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1 Introduction

Lowest-weight representations of Cherednik algebras H~,c have been studied in both characteristic
0 and positive characteristic. However, the case of positive characteristic has been studied less,
because of a lack of general tools. In positive characteristic the lowest-weight representation Lc(τ)
of the Cherednik algebra is finite-dimensional. The representation theory of complex reflection
groups becomes more complicated in positive characteristic, which makes the representation theory
of the associated Cherednik algebras more interesting.

The Cherednik algebra for the rank 1 group Z/l has been studied by Latour in [Latour]. Martina
Balagović and Harrison Chen have studied the Cherednik algebras for GLn(Fq) and SLn(Fq) in
[BC]. The nonmodular case for the symmetric group Sn (where the characteristic does not divide
the order of the group) has been studied by Roman Bezrukavnikov, Michael Finkelberg, and Victor
Ginzburg in the context of algebraic geometry in [BFG]. The nonmodular case has also been
studied in [Gordon] for the symmetric group Sn (permutation matrices).

Unlike previous work, this paper studies Cherednik algebras for complex reflection groups in
characteristic 0 reduced modulo p (the characteristic), mostly in the modular case (where p divides
the order of the group) which is the most difficult case. The groups studied here are also of higher
rank than previous work. We study representations of Cherednik algebras of complex reflection
groups G(m,m, n) and G(m, 1, n) where the parameter ~ for the Cherednik algebra is equal to 0,
focusing on finding generators for the submodule Jc and then describing the quotient Mc/Jc = Lc
that is a representation of the Cherednik algebra.

2 Definitions

We now define the Cherednik algebra which was introduced in [EG], and give some preliminary
definitions. We use [EM] as a reference for this section.

Let h be a vector space of dimension n over a field K. A reflection is a linear operator s on h
that has finite order and such that rank(s − I) = 1. A finite subgroup G of GL(h) is a complex
reflection group if it is generated by reflections. Complex reflection groups are generally studied
when K = C, which is why they are called “complex”, but the definitions still make sense for other
fields. The family of complex reflection groups we work with is indexed as G(m, r, n): G(m, r, n)
is the group of n by n permutation matrices with entries that are mth roots of unity such that the
product of the entries is an (m/r)th root of unity. For example, G(1, 1, n) is the symmetric group
Sn, G(2, 1, n) is signed permutation matrices, and G(2, 2, n) is signed permutation matrices with
an even number of −1s. We note that the characteristic of K cannot divide m.
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Let S be the set of reflections in our chosen complex reflection group G. We note that G acts
on h∗ as well as h: For all f ∈ h∗, x ∈ h, g ∈ G, we have gf(x) = f(g−1x).

Each reflection in G has n− 1 eigenvectors with eigenvalue 1 and 1 eigenvector with a different
eigenvalue that is a root of unity. For each reflection s, we can choose eigenvectors α∨s ∈ h, αs ∈ h∗

for the eigenvalue of s that is not 1. We scale them so that 〈α∨s , αs〉 = 2.
Select a function c from the conjugacy classes of S to K and a number ~ in K. T (h⊕ h∗) the

tensor algebra of the direct sum of h and h∗ and K[G] is the group algebra of G. The Cherednik
algebra H~,c(G, h) is T (h⊕ h∗) oK[G], modulo the following relations:

For any x, x′ ∈ h∗, y, y′ ∈ h, we set [x, x′] = 0, [y, y′] = 0 and

[y, x] = ~〈y, x〉 −
∑
s∈S

c(s)〈y, αs〉〈α∨s , x〉s.

This algebra is Z-graded: x ∈ h∗ have degree 1, y ∈ h have degree −1, and g ∈ G have degree 0.
Lowest weight Z-graded representations of H~,c(G, h) are constructed from Verma modules.

Let τ be an irreducible representation of G. By the PBW property, the Cherednik algebra can be
decomposed as Sym(h∗)⊗K[G]⊗ Sym(h). Then let Sym(h) act as 0 on τ to construct the Verma
module Mc(G, h, τ) = H~,c(G, h)⊗K[G]nSym(h) τ . There is a unique maximal proper submodule Jc of
Mc which can be realized as the kernel of a particular bilinear form βc : Mc(G, h, τ)⊗Mc̄(G, h

∗, τ∗)→
K, where c̄ is the function such that c̄(s) = c(s−1). As vector spaces, Mc is isomorphic to Sym(h∗)⊗
τ , which follows from the PBW property.

The Dunkl operator of an element y ∈ h acting on Mc is defined as follows:

Dy = ~∂y ⊗ 1−
∑
s∈S

c(s)
〈y, αs〉
αs

(1− s)⊗ s

For all f ⊗ t ∈ Sym(h∗)⊗ τ, x ∈ h∗, g ∈ G, y ∈ h:

x(f ⊗ t) = xf ⊗ t
g(f ⊗ t) = g(f)⊗ g(t)

y(f ⊗ t) = Dy(f ⊗ t)

Mc and Lc inherit a grading from H~,c(G, h). We say that the Hilbert series of Lc is
∑∞

i=0

(dim(Lc)i)t
i.

βc has the following properties:
For all f ⊗ t ∈Mc, h ∈Mc̄, v ∈ τ, w ∈ τ∗, x ∈ h∗, y ∈ h:

βc(xf ⊗ t, h) = βc(f ⊗ t, xh)

y(f ⊗ t) = Dy(f ⊗ t)
βc(f ⊗ t, yh) = βc(Dy(f ⊗ t), h)

βc(v, w) = w(v)

These relations give recursive properties for βc that allow us to calculate the bilinear form and
thus find Jc. The lowest weight representation of the Cherednik algebra is Lc(τ) = Mc/Jc.

