
ORIENTATIONS OF DERIVED FORMAL GROUPS

SANATH DEVALAPURKAR

1. INTRODUCTION

In previous lectures, we discussed the spectral deformation theory of p-divisible groups.
The main result we proved was (see [Lur16, Theorem 3.0.11]):

Theorem 1.1. Let G0 be a nonstationary p-divisible group over a Noetherian F -finite Fp -
algebra R0

1. Then there is a universal deformation of G0: in other words, there is a Noether-
ian connective E∞-ring Run

G0
equipped with a universal deformation G of G0.

In analogy with the classical story, one might hope that the universal deformation of a
p-divisible formal group G0 over a field k of characteristic p would give Morava E -theory
E(k ,G0) — but this is not true! Morava E -theory is 2-periodic, but Run

G0
is a connective

E∞-ring.
The reason for this apparent failure can be boiled down to a very simple problem: we

did not ask that these deformations of G0 have anything to do with topology. At the
moment, this a rather vague statement, but later in this lecture we will make it more
precise. For now, let us illustrate with the concrete example of G0 = µp∞ (over an alge-
braically closed field k of characteristic p). The Cartier dual of G0 is just the constant
group scheme Qp/Zp (if k was not algebraically closed, this would just be an étale group
scheme), and the deformation theory of the constant group scheme is trivial. It follows
that Defµp∞

is representable by Spf Sp , so that Run
µp∞
= Sp , the p-complete sphere.

We already know that E(k ,µp∞) is supposed to be p-adic K -theory, so we would like
a way of constructing (via an algebro-geometric procedure) Kp from Sp . To do this, we
take a hint from a classical result of Snaith’s (see [Sna81]):

Theorem 1.2 (Snaith). There is an equivalence Σ∞+ CP∞[β±1]'K.

There is therefore a canonical map of E∞-rings Σ∞+ CP∞→ K , given by localization
at the Bott element.

Remark 1.3. This map of E∞-rings can be constructed without ever having to refer to
Snaith’s theorem: the inclusion CP∞ ,→GL1K is adjoint to the E∞-ring mapΣ∞+ CP∞→
K .

We are left with accomplishing the following two tasks:

(1) Construct (again, via an algebro-geometric procedure) Σ∞+ CP∞ from Sp .
(2) Define the Bott element in π2Σ

∞
+ CP∞.

1This just means that G0 is classified by an unramified map Spec R0→MBT over a ring R0 with a finite Frobenius
map φ : R0→ R0.
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We will accomplish both of these tasks (and more) in this lecture, where Sp is replaced
by a general E∞-ring, and µp∞ is replaced by a general formal group. For the purpose
of concreteness, we will illustrate (almost) everything with the example of the formal
multiplicative group throughout these notes.

Remark 1.4. We used Snaith’s theorem as a motivating construction, but one can actually
easily recover his result from the content of this and the following lectures.

2. DUALIZING SHEAVES ON FORMAL GROUPS

In the previous lecture, Robert defined the dualizing line of a formal group G0 : CAlgcn
R →

Modcn
Z (with underlying formal hyperplane X =Ω∞G0) over an E∞-ring R, with a fixed

basepoint η ∈ X (R). This required us to be fairly careful: the naïve definition as the
pullback η∗LX /R of the cotangent complex is not sufficient. The primary issue with this
construction is that if R is an ordinary ring, then η∗LX /R is not concentrated in degree 0,
so it does not agree with the cotangent space R⊗OX

ΩOX /R. These problems are remedied
by the dualizing line, whose definition and key properties we will now recall.

We will fix an E∞-ring R and a formal hyperplane (which will always be one-dimensional)
X over R, with a basepoint η ∈X (τ≥0R). In all cases of interest, X will arise as Ω∞G0.

Definition 2.1. Define OX (−η) by the cofiber sequence

OX (−η)→OX
η
−→ R;

then the dualizing lineωX ,η is defined to be OX (−η)⊗OX
R.

Proposition 2.2. The dualizing line satisfies the following properties:
(1) ωX⊗RR′,η⊗RR′ 'ωX ,η⊗R R′ for any E∞-ring map R→ R′.
(2) A map f : X →X ′ of hyperplanes is an equivalence if and only if the mapωX ′,η′ →

ωX ,η is an equivalence.
(3) ωX ,η sits in a fiber sequence of R-modules

ΣωX ,η→ R⊗OX
R

m−→ R.

