Simulating Supercoiling in Prokaryotic DNA

CAMPBELL HEWETT MIT PRIMES MAY 21, 2011

Prokaryotic DNA

- Single, circular segment of DNA.
- Freely floating in the cell.
- Not packaged into a chromosome.
- Genome is much smaller than in Eukaryotes.
 - E.g., *E. coli* have about 5 Mbp.

 $Image\ retrieved\ from\ http://www.vedicsciences.net/articles/dawkinsevolution-challenge.html$

Supercoiling

a) Positive superc	oiling			
T = 0 W = 0	T = +3 W= 0	T = *2 W = *1	T = +1 W = +2	T=0 W=+3
~	-	0	0	0
\frown	\bigcap		X	X
		Ň	8	Q
\smile		U	O	0
<i>L</i> = 0		L=+8	2	- 569
(1)	(2)	(3)	(4)	(5)
b) Negative super	rcoiling			
T = 0	T = -3	T=-2	T = -1	T = 0
W=0	W = 0	W==1	W=-2	W==3
	~	0	\bigcirc	O
()	1 3		X	6
	6		8	0
\smile	V	()	$\langle \rangle$	0
		V	U	V
<i>I.</i> = 0		L3		
(1)	(2)	(3)	(4)	(5)

Image retrieved from http://web.virginia.edu/Heidi/ chapter12/chp12.htm

- DNA normally has one rotation every ~10.4 bp.
- Certain enzymes (e.g. DNA gyrase) twist or untwist DNA.
- DNA contorts its shape in response to supercoiling.
- Purposes:
 - DNA packing, DNA replication.

Linking Number

- Quantitatively describes how objects are intertwined.
- L = T + W

Image retrieved from http://upload.wikimedia.org/ wikipedia/commons/1/1e/Circular_DNA_Supercoiling.png

The Simulation

Problem:

- 1. Algorithm to construct the strands of DNA.
- 2. Model the behavior of the constructed polymer using molecular dynamics.

DNA Structure Algorithm (cont.)

2. Molecular Dynamics

• Simulate behavior using polymer physics.

• Consecutive points on the polymer held together with harmonic (spring) bonds.

Results

- General model for DNA structure.
- Evident realistic supercoiling effects.
- Polymer maintains twist throughout simulation.
 - Calculated linking number at each stage in a simulation.

Future Research and Applications

- It has been proposed that supercoiling aids in DNA segregation during DNA replication.
- We will test this hypothesis and compare to experimental data.

I would like to thank everyone at MIT PRIMES who has made this experience possible:

Geoffrey Fudenberg and Maxim Imakaev for mentoring and guiding me in my project.

Professor Leonid Mirny for providing the project itself along with access to his laboratory.