We see by the properties of βc, and because Jc is the kernel of βc, that if the Dunkl operators
on an element v ∈ Mc all send v to 0, then v ∈ Jc. We also see that if the Dunkl operators on an
element w ∈ Mc give elements of Jc, then w is also in Jc. Since taking the Dunkl operator on an
element brings its degree down, that allows us to calculate Jc recursively.
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Throughout, let ~ = 0 and c be generic: we use a function field, adjoining one variable ci
for each conjugacy class i of S. We focus on three types of complex reflection groups as G:
G(m,m, n), G(m, 1, n) for m > 1, and G(1, 1, n) = Sn, the symmetric group. For G(m,m, n) and τ
trivial, we describe some generators of Jc; in the case where p divides n, we are able to then prove
that Lc is an irreducible representation of the Cherednik algebra, but for general n we take steps
towards this proof. For G(m,m, 2) we completely describe Jc and Lc for all m, p, τ . For G(m, 1, n)
and τ trivial, we describe some of the generators of Jc, and completely describe both Jc and Lc for
the case m = 1 (i.e. Sn) and p divides n.

3 Specht modules and Garnir polynomials

Representations of G(m, r, n) are constructed from the representations of the symmetric groups of
smaller size known as Specht modules. When the characteristic of K is 0, Specht modules give
all irreducible representations, but in positive characteristic some Specht modules are reducible.
Specht modules will be important for the rest of the paper. Our reference for this background
information is [Peel]. We omit the full construction of Specht modules since only their realization
using Garnir polynomials is important to this paper.

We can consider a polynomial ring in n variables over a field K as a Sn-module, where the
Sn action is the permutation of the variables. Specht modules can be realized as submodules of
K[x1, . . . , xn].

Specht modules are indexed by partitions of n. For a given partition of n, a Young tableau
is a filling of the partition with the numbers from 1 through n. An example of a Young tableau for
the partition (4, 2, 1) follows:

1 2 3 4
5 6
7

A standard Young tableau is a Young tableau in which the entries in the rows and columns
are increasing top to bottom and left to right. For example, the tableau above is standard.

The Garnir polynomial for a Young tableau T is defined as follows. Let ai,j be the entry in
the ith row and jth column of T. Let m be the number of columns in T with at least 2 entries.
Then

fT (x) =
∏

1≤d≤m

∏
r<s

(xar,m − xas,m)

is the Garnir polynomial for the Young tableau T. For example, the Garnir polynomial for the
above tableau is (x1 − x5)(x1 − x7)(x5 − x7)(x2 − x6).

The Specht module for a given partition λ is denoted as Sλ. It can be realized as a subspace
of K[x1, . . . , xn] spanned by the Garnir polynomials of the Young tableaux for λ, with the Garnir
polynomials for the standard Young tableaux as a basis.

4 G(m,m, n)

We consider the Cherednik algebras of the groups G(m,m, n), which are permutation matrices with
entries that are mth roots of unity such that all of the entries multiply to 1. We begin by describing
the reflections and Dunkl operators related to these groups.

Let µ be a primitive mth root of unity in K.
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The reflections for G(m,m, n) have only one conjugacy class when n ≥ 3 or when n = 2 and
m is odd. The reflections are indexed as si,j,`: xi goes to µ−`xj and xj goes to µ`xi, and all other
basis elements are sent to themselves by the operator. We can therefore refer to the function c(s)
on the conjugacy classes of the reflections by a single parameter c. We can then describe the Dunkl
operators for G(m,m, n) on Mc(τ) (Dyi is written as Di):

Di = −c
∑
j 6=i

0≤`<m

1

xi − µ−`xj
(1− si,j,`)⊗ si,j,`

However, in the case where n = 2 and m is even (m = 2k), we have two conjugacy classes of
reflections: si,j,` where ` is even and si,j,` where ` is odd. In this case, the function c(s) can be
referred to by two parameters c0 (for even reflections) and c1 (for odd reflections), with the Dunkl
operators appearing as follows:

Di = −c0

∑
j 6=i

0≤`<k

1

xi − µ−2`xj
(1− si,j,2`)⊗ si,j,2`

− c1

∑
j 6=i

0≤`<k

1

xi − µ−2`−1xj
(1− si,j,2`+1)⊗ si,j,2`+1

Lemma 4.1. If n ≡ i mod p for 1 ≤ i ≤ p, then the squarefree monomials of degree i are killed
by the Dunkl operators for G(m,m, n).

Proof. Using the fact that
∑m−1

k=0 µ
k = 0, we claim that the action of the Dunkl operators on the

squarefree monomials of degree i gives 0. If the monomial in question is xe1 · · ·xei , there are two
cases: Dk when k /∈ {ej} and Dej for some 1 ≤ j ≤ i.

In the first case, the only sk,r,` that are relevant are for r ∈ {ej}. The reflection sk,ej ,` produces

the term −µl xe1 ···xeixej
. If the sum of this is taken over all ej and l, the result must be 0.

In the second case, we take De1 as a representative. Reflections of the form se1,ej ,` produce a
term of 0 because that element of the group leaves the monomial unchanged. Reflections of the
form se1,r,` produce xe2 · · ·xei for r /∈ {ej}. There are n− i such r. Therefore, the sum of all such
terms is (n− i)(m)xe2 · · ·xei , which comes out to 0 since n ≡ i mod p.

4.1 G(m,m, n), n ≡ 0 (mod p).

The first case we consider is G = G(m,m, n) in characteristic p where p divides n but not m. We
assume τ is the trivial representation.

Proposition 4.2. The ideal J is generated by the differences of the mth powers of the xi and the
squarefree monomials of degree p.

Proof. The differences of the mth powers of the xi are killed by the Dunkl operators. By Lemma
4.1, the squarefree monomials of degree p are killed, since if p divides n, n ≡ p mod p.