Remark 2.3. When R is a classical ring, and X is a formal hyperplane over R, we may
identifyωX ,η with ker(ε)/ker(ε)2, where ε : OX → R is the augmentation. This is exactly
the cotangent space.

Construction 2.4 (Linearization). Using Proposition 2.2, we obtain a map, natural in
the connective E∞-R-algebra A:

ΩX (A)

linearization ''

MapCAlgR
(R⊗OX

R,A) // MapModR
(R⊗OX

R,A)

��
MapModR

(ωX ,η,Σ
−1A) MapModR

(ΣωX ,η,A)

The linearization map is particularly important when A= τ≥0R.

Example 2.5. The strict multiplicative group Gm : CAlg→Modcn
Z is defined via

Gm(R) =MapSp(HZ,GL1(R))'MapCAlg(Σ
∞
+ Z, R).

The last identification above shows that R 7→ Ω∞Gm(R) is represented by SpecΣ∞+ Z '
Spec S[t±1]. Of course, one can now define Gm over any E∞-ring by base change. Let
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G0 be the formal multiplicative group ÒGm . This is defined to be the formal completion
of the strict multiplicative group Gm ; in other words,ÒGm is defined by the fiber sequence

ÒGm→Gm(R)→Gm(R
red).

By construction, this is representable by S[t±1]∧(t−1). Therefore,

S ⊗O
ÒGm

S ' S ⊗Σ∞+ Z S 'Σ∞+ BZ'Σ∞+ S1 'Σ∞S1 ∨ S.

By Proposition 2.2, we learn that ω
ÒGm
' S. It follows that the diagram defining the

linearization map becomes (our base scheme here is S, so A is any connective E∞-ring)

Ω∞+1
ÒGm(A)

linearization
��

MapCAlg(Σ
∞
+ S1,A) // MapSp(Σ

∞
+ S1,A)'Ω∞+1gl1(A)

∼Ω(x 7→x−1)

��
Ω∞+1A MapSp(Σ

∞S1,Σ−1A)oo MapSp(ΣΣ
∞S1,A)

The linearization map is therefore aptly named.

3. CLASSIFYING ORIENTATIONS

In order to proceed, we will need to recall a classical bit of algebraic topology; namely,
the following statements are equivalent for a spectrum E :

(1) the Atiyah-Hirzebruch spectral sequence computing E∗(CP∞) degenerates.
(2) the canonical unit element of eE2(S2)' E0(∗)'π0E lies in the image of eE2(CP∞)→
eE2(S2).

The unit element can be thought of as a pointed map S2→Ω∞E (however, this is depen-
dent on the choice of a basepoint of S2 ⊆CP∞). This motivates:

Definition 3.1. A preorientation of a formal hyperplane X → Spec R is a pointed map
S2→X (τ≥0R).

In particular, the space Pre(X ) of preorientations is exactly Ω2X (τ≥0R). Note that
space this is functorial in R. The linearization map above gives a map:

Pre(X )'Ω(ΩX (τ≥0R))→ΩMapModR
(ωX ,η,Σ

−1R)'MapModR
(ωX ,η,Σ

−2R).

The choice of a preorientation of X therefore determines a map ωX ,η → Σ−2R of R-
modules; this is called the Bott map.

If X arises as Ω∞ ◦G0 for some formal group G0, then

Pre(G0) =Ω
∞+2G0(τ≥0R)'MapModZ

(Σ2Z,G0(τ≥0R)).

Example 3.2. By the above discussion, we know that Pre(ÒGm)'MapModZ
(Σ2Z,ÒGm(τ≥0R)).

In the fiber sequence

ÒGm(τ≥0R)→Gm(τ≥0R)→Gm(π0(R)
red),

the third term is discrete. It follows that

Pre(ÒGm)'MapModZ
(Σ2Z,Gm(τ≥0R))

'MapCAlg(Σ
∞
+ Ω

∞Σ2Z, R)

=MapCAlg(Σ
∞
+ CP∞, R).
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Therefore the functor CAlg → Top given by R 7→ Pre(ÒGm) is representable the affine
scheme SpecΣ∞+ CP∞. We’ve now accomplished task (1).

Remark 3.3. Note that a preorientation of X =Ω∞◦ÒGm gives a mapω
ÒGm ,η ' R→Σ−2R

of R-modules, i.e., an element of π2R.

