, 3, 1]$</td>
<td>q^6</td>
</tr>
<tr>
<td>$(1, 3, 4)$</td>
<td>$[3, 2, 4, 1]$</td>
<td>q^6</td>
</tr>
<tr>
<td>$(1, 3)(2, 4)$</td>
<td>$[3, 4, 1, 2]$</td>
<td>q^6</td>
</tr>
<tr>
<td>$(1, 4, 2, 3)$</td>
<td>$[4, 3, 1, 2]$</td>
<td>q^7</td>
</tr>
</tbody>
</table>
CONJECTURE FORMULA

By making more observations and looking at the connections between the exponents and the permutation, we predict that the formula is,

\[\det q = \sum_{s \in S_n} (-q)^{l(s)} \cdot q^{e(s)} \cdot a_1^{s(1)} \cdots a_N^{s(N)} \]

where \(l(s) \) is the length of the permutation, which is the number of pairs out of order after \(s \).

\(i > j, s(i) < s(j) \)

\(e(s) \) is the excedance, the number of \(i \) such that \(s(i) > i \).
Conjecture Formula

By making more observations and looking at the connections between the exponents and the permutation, we predict that the formula is,

\[\det_q = \sum_{s \in S_n} (-q)^{l(s)} \cdot q^{e(s)} \cdot a^1_{s(1)} \cdots a^N_{s(N)} \]
By making more observations and looking at the connections between the exponents and the permutation, we predict that the formula is,

$$det_q = \sum_{s \in S_n} (-q)^{l(s)} \cdot q^{e(s)} \cdot a_1^{s(1)} \cdots a_N^{s(N)}$$

$l(s)=”\text{Length of the permutation”}$
which is the number of pairs out of order after s.
$(i > j, s(i) < s(j))$

$e(s)=\text{excedance, the number of i such that } s(i) > i.$
We confirmed our conjecture formula through $N = 11$.

We are presently working on the general proof.
First and foremost, I would like to thank David, who has really helped me throughout the program.
ACKNOWLEDGMENTS

First and foremost, I would like to thank David, who has really helped me throughout the program.

I would like to thank PRIMES for making this project possible.

I would also like to thank my parents who have kindly supported me.
ACKNOWLEDGMENTS

First and foremost, I would like to thank David, who has really helped me throughout the program.

I would like to thank PRIMES for making this project possible.

I would also like to thank my parents who have kindly supported me.

Thank you all for listening to my presentation.