In this case, the highest degree existing in A/J is (p− 1)m. The basis for this top degree is one

element: x
(p−1)m
n . Since Dn(xsn) = −c(n−1)mxs−1

n = cmxs−1
n , we know that β(x

(p−1)m
n , x

(p−1)m
n ) =
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(cm)(p−1)m. To finish the proof, it is enough to know that the socle is concentrated in top degree,
which is the content of Lemma 4.3 (recall that the socle is

soc(A/I) = {x ∈ A/I | xy = 0 for all y ∈ (A/I)>0}

where A = Mc and I = Jc).

Lemma 4.3. The algebra A/J is Gorenstein.

Proof. Any monomial in A/J can be expressed as xa1e1 · · ·x
ap−1
ep−1 where 1 ≤ e1 < . . . < ep−1 ≤ n and

0 ≤ ai < m for all i. This is because the mth powers of the variables can be effectively taken as
equal because the differences of the mth powers are in J . (Monomials that cannot be expressed
this way can be expressed with p indices and therefore must be in J .) Multiplying this monomial

by xm−a1e1 · · ·xm−ap−1
ep−1 yields xme1 · · ·x

m
ep−1

which is equivalent to x
(p−1)m
n , which is in A/J . The

monomial xm−a1e1 · · ·xm−ap−1
ep−1 is also in A/J because it fits the necessary restrictions on indices and

coefficients. Therefore, the socle must be in top degree and A/J is Gorenstein.

4.2 G(m,m, n), n ≡ i mod p, i 6= 0

The case where p does not divide n for τ trivial is more difficult.

Proposition 4.4. The ideal J contains the elementary symmetric functions of the mth powers of
the xj and by the squarefree monomials of degree i.

Proof. By Lemma 4.1, the squarefree monomials of degree i are killed by the Dunkl operators and
thus must be in J . The action of the Dunkl operators on the elementary symmetric functions of
the mth powers of the xi must also be 0 because they are invariants of G.

Remark 4.5. In the case when i = 1 the Hilbert series of the quotient A/J is 1 because the
squarefree monomials of degree 1 are the xi.

If we mod out by all squarefree monomial ideals of degree i, then we get a Cohen–Macaulay
algebra of Krull dimension i − 1 because its support is the set of points (x1, . . . , xn) such that at
least n − i + 1 coordinates are equal to 0. This is a union of

(
n
i−1

)
linear spaces, so the degree of

this variety is
(
n
i−1

)
. In fact, this algebra has a linear free resolution [ER, Theorem 3], and hence is

a level algebra – when a level algebra is quotiented by a regular sequence, the socle of the quotient
is in the top degree. Write its Hilbert series as

H(t)

(1− t)i−1
.

Then degH = i− 1 and H(1) =
(
n
i−1

)
.

The elementary symmetric functions e1(xm), . . . , ei−1(xm) (without using mth powers) form a
homogeneous system of parameters since the solution set of n-tuples (x1, . . . , xn) such that the
squarefree monomials on the n-tuple and the elementary symmetric functions on the n-tuples are
all equal to 0 is simply the single n-tuple (0, . . . , 0). Since the algebra is Cohen–Macaulay, a
homogeneous system of parameters is a regular sequence. So the Hilbert series of A/J is

H(t) ·
i−1∏
j=1

1− tjm

1− t
.
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Proposition 4.6. In the case i = 2, the elementary symmetric functions of the xmk and the square-
free monomials of degree i generate Jc, and the resulting quotient Mc/Jc = Lc is an irreducible
representation of the Cherednik algebra.

Proof. For i = 2, we have H(t) = 1 + (n− 1)t. So the Hilbert series of A/J is

(1 + (n− 1)t)(1 + t+ · · ·+ tm−1) = 1 + nt+ nt2 + · · ·+ ntm−1 + (n− 1)tm.

A basis for the degree i part (1 ≤ i ≤ m− 1) is given by xi1, . . . , x
i
n, so the corresponding represen-

tation is the reflection representation where each entry of the matrices are raised to the ith power.
This representation is irreducible. The representation in degree m is spanned by xm1 , . . . , x

m
n mod-

ulo xm1 + · · ·+ xmn , which is also irreducible. The value of D1(xs1) is −(c)(n− 1)(m)xs−1
1 , therefore

we know that β(xm1 , x
m
1 ) = (−cm)m since n− 1 ≡ 1 mod p, therefore β is nonzero on the degree m

part of Lc and therefore Lc is irreducible as a representation of the Cherednik algebra.

For the general n ≡ i mod p case, set rk =
∑

j x
km
j .

Theorem 4.7. For any field K, regardless of characteristic, the quotient ring of K[x1, . . . , xn] by

the squarefree monomials of degree i and r1, . . . , ri−1 has top degree
(
i
2

)
m with a basis xmj1x

2m
j2
· · ·x(i−1)m

ji−1

where 1 < j1 < . . . < ji−1.

Proof. Let Q be the quotient ring of K[x1, . . . , xn] by the squarefree monomials of degree i. Then
the basis for degree d of Q is:

xdj (1 ≤ j ≤ n)

xkj1x
d−k
j2

(0 < k < d, 1 ≤ j1 < j2 ≤ n)

...

xk1j1 x
k2
j2
· · ·xki−1

ji−1
(0 < k1, k2, . . . , ki−1,

∑
s

ks = d, 1 ≤ j1 < j2 < · · · < ji−1 ≤ n)

We want to find the basis for the top degree of the quotient of Q by r1, . . . , ri−1. The top degree
is
(
i
2

)
m. We can find a basis by multiplying the rs by elements of Q in an appropriate degree. This

will allow us to generate the ideal formed in Q by the rs. We can then eliminate the leading term
not already eliminated of each of these polynomials (using lexicographic order) from the generating
set for that degree, since it can be expressed as the negative of the sum of the other terms of the
polynomial. This should result in a basis for the desired degree of Q quotiented by the rs. We
refer to the quotient of Q by the rs as V . Since the proof is lengthy, we first demonstrate a small
example then show the general case.

