Simulating Supercoiling in Prokaryotic DNA

CAMPBELL HEWETT
MIT PRIMES
MAY 21, 2011
Prokaryotic DNA

- Single, circular segment of DNA.
- Freely floating in the cell.
- Not packaged into a chromosome.
- Genome is much smaller than in Eukaryotes.
 - E.g., *E. coli* have about 5 Mbp.

Image retrieved from http://www.vedicsciences.net/articles/dawkins-evolution-challenge.html
Supercoiling

- DNA normally has one rotation every ~10.4 bp.
- Certain enzymes (e.g. DNA gyrase) twist or untwist DNA.
- DNA contorts its shape in response to supercoiling.
- Purposes:
 - DNA packing, DNA replication.

Linking Number

- Quantitatively describes how objects are intertwined.
- \(L = T + W \)

Image retrieved from http://upload.wikimedia.org/wikipedia/commons/1/1e/Circular_DNA_Supercoiling.png
Simulation using spatial coordinates
Simulated Supercoiling
The Simulation

Problem:

1. Algorithm to construct the strands of DNA.
2. Model the behavior of the constructed polymer using molecular dynamics.
1. DNA Structure Algorithm
DNA Structure Algorithm (cont.)
2. Molecular Dynamics

- Simulate behavior using polymer physics.
 - Consecutive points on the polymer held together with harmonic (spring) bonds.
Example Simulation

0 time steps

10 time steps

30 time steps

60 time steps

120 time steps

199 time steps
Results

- General model for DNA structure.
- Evident realistic supercoiling effects.
- Polymer maintains twist throughout simulation.
 - Calculated linking number at each stage in a simulation.
Future Research and Applications

- It has been proposed that supercoiling aids in DNA segregation during DNA replication.
- We will test this hypothesis and compare to experimental data.
I would like to thank everyone at MIT PRIMES who has made this experience possible:

Geoffrey Fudenberg and Maxim Imakaev for mentoring and guiding me in my project.

Professor Leonid Mirny for providing the project itself along with access to his laboratory.