Cayley’s Formula

Primes-Switzerland
Sebastian Brovelli
Mentor: Slavov Kaloyan
23.06.2018
<table>
<thead>
<tr>
<th>n</th>
<th>A_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
</tbody>
</table>

Cayley’s Formula:

$A_n = n^{n-2}$
A rooted forest, viewed as a directed graph
- For each component, one vertex is called a root.
- Every edge is directed away from the root.
If, in F', an edge starts at vertex x and ends at vertex y, there also is an edge from x to y in F.

F contains F'.
A refining sequence $(F_1, ..., F_n)$
- Each forest F_i contains F_{i+1}.
- Each forest F_i has exactly i components.
N: #rooted trees on n vertices
N*: #refinig sequences \((F_1,\ldots,F_n)\)
\[N^* = N(n-1)! \]
N: #rooted trees on n vertices
N*: #refining sequences (F_1, \ldots, F_n)

\[N^* = n(n-1) \times n(n-2) \ldots n \times 1 \]
\[N^* = n^{n-1} (n-1)! \]
\[N^* = N(n-1)! \]
\[N = n^{n-1} \]
\[N = A_n \times n \]
\[A_n = n^{n-2} \]
A_{5}
$A_5 = 5^3 = 125$