Example 4.8. For the small example, assume i = 4,m = 3. The top degree of V is then 18, and
a basis for Qd is:

xdj (1 ≤ j ≤ n)

xkj1x
d−k
j2

(0 < k < d, 1 ≤ j1 < j2 ≤ n)

xk1j1 x
k2
j2
xk3j3 (0 < k1, k2, k3,

∑
s

ks = d, 1 ≤ j1 < j2 < j3 ≤ n)

We first consider the elements eliminated from this generating set by multiplying the rs with
terms that use exactly 3 variables. We begin with r1: this takes the form xk1j1 x

k2
j2
xk3j3 ∗ r1. The first
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term not already eliminated would be xk1+3
j1

xk2j2 x
k3
j3

, since the previous terms would use 4 variables
and then already be eliminated by the squarefree monomials. Therefore, we can eliminate all terms
using exactly 3 variables where the first exponent is greater than 3 from the generating set. We
then continue with r2: the first term that uses 3 variables or less is xk1+6

j1
xk2j2 x

k3
j3

. However, this has
already been eliminated above, so we proceed to the next term using 3 or less variables, which is
xk1j1 x

k2+6
j2

xk3j3 . We can then eliminate all terms using exactly 3 variables where the second exponent
is greater than 6 from the generating set. By similar logic, the first term not already eliminated
that r3 generates would be xk1j1 x

k2
j2
xk3+9
j3

, so we then get an upper limit of 9 for the third exponent
in terms that use 3 variables. Since the top degree is 18, we must have the exponent equal to the
upper limit for each variable. Then the terms using exactly three variables in the generating set
take the form x3

j1
x6
j2
x9
j3

for some 1 ≤ j1 < j2 < j3 ≤ n.
We then consider the elements eliminated by multiplying the rs with terms using exactly 2

variables. We begin with xk1j1 x
k2
j2
∗ r2. The first term of this polynomial is x6

1x
k1
j1
xk2j2 ; however, this

has already been eliminated, as has x6
2x
k1
j1
xk2j2 and so forth. Then the first term that has not already

been eliminated is xk1+6
j1

xk2j2 . Therefore, we can eliminate from the generating set all terms using

exactly two variables where the first exponent is greater than 6. We then consider xk1j1 x
k2
j2
∗ r3.

The first term of this is x9
1x
k1
j1
xk2j2 , which has already been eliminated, similarly to x9

2x
k1
j1
xk2j2 and so

forth. The next term would be xk1+9
j1

xk2j2 , which has just been eliminated above. xk1j1 x
9
j1+1x

k2
j2

was

eliminated earlier as well, like xk1j1 x
9
j1+2x

k2
j2

and so forth. Therefore, the next term to be eliminated

would be xk1j1 x
k2+9
j2

. We then see that the upper limit for the second exponent of terms using exactly
two variables in the generating set would be 9. We then see that the maximum degree for a term
using exactly two variables in the generating set is 6 + 9 = 15, which is too small. Therefore, all
terms with two variables in the generating set have been eliminated.

Finally, we consider the elements eliminated by multiplying the rs with terms using exactly
1 variable, beginning with the elements of the generating set eliminated by xkj ∗ r1. Since all
terms of two variables have been eliminated already, the first term of this polynomial that has not
been eliminated is xk+3

j . Therefore, all terms of one variable with exponent greater than 3 can
be eliminated from the generating set. However, all terms of one variable in the generating set
must have an exponent of 18, since that is the top degree, so all terms of one variable have been
eliminated.

The only terms then remaining are x3
j1
x6
j2
x9
j3

for some 1 ≤ j1 < j2 < j3 ≤ n.

We now consider the general case. The basis for any degree of Q has terms using exactly 1
variable, 2 variables, up to i− 1 variables. We begin by considering the elements eliminated from
the generating set by multiplying the rs with the terms with i−1 variables. We begin with r1. This
would take the form xk1j1 x

k2
j2
· · ·xki−1

ji−1
∗ r1. The first term of this polynomial not already eliminated

would be xk1+m
j1

xk2j2 · · ·x
ki−1

ji−1
, since the previous terms involve i variables and thus must already

be equal to 0. By multiplying r1 with all the polynomials with i − 1 variables in the basis for
degree

(
i
2

)
m −m of Q, we thus can eliminate from the basis of the top degree of V all terms with

i − 1 variables with the exponent of the first variable greater than m. We then continue with r2.
Multiplying it with all the polynomials with i− 1 variables in the basis for degree

(
i
2

)
m− 2m of Q,

the first term in each of these polynomials with less than i variables would be xk1+2m
j1

xk2j2 · · ·x
ki−1

ji−1
.

However, this has already been eliminated, since it has i − 1 variables and the exponent of the
first is greater than m. Therefore, we take the next term with less than i variables, which is
xk1j1 x

k2+2m
j2

· · ·xki−1

ji−1
. We then eliminate from the generating set of the top degree of V all terms

with i− 1 variables with the exponent of the second variable greater than 2m. By similar logic, we
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can eliminate from the generating set of the top degree of V all terms with i− 1 variables with the
exponent of the sth variable greater than sm by using the polynomials generated by rs.

