Progress on Parallel Chip-Firing

Ziv Scully

MIT PRIMES

May 21, 2011
Motivation

- Simple rules
- “Obvious” patterns which are difficult to prove, or even wrong
- Potential connections to other fields of mathematics and science
The Parallel Chip-Firing Game

- Played on a graph
- Assign a number of chips to each vertex
- On each turn:
 - If a vertex has at least as many chips as neighbors, it *fires*
 - Otherwise, we say it *waits*
 - When a vertex fires, it gives one chip to each of its neighbors
 - Happens for all vertices in parallel
The Parallel Chip-Firing Game

Ziv Scully (MIT PRIMES)
The Parallel Chip-Firing Game
The Parallel Chip-Firing Game
The Parallel Chip-Firing Game

Ziv Scully (MIT PRIMES)
Progress on Parallel Chip-Firing
May 21, 2011 5 / 18
The Parallel Chip-Firing Game

Progress on Parallel Chip-Firing

May 21, 2011 5 / 18
The Parallel Chip-Firing Game

Ziv Scully (MIT PRIMES)
Progress on Parallel Chip-Firing
May 21, 2011

a b c d e f g h
5 1 0 0 0 2 0 0
2 2 0 1 2 0 1 0
3 0 1 1 2 1 0 0
0 1 1 2 3 1 0 0
The Parallel Chip-Firing Game

Ziv Scully (MIT PRIMES)
The Parallel Chip-Firing Game

Ziv Scully (MIT PRIMES)

Progress on Parallel Chip-Firing

May 21, 2011 5 / 18
The Parallel Chip-Firing Game

Ziv Scully (MIT PRIMES)
The Parallel Chip-Firing Game

Ziv Scully (MIT PRIMES)
The Parallel Chip-Firing Game

Ziv Scully (MIT PRIMES)
Basic Properties

- All games are eventually periodic
- All vertices fire the same number of times in a period
 - In a periodic-1 position, either all vertices fire or all vertices wait
- Period > 2 needs a cycle
Notation

- $\sigma(t)$ is the position after taking t turns, starting with position $\sigma(0)$
- $\sigma_v(t)$ is the number of chips on vertex v in position $\sigma(t)$
- $\Phi_v(t)$ is the number of v’s neighbors that fire at time t; v gets one chip from each
- $F_v(t)$ is 1 if v fires at time t and 0 otherwise
- c is the total number of chips in a position
- If G is a graph, $V(G)$ is its vertex set and $E(G)$ is its edge set
Outline of Literature

- Bitar’s conjecture: maximum period \leq number of vertices
- Bitar and Goles: Trees have period 1 or 2
- Kiwi et al.: Bitar’s conjecture is false!
- Dall’Asta: Period on C_n divides n
- Levine: Period on $K_n \leq n$
- Jiang: Period on $K_{a,b} \leq 2 \min(a, b)$
Periodic or Not?

Period 4
(not periodic)

Periodic-4

Ziv Scully (MIT PRIMES)
Theorem (Characterization of periodic-2 positions)

A position $\sigma(t)$ on graph G is periodic-2 if and only if for all $v \in V(G)$, $\deg(v) \leq \sigma_v(t) + \Phi_v(t) \leq 2\deg(v) - 1$.

Proof.

When the period is 2, vertices alternate between firing and waiting. The above inequality is true if and only if v is about to switch states.
Understanding Trees

Ziv Scully (MIT PRIMES)
Progress on Parallel Chip-Firing
May 21, 2011 11 / 18
Understanding Trees

![Diagram of two trees with numbers at each node]

Ziv Scully (MIT PRIMES)
Understanding Trees

Ziv Scully (MIT PRIMES)
Understanding Trees

Ziv Scully (MIT PRIMES)
Understanding Trees

Progress on Parallel Chip-Firing

Ziv Scully (MIT PRIMES)
Understanding Trees

Ziv Scully (MIT PRIMES)

Progress on Parallel Chip-Firing

May 21, 2011 11 / 18
Understanding Trees

Period 1

Period 2

Ziv Scully (MIT PRIMES)
Understanding Trees

Period 1

Period 2

Ziv Scully (MIT PRIMES)
Understanding Trees

Period 1

Period 2
Understanding Trees

Theorem (Number of chips on a tree determines period)

If a game on a tree graph G has c chips, its eventual period is 2 if and only if $|E(G)| \leq c \leq 2|E(G)| - 1$.
Theorem (Number of chips on a tree determines period)

If a game on a tree graph G has c chips, its eventual period is 2 if and only if $|E(G)| \leq c \leq 2|E(G)| - 1$.

Proof.

If the period is n, then for some time t, $\sigma(t)$ will be periodic-n.