This representability result holds in general:

Proposition 3.4. Let R be an E∞-ring. Suppose X is a formal hyperplane over R. The
functor CAlgR→Top given by R′ 7→ Pre(XR′) is representable by an affine scheme SpecA.

Proof. The functor ΩX : CAlgcn
R → Top is corepresentable by the connective E∞-ring

B = R⊗OX
R. We noted above that Pre(X )'Ω2X (τ≥0R), so the functor in the proposi-

tion is corepresentable by the connective E∞-ring A= R⊗B R, as desired. �

Remark 3.5. In particular, there is an E∞-ring A with a ring map R→A such that there
is a universal preorientation of XA. This gives a universal Bott map ωXA,η → Σ−2A of
A-modules.

Let E be an even periodic complex oriented E∞-ring; then ÒG0 = Spf E0(CP∞) is a
formal group over π0E . Picking a coordinate t for ÒG0, we learn that the cotangent space
to ÒG0 is exactly (t )/(t )2, which is isomorphic to π2E . One should therefore think of an
identification of the cotangent space with π0Σ

−2E as providing a complex orientation
(and not just a “preorientation”) of E . In fact, this comes from a spectral identification,
as we will now discuss.

Example 3.6. Let R be a complex oriented weakly even periodic E∞-ring, i.e., what Jacob
calls a complex periodic E∞-ring. We will denote by ÒGQ

R the Quillen formal group; this
is the functor Latop

Z → coCAlgsm
R defined by sending M to R⊗Σ∞+ CP∞. Last time, we

proved that this is a smooth formal group over R of dimension 1. Then

O
ÒGQ

R
'Map

Sp
(Σ∞+ CP∞, R) =: C ∗(CP∞; R).

There is a canonical base point η ∈ ÒGQ
R (τ≥0R), given by the map C ∗(CP∞; R) → R

defined by evaluation on the basepoint of CP∞. It follows from Proposition 2.2 that
there is a fiber sequence

Σω
ÒGQ

R ,η
//

��

R⊗C ∗(CP∞;R) R //

∼
��

R

Σ−1R'C ∗red(S
1; R) // C ∗(S1; R)

evaluate
// R

It follows that there is a canonical equivalenceω
ÒGQ

R ,η
∼−→Σ−2R.

Remark 3.7. If ÒG0 is a formal group over a complex periodic E∞-ring R, then an iden-
tification of ω

ÒG0,η with Σ−2R (via a preorientation) is canonically the same as an identi-
fication of ω

ÒG0,η with ω
ÒGQ

R ,η. By Proposition 2.2, this is the same as an identification of
ÒG0 with ÒGQ

R .
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Remark 3.8. The astute reader might argue that we were initially talking about an iden-
tification of the cotangent space with π0Σ

−2R = π2R, which is a priori not the same as
an identification of the spectral R-modules ω

ÒG0,η with Σ−2R. This will be made clear in
Theorem 3.12.

Our discussion above motivates the following definition.

Definition 3.9. An orientation of a formal hyperplane X → Spec R is a preorientation
for which the associated Bott mapωX ,η→Σ−2R is an equivalence.

As we proved above, this is the same as an identification of X with Ω∞ ◦ÒGQ
R .

Remark 3.10. As ωX ,η is locally free of rank 1 as an R-module, R must be weakly even
periodic in order for X to admit an orientation. In particular, although preorientations
of X → Spec R are equivalent to preorientations of Xτ≥0R→ Specτ≥0R, it is not true that
orientations of X → Spec R are the same as orientations of Xτ≥0R→ Specτ≥0R.

Lemma 3.11. Let G0 be a formal group over an E∞-ring R. Then there is an equivalence

Pre(G0)'Map(ÒGQ
R ,G0).

Proof. We argued above that

Pre(G0)'MapModZ
(Σ2Z,G0(τ≥0R))'MapAb(Top)(CP∞,MapcoCAlgR

(R,O∨G0
)).

This reflects the slogan “CP∞ is generated by CP 1 as a topological abelian group”. There-
fore

Pre(G0)'MapAb(coCAlgR)
(R⊗Σ∞+ CP∞,O∨G0

)'Map(ÒGQ
R ,G0).

�

The following result makes everything run.