We now show that all elements for the top degree of V with i − 2 variables are eliminated.
These are eliminated by r2, . . . , ri−1 multiplied by the basis elements of the corresponding degree

of Q with i − 2 variables. We begin with xk1j1 x
k2
j2
· · ·xki−2

ji−2
∗ r2 where

∑
ks =

(
i
2

)
− 2m, which

generates the term x2m
1 xk1+m

j1
xk2j2 · · ·x

ki−2

ji−2
. However, we can see that this term was eliminated

above. The next term that has not already been eliminated is xk1+2m
j1

xk2j2 · · ·x
ki−2

ji−2
. Then we can

eliminate from the generating set of the top degree of V all terms with i − 2 variables with the
exponent of the first variable greater than 2m. We then consider the terms generated in this degree
by r3, which come from xk1j1 x

k2
j2
· · ·xki−2

ji−2
∗ r3 where

∑
ks =

(
i
2

)
− 3m. The leading term of this

polynomial is x3m
1 xk1j1 x

k2
j2
· · ·xki−2

ji−2
. However, this was already eliminated above. The next term that

was not eliminated by the terms with i − 1 variables above is xk1+3m
j1

xk2j2 · · ·x
ki−2

ji−2
. However, that

was eliminated by r2 and the terms with i− 2 variables. Then the next term that has not already
been eliminated by r2 and the terms with i− 2 variables is xk1j1 x

3m
j1+1x

k2
j2
· · ·xki−2

ji−2
. However, this was

eliminated by the terms with i − 1 variables above. The next term that has not been eliminated
is then xk1j1 x

k2+3m
j2

· · ·xki−2

ji−2
. Then we can remove from the generating set of the top degree of V

all terms with i − 2 variables such that the second exponent is greater than 3m. Similarly, by an
inductive process, we can remove from the generating set of the top degree of V all terms with
i − 2 variables such that the sth exponent is greater that sm + m. We then see that all terms
with i− 2 variables in the basis of the top degree of V must be of the form xk1j1 x

k2
j2
· · ·xki−2

ji−2
where∑

ks ≤ 2m + 3m + · · · + (i − 1)m =
(
i
2

)
m −m. However, we must have

∑
ks =

(
i
2

)
m since this

term is in the top degree of V . Therefore all terms with i− 2 variables are eliminated from the top
degree of V .

We now show by induction that all terms with less than i− 1 variables are eliminated from the
generating set of the top degree of V . The base case is i−2 variable terms, which has already been
shown. We now show that if all terms with e+ 1 variables have been eliminated, all terms with e
variables have been as well.

The terms with e variables in the generating set of the top degree of V are eliminated by each
rs multiplied by the terms of the basis of the corresponding (

(
i
2

)
−sm) degree of Q with e variables.

We see that r1 ∗ xk1j1 x
k2
j2
· · ·xkeje has xk1+m

j1
xk2j2 · · ·x

ke
je

as its first term with less than e + 1 variables
- meaning that it is also the first term that has not already been eliminated. Therefore, we can
eliminate this term. Then we can remove from the generating set of the top degree of V all of the
terms with e variables and the first exponent greater than m. We then consider r2 ∗ xk1j1 x

k2
j2
· · ·xkeje ,

which has as its first term that has not already been eliminated xk1j1 x
k2+2m
j2

· · ·xkeje . Then we can
eliminate all of the terms with e variables and the second exponent greater than 2m. Similarly,
through induction, we can eliminate all terms with e variables and the sth exponent greater than
sm. Then the terms remaining are xk1j1 x

k2
j2
· · ·xkeje where

∑
ks = m + · · · + em =

(
e
2

)
m. However,

we must have
∑
ks =

(
i
2

)
m, so all terms with e variables are not in the basis.

Then the only terms left in the generating set are xk1j1 x
k2
j2
· · ·xki−1

ji−1
where ks ≤ sm for all s.

However, we must have
∑
ks =

(
i
2

)
m, so we must actually have ks = sm for all s. Then our

generating set becomes xmj1x
2m
j2
· · ·x(i−1)m

ji−1
.

We then consider the terms eliminated by multiplying r1 by the terms with i − 2 variables.
These appear as xm1 x

k1
j1
xk2j2 · · ·x

ki−2

ji−1
. We then can eliminate the terms of our generating set with

first variable x1. Our basis is then xmj1x
2m
j2
· · ·x(i−1)m

ji−1
where 1 < j1 < . . . < ji−1 ≤ n as desired.
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Any representation of Sn can also be considered a representation of G(m,m, n). This is because
we have a surjective map G(m,m, n) → Sn, where the matrices of G(m,m, n) are considered as
permutation matrices only, with all roots of unity replaced by 1. This allows the elements of
G(m,m, n) to act on representations of Sn using this mapping.

The reflection representation for Sn is the standard n-dimensional representation, with the Sn–
action as the permutation of the variables, quotiented by the sum of the variables. It is therefore
n − 1 dimensional. The exterior powers of this representation are also representations of Sn and
thus of G(m,m, n) as well.

Theorem 4.9. For any field K, regardless of characteristic, the top degree of the quotient ring of
K[x1, . . . , xn] by the squarefree monomials of degree i and the power sums r1, . . . , ri−1 is isomor-
phic to the Specht module S(n−i+1,1i−1), which is the exterior power

∧i−1 h where h is the n − 1
dimensional reflection representation of the symmetric group.

Proof. The quotient ring is defined when K = Z and then reduced modulo p. To check that it is an
exterior power, we can work over Q, so we assume K = Q. Without loss of generality, we can assume
m = 1. For any partition λ, the function (described in [S]) b(λ) =

∑
(j − 1)λj denotes the lowest

degree of Q[x1, . . . , xn] in which Sλ appears. We see that b((n−i+1, 1i−1)) =
(
i
2

)
. (The notation (n−

i+1, 1i−1) refers to the partition (n-i+1,1,1,. . . ,1) where there are i−1 1s.) Let Q be the quotient of
K[x1, . . . , xn] by the squarefree monomials of degree i. We see that the S(n−i+1,1i−1) in degree

(
i
2

)
of

K[x1, . . . , xn] has as its basis the Garnir polynomials (xe1−xe2)(xe1−xe3)(xe1−xe4) · · · (xei−1−xei)
where (e1, . . . , ei) is the first column of a standard filling for (n − i + 1, 1i−1). When multiplying
this out, there are terms with less than i indices, so it is not killed by the squarefree degree i
monomials. Therefore, chP(i

2)
= χ(n−i+1,1i−1) + · · · for some unknown additional addends. Let V

be the quotient of Q by the rj . We then see that chV(i
2)

=
∑i−1

α=1 ch
(
〈rα〉 ⊗ V(i

2)−α

)
+ · · · . The

image of rα, or 〈rα〉, is equivalent to the trivial representation, while V(i
2)−α

is a sum of characters

of irreducibles. However, since b((n − i + 1, 1i−1)) >
(
i
2

)
− α, none of these irreducibles can be

S(n−i+1,1i−1). Therefore, we must have chV(i
2)

=
∑i−1

α=1 ch
(
〈rα〉 ⊗ V(i

2)−α

)
+ χ(n−i+1,1i−1) + · · · .