If $n = 1$:

\[\sigma_v(t) \leq \deg(v) - 1 \quad \text{deg}(v) \leq \sigma_v(t) \]
\[c \leq |E(G)| - 1 \quad 2|E(G)| \leq c \]

If $n = 2$:

\[\deg(v) \leq \sigma_v(t) + \Phi_v(t) \leq 2\deg(v) - 1 \]
\[2|E(G)| \leq c + \sum \frac{\Phi_v(t) + \Phi_v(t + 1)}{2} \leq 3|E(G)| - 1 \]
\[|E(G)| \leq c \leq 2|E(G)| - 1 \]
Firing Patterns

- String of 1s and 0s indicating firing and waiting, respectively
- Classification
 - Alternating: (1, 0)
 - Sparse: not alternating, two types
 - Sparsely firing: never fires twice in a row
 - Sparsely waiting: never waits twice in a row
 - Clumpy: neither sparse nor alternating
Motors

- A special vertex with a fixed firing pattern
- Doesn’t care about receiving chips
- Natural motors
 - Subgraphs that follow normal chip firing rules
 - One key vertex behaves like a motor
 - Receiving external chips doesn’t change its firing pattern
Theorem (Periodic behavior of trees with one sparse motor)

If motor m in tree graph G is sparse, then for all $v \in V(G)$ at any periodic time t, $F_v(t) = F_m(t - d)$, where d is the distance from m to v.

Ziv Scully (MIT PRIMES)
Progress on Parallel Chip-Firing
May 21, 2011 15 / 18
Theorem (Periodic behavior of trees with one sparse motor)

If motor m in tree graph G is sparse, then for all $v \in V(G)$ at any periodic time t, $F_v(t) = F_m(t-d)$, where d is the distance from m to v.
Motorized Trees

Theorem (Periodic behavior of trees with one sparse motor)

*If motor m in tree graph G is sparse, then for all $v \in V(G)$ at any periodic time t, $F_v(t) = F_m(t - d)$, where d is the distance from m to v.***
Theorem (Periodic behavior of trees with one sparse motor)

If motor m in tree graph G is sparse, then for all $v \in V(G)$ at any periodic time t, $F_v(t) = F_m(t - d)$, where d is the distance from m to v.

Note: The diagram illustrates the concept of a sparse motor in a tree graph, where the motor affects the periodic behavior of nodes in the graph.
Theorem (Periodic behavior of trees with one sparse motor)

If motor m in tree graph G is sparse, then for all $v \in V(G)$ at any periodic time t, $F_v(t) = F_m(t - d)$, where d is the distance from m to v.
Theorem (Periodic behavior of trees with one sparse motor)

If motor m in tree graph G is sparse, then for all $v \in V(G)$ at any periodic time t, $F_v(t) = F_m(t - d)$, where d is the distance from m to v.
Theorem (Periodic behavior of trees with one sparse motor)

If motor m in tree graph G is sparse, then for all $v \in V(G)$ at any periodic time t, $F_v(t) = F_m(t - d)$, where d is the distance from m to v.

Ziv Scully (MIT PRIMES)
Theorem (Periodic behavior of trees with one sparse motor)

If motor m in tree graph G is sparse, then for all $v \in V(G)$ at any periodic time t, $F_v(t) = F_m(t - d)$, where d is the distance from m to v.
Theorem (Periodic behavior of trees with one sparse motor)

If motor m in tree graph G is sparse, then for all $v \in V(G)$ at any periodic time t, $F_v(t) = F_m(t - d)$, where d is the distance from m to v.
Constructing Natural Sparse and Alternating Motors

\((0, 1)\)
Constructing Natural Sparse and Alternating Motors

(0, 0, 5)
Constructing Natural Sparse and Alternating Motors

(0, 0, 0,

Ziv Scully (MIT PRIMES)
Constructing Natural Sparse and Alternating Motors

Ziv Scully (MIT PRIMES)
Constructing Natural Sparse and Alternating Motors

(0, 0, 0, 0, 0, 1,
Constructing Natural Sparse and Alternating Motors

(0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
Constructing Natural Sparse and Alternating Motors

(0, 0, 0, 0, 0, 1, 0, 0, 0, 0)
Constructing Natural Sparse and Alternating Motors

\[(0, 0, 0, 0, 1, 0, 0, 0, 0)\]
Further Questions

- Can a vertex have a clumpy firing pattern in a period?
- Can every vertex firing be traced back to a “driving cycle”?
- If a graph has a possible period of length mp for some prime p, must the graph have a cycle of length np?
Acknowledgments

- Mentor, Yan Zhang, MIT
- Collaborator, Damien Jiang, MIT
- MIT Program for Research in Mathematics, Engineering and Science
- Dr. Anne Fey, TU Delft
- Dr. Tanya Khovanova, MIT
- Dr. Lionel Levine, MIT