Since the images of the rj are killed by quotienting by them, we then have that V(i
2)

contains the

Specht module S(n−i+1,1i−1). Because we know the basis for V(i
2)

by Theorem 4.7 we know the

dimensions of both vector spaces are equal to
(
n−1
i−1

)
. Therefore, they are equal.

Remark 4.10. When p does not divide n,
∧i−1 h is an irreducible representation of the symmetric

group. Therefore, V is an irreducible representation of G(m,m, n), since the basis is invariant
under roots of unity. To show that Lc is an irreducible representation of the Cherednik algebra, it
remains to show that βc is nonzero on the top degree part, which is V . We have not yet been able
to show this.

4.3 G(m,m, 2) with non-trivial τ (non-modular)

Unlike the general case described previously, we can find the generators for Jc and show that Lc
is an irreducible representation of the Cherednik algebra for all m, p, τ for the groups G(m,m, 2),
otherwise known as the dihedral groups.

The representations of G(m,m, 2) we describe here are indexed as ρi for −1 ≤ i < m/2, as well
as ρ−2 and ρ−3 when m is even.

ρi for −1 ≤ i < m/2 is the same as the standard 2-dimensional representation of the dihedral
group, but mth roots of unity act by their ith power. ρ0 is the trivial representation, ρ−1 for m odd
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is the sign representation, ρ−3 for m even is the sign representation, and ρ−1 and ρ−2 for m even
are 1-dimensional variants on the sign representation, described as follows:

For ρ−1, the element of the dihedral group that acts as ( 0 1
1 0 ) on the standard representation

acts as (1) on ρ−1, and the element of the dihedral group that acts as
(

0 µ−1

µ 0

)
on the standard

representation acts as (−1) on ρ−1. For ρ−2, the signs of these operations are reversed.
G(m,m, 2) has two conjugacy classes when m is even and only one when m is odd. Therefore,

in the cases where m is odd, we continue to use c0 and c1 with the implicit understanding that
they are equal, and the results still apply.

Proposition 4.11. For τ = ρi for −3 ≤ i ≤ 0, Jc is generated by xy and xm + ym and the Hilbert
polynomial of Lc is (t+ 1) t

m−1
t−1 .

Proof. The four cases ρi where −3 ≤ i ≤ 0 have the same behavior, since they are all one-
dimensional. ρ0 corresponds to the trivial representation, but the other cases produce the same
ideal. The ideal is generated by xy and xm + ym. Since both of these are invariants of the
dihedral group and τ is one-dimensional, their Dunkl operators come out to 0. This is a complete
intersection, so the Hilbert polynomial of Lc is (t+ 1) t

m−1
t−1 . The top degree of the quotient ring is

m: it has dimension 1. To show that this is irreducible, we must show that β(xm, xm) is nonzero.
In the case of ρ0, we see that Dx(xs) = −m

2 (c0 + c1)xs−1 for all s ≤ m. (When m is odd, it
is −mcxs−1 since c0 = c1.) Therefore, β(xm, xm) is equal to (−m

2 (c0 + c1))m when m is even or
(−mc)m when m is odd.

In the case of ρ−1 for m even only, Dx(xs) = −m
2 (c0 − c1)xs−1. Therefore, β(xm, xm) is equal

to (−m
2 (c0 − c1))m.

In the case of ρ−2 for m even only, Dx(xs) = m
2 (c0 − c1)xs−1. Therefore, β(xm, xm) is equal to

(m2 (c0 − c1))m.
In the case of ρ−1 for m odd, which is the same as ρ−3 for m even, Dx(xs) = m

2 (c0 + c1)xs−1

(when m is odd, this is mcxs−1 since c0 = c1). Therefore, β(xm, xm) is equal to (m2 (c0 + c1))m

when m is even or (mc)m when m is odd.

Proposition 4.12. For the case τ = ρ1, Jc is generated by x⊗ e1, y ⊗ e2, x
3 ⊗ e2, y

3 ⊗ e1 and the
Hilbert polynomial of Lc is 2t2 + 2t+ 2.

Proof. Seeing that the Dunkl operators on x⊗ e1, y⊗ e2 are 0 is trivial. We see that Dx(x3⊗ e2) =
−m

2 (c0 + c1)xy ⊗ e1, which is a multiple of x ⊗ e1. Similarly, Dy(x
3 ⊗ e2) = m

2 x
2 ⊗ e1, which is a

multiple of x⊗ e1. Dx(y3 ⊗ e1) = m
2 (c0 + c1)y2 ⊗ e2 and Dy(y

3 ⊗ e1) = −m
2 (c0 + c1)xy ⊗ e2, which

are both multiples of y⊗ e2. We then see that with these four generators for the ideal, the Hilbert
polynomial for Lc is 2t2 + 2t + 2. The top degree has dimension two, and is spanned by x2 ⊗ e2

and y2 ⊗ e1. We see that this is isomorphic to ρ1 itself as a representation of the dihedral group,
sending x2⊗ e2 to e1 and y2⊗ e1 to e2. Therefore, the top degree is irreducible as a representation
of the dihedral group. We see that β(x2 ⊗ e2, x

2 ⊗ e2) = −(m2 )2(c0 + c1)2, which is nonzero, so Lc
is irreducible as a representation of the Cherednik algebra.

Proposition 4.13. For the case τ = ρi where i > 1, Jc is generated by x⊗ e1, x⊗ e2, y⊗ e1, y⊗ e2

and the Hilbert polynomial of Lc is 2.

Proof. The generators are all easily shown to be killed by Dunkl operators. It follows that the
Hilbert polynomial of Lc is simply 2. Then Lc is isomorphic to ρi, so it is an irreducible represen-
tation of the dihedral group, and β(1⊗ e1, 1⊗ e1) = 1, so it is an irreducible representation of the
Cherednik algebra as well.
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5 G(m, 1, n)

We now focus on the case G = G(m, 1, n), which are groups of permutation matrices with entries
that are mth roots of unity. We begin by describing the reflections and Dunkl operators in this
case.

Let µ be a primitive mth root of unity in K.
The reflections for G(m, 1, n) have m conjugacy classes. The first class is indexed as si,j,`: xi

goes to µ−`xj and xj goes to µ`xi, and all other basis elements are sent to themselves by the
operator. The other classes is indexed as tk,` for 0 < ` < m where xk is sent to µ`xk and all other
basis elements are sent to themselves. We can therefore refer to the function c(s) on the conjugacy
classes of the reflections by m parameters ci, where c(si,j,`) = c1 for all i, j, ` and c(tk,`) = c`+1 for
all k, `. We can then describe the Dunkl operators for G(m, 1, n) (Dyi is written as Di).

Di =−
∑
j 6=i,

0≤`<m

c1
1

xi − µ−`xj
(1− si,j,`)⊗ si,j,`

−
∑

0<`<m

c`+1
1

µ`xi
(1− ti,`)⊗ ti,`

5.1 Subspace arrangements.

In this case, some of the generators of Jc can be described by a subspace arrangement.

Let X
(m)
i be the subspace arrangement consisting of n-tuples (x1, . . . , xn) such that the mth

powers of some subset of n− i of the coordinates are equal. Its ideal I
(m)
i is given by substituting

mth powers for the variables into the Specht module Sλ where λ has n− i−1 columns and all rows
have n− i− 1 cells except possibly the last row, by [LL] (which deals with the case m = 1).

Proposition 5.1. If n ≡ i mod p where 0 ≤ i ≤ p − 1, then the Dunkl operators for G(m, 1, n)

kill the generators of I
(m)
i .

Proof. If i 6= p − 1 or i = p − 1 and n > 2p − 1, then λ = (n − i − 1, i + 1). Otherwise, we have
i = p− 1 and n = 2p− 1, in which case λ = (p− 1, p− 1, 1).

We wish to show that for a standard Young tableau e of λ that the Garnir polynomial of
the mth powers of the variables, fe(x

m) (described in Section 3), is killed by the Dunkl op-
erators. For example, if the first i + 1 columns of a filling j of the Young diagram for λ are
{{j1, j2}, {j3, j4}, . . . , {j2i+1, j2i+1}}, then the desired polynomial is:

fj(x
m) = (xmj1 − x

m
j2)(xmj3 − x

m
j4) · · · (xmj2i+1

− xmj2i+2
).

A basis of I
(m)
i is provided by fe(x

m) for all e that are standard Young tableaux, since this is
the basis for the Specht module Sλ.

Let the first i+ 1 columns of e be {{e1, e2}, {e3, e4}, . . . , {e2i+1, e2i+1}}. When considering the
action of the Dunkl operators on fe(x

m), we consider the two separate cases: Dk where k /∈ {ei}
and the opposite, when k is in {ei}.

In the first case, reflections permuting k with another element not in {ei} will go to 0 directly
because of the (1−sk,i,`) term. For all 0 ≤ j ≤ i, the terms for the reflections sk,e2j+1,` and sk,e2j+2,`

will cancel each other. fe(x
m) is invariant under the tk,i since all the variables have been raised to

the mth power, so those terms will produce 0 as well. Therefore, Dk(fe(x
m)) = 0.
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The second case can be calculated by using De1 as a representative. fe(x
m) is invariant under

the tk,i, so they can be disregarded once again. the sum of the terms generated by the reflections
se1,e2,` for 0 ≤ ` ≤ m − 1 gives the term 2mxm−1

e1 (xme3 − x
m
e4) · · · (xme2i+1

− xme2i+2
). For 1 ≤ j ≤ i,

the sum of the terms generated by the reflections se1,e2j+2,` and se2j+1,e1,` for 0 ≤ ` ≤ m − 1
comes to mxm−1

e1 (xme3 − x
m
e4) · · · (xme2i+1

− xme2i+2
). For w /∈ {ei} - there are n − 2i − 2 such values

for w - the sum of the terms from the reflections se1,ew,` for 0 ≤ ` ≤ m − 1 comes out to
mxm−1

e1 (xme3 −x
m
e4) · · · (xme2i+1

−xme2i+2
). fe(x

m) is invariant under the tk,i since all the variables have

been raised to the mth power, so those terms will produce 0 and we can disregard the parameters
c2, . . . , cm. We then see that:

Dk(fe(x
m)) = −c1(n− 2i− 2 + i+ 2)(mxm−1

e1 )(xme3 − x
m
e4) · · · (xme2i+1

− xme2i+2
),

which is 0 since n = i (mod p). When the sum of this is taken over all l, the result is still 0.
Therefore, Dk(fe(x

m)) = 0 for all 1 ≤ k ≤ n and e that are standard Young tableaux.
In the case when n = 2p− 1, λ = (p− 1, p− 1, 1). Then for any standard Young tableau j of λ:

fj(x
m) = (xmj1 − x

m
j2)(xmj1 − x

m
j3)(xmj2 − x

m
j3)(xmj4 − x

m
j5) · · · (xmj2p−2

− xmj2p−1
).

Again, a basis for the ideal (and Sλ) is provided by all fe(x
m) where e is a standard Young

tableau of λ. Therefore we again need only show that this basis is killed by the Dunkl operators.
Let {{e1, e2, e3}, {e4, e5}, . . . , {e2p−2, e2p−1}} be the entries in the columns of e. When consid-

ering the action of the Dunkl operators on fe(x
m) there are two cases: Dek where k ∈ {1, 2, 3} and

where k /∈ {1, 2, 3}.
The first case can be calculated using De1 as a representative. We can again disregard the

tk,i since fe(x
m) is invariant under their action. Therefore we can also disregard the parame-

ters c2, . . . , cm. For 0 ≤ ` ≤ m − 1, the sum of the terms produced by the reflections se1,e2,` is
2mxm−1

e1 (xme1 −x
m
e3)(xme2 −x

m
e3)(xme4 −x

m
e5) · · · (xme2p−2

−xme2p−1
). The reflections se1,e3,` give terms that

sum to 2mxm−1
e1 (xme1−x

m
e2)(xme2−x

m
e3)(xme4−x

m
e5) · · · (xme2p−2

−xme2p−1
). The sum of the terms produced

by se1,e2r,` and se1,e2r+1,` for 2 ≤ r ≤ p− 1 and 0 ≤ ` ≤ m− 1 is

mxm−1
e1 (2xme1 − x

m
e2 − x

m
e3)(xme2 − x

m
e3)(xme4 − x

m
e5) · · · (xme2p−2

− xme2p−1
).

We can then sum all of the terms produced and multiply by the necessary coefficient (−c1) to finish
calculating the Dunkl operator:

De1(fe(x
m)) = −c1mx

m−1
e1 (p)(2xme1 − x

m
e2 − x

m
e3)(xme2 − x

m
e3)(xme4 − x

m
e5) · · · (xme2p−2

− xme2p−1
) = 0.

The representative for the second case is De4 . For 0 ≤ ` ≤ m−1, the sum of the terms produced
by the reflections se1,e4,`, se2,e4,`, se3,e4,`, se5,e4,` is

3mxm−1
e1 (xme1 − x

m
e2)(xme1 − x

m
e3)(xme2 − x

m
e3)(xme6 − x

m
e7) · · · (xme2p−2

− xme2p−1
).

The sum of the terms produced by the reflections se2r,e4,`, se2r+1,e4,` for 3 ≤ r ≤ p− 1 and 0 ≤ l ≤
m− 1 is

mxm−1
e1 (xme1 − x

m
e2)(xme1 − x

m
e3)(xme2 − x

m
e3)(xme6 − x

m
e7) · · · (xme2p−2

− xme2p−1
).

Therefore the final Dunkl operator is:

De4(fe(x
m)) = −c1x

m−1
e1 (p)(xme1 − x

m
e2)(xme1 − x

m
e3)(xme2 − x

m
e3)(xme6 − x

m
e7) · · · (xme2p−2

− xme2p−1
) = 0.

This shows that for all 1 ≤ i ≤ n, Di(fe(x
m)) = 0 for all e that are standard Young tableaux.

We then see that the generators of I
(m)
i are a subset of the generators of Jc. We conjecture that

the remaining generators form a regular sequence on I
(m)
i . In the following section, we discuss the

specific case where m = 1, or where G = Sn.
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6 Sn

In general, Cherednik algebras of Sn behave the same way as those of G(m, 1, n), simply assuming

m = 1. We then have the generators of I
(1)
i and a regular sequence on it as the generators for Jc.

In the case of n ≡ 0 mod p, we see that the desired λ for I
(1)
i is (n − 1, 1) and that the regular

sequence on I
(1)
i is xpn.

Given i < j, let fi,j be equal to xi − xj .

Proposition 6.1. The J is generated by f1,n, f2,n, . . . , fn−1,n and xpn, and the Hilbert series is

hA/J(t) = 1 + t+ · · ·+ tp−1.

Proof. It is clear that Dkfi,j = 0 for all i, j, k, because they generate the Specht module for the
partition (n−1, 1) as Garnir polynomials. To show that xpn is in J , we note that (xi−xj)p = xpi −x

p
j .

For all k, Dkx
p
n is the sum of

xpi−x
p
j

xi−xj over various i and j, so belongs to J .

Let I be the ideal generated by f1,n, . . . , fn−1,n, x
p
n. Then A/I is a finite-dimensional vector

space, so I is a complete intersection. In particular,

hA/I(t) =
1− tp

1− t
= 1 + t+ · · ·+ tp−1.

We have an isomorphism A/I ∼= K[z]/zp via the map xi 7→ z. On this representation, xi
from the Cherednik algebra acts by multiplication by z, and elements of Sn act trivially. The
commutators [yi, xj ] = sij = 1 and [yi, xi] = −

∑
j 6=i sij = −(n− 1) = 1 are true by the definitions

of the Cherednik algebra. Furthermore, yi1 = 0. Hence the action of the Cherednik algebra on A/I
factors through the Weyl algebra K[z, ∂z], and A/I is irreducible as a representation of the Weyl
algebra. We have already seen that I ⊆ J , so we are done.

7 Future Research

We plan to continue working with Cherednik algebras of complex reflection groups G(m, r, n). We
would like to further investigate non-trivial τ for G(m,m, n), and hope to fully catalogue G(m,m, 3)
as we have for the dihedral groups. In the case of G(m,m, 3), an interesting structure similar to
a regular sequence, except consisting of matrices, appears in the generators of Jc. Such a “matrix
regular sequence” is similar to a traditional regular sequence, only involving the determinants of
the matrices. We also want to study G(m, r, n) where r < m and consider exceptional complex
reflection groups as well.
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