Theorem 3.12. Fix an E∞-ring R.
(1) Let X be a formal hyperplane over R. Then there is an E∞-ring2 Ror with a ring

map R→ Ror such that there is a universal orientation of XRor .
(2) Suppose ÒG is a formal group over R with a preorientation e ∈ Pre(ÒG). Then e is an

orientation if and only if
(a) R is complex periodic.
(b) The associated map ÒGQ

R →ÒG is an equivalence.

Proof. We begin by proving (1); this is equivalent to proving that the functor CAlgR →
Top given by R′ 7→ {orientations of XR′} is corepresentable. In Proposition 3.4, we
showed that the functor R′ 7→ Pre(XR′) is corepresented by an E∞-R-algebra A. By con-
struction, this is equipped with a universal Bott map ωXA,η → Σ−2A. In order to prove
(1), it therefore suffices to prove the following result: let R be an E∞-ring, and suppose
u : L→ L′ is a map of invertible R-modules. Then there is an object R[u−1] such that for
every A∈CAlgR, we have:

MapCAlgR
(R[u−1],A)'
¨

∗ if u : A⊗R L
∼−→A⊗R L′

; else.

2Jacob denotes this by OX , but I do not know how to draw a fraktur O on the chalkboard.
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The proof of this result is just algebra, so we will omit it. There is an equivalence of
R-modules

colim(R u−→ L−1⊗R L′
u−→ (L−1)⊗2⊗R L′⊗2 u−→ ·· · )' R[u−1].

Applying this to the Bott map β : L = ωXA,η → Σ−2A = L′, we get the E∞-R-algebra
Ror =A[β−1].

Let us now turn to the proof of (2). Our discussion above establishes that if R is com-
plex periodic and the associated map ÒGQ

R → G0 (from Lemma 3.11) is an equivalence,
then e is an orientation. It suffices to prove the other direction.

Suppose e is an orientation. As (b) is equivalent to the mapÒGQ
R →G0 being an equiva-

lence (by Proposition 2.2), it suffices to show that R is complex periodic. As R is weakly
even periodic by Remark 3.10, it suffices to show that R is complex oriented. In other
words, we need to show that the mapπ−2C ∗red(CP∞; R)→π−2C ∗red(CP 1; R) is surjective.
To prove this, we will use the following diagram:

OG0
(−1) //

��

OG0
//

��

R

C ∗red(CP∞; R) //

��

C ∗(CP∞; R) //

��

R

C ∗red(CP 1; R) // C ∗(CP 1; R) // R

whereOG0
(−1) is defined as the fiber of the augmentationOG0

→ R. The map C ∗red(CP∞; R)→
C ∗red(CP 1; R) therefore factors the map OG0

(−1)→ C ∗red(CP 1; R), so it suffices to prove
that the latter map is surjective on π−2. This map can be identified with the composite

OG0
(−1)→ R⊗OG0

OG0
(−1) =ωG0

β
−→Σ−2R'C ∗red(CP 1; R).

The Bott map β is an equivalence since e is an orientation. The proof is now completed
by observing that the map OG0

(−1)→ωG0
is surjective on homotopy. �

Remark 3.13. Let R be an E∞-ring andÒG a preoriented formal group over R. Denote by
ÒG0 the underlying classical formal group ofÒG, living overπ0R. It follows from Theorem
3.12 that a preorientation e ∈Ω2

ÒG(R) is an orientation if and only if:

(1) ÒG0→ Specπ0R is smooth of relative dimension 1.
(2) The mapω

ÒG0
→π2R induces isomorphisms

ω
ÒG0
⊗π0R πn R

β
−→π2R⊗π0R πn R→πn+2R

for every integer n.
See [Lur09, Definition 3.3] for this definition of an orientation.

Example 3.14. It follows from Example 3.2 and Remark 3.3 that the universal Bott el-
ement β for ÒGm → Spec S lies in π2Σ

∞
+ CP∞. By Example 2.5, we learn that β is

exactly given by the inclusion of S2 = CP 1 into CP∞; in other words, β is the usual
Bott map. We’ve now accomplished task (2) as well. It follows from Theorem 3.12 that
Sor =Σ∞+ CP∞[β−1].
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Example 3.15. Let us return to the discussion in the introduction. Fix a nonstationary
p-divisible group G0 over a Noetherian F -finite Fp -algebra R0. Denote by G the universal
deformation of G0 over the E∞-ring Run

G0
, and let G◦ be the connected component of the

identity. Then G◦ is a formal group over Run
G0

. By Theorem 3.12, there is an E∞-Run
G0

-
algebra Ror

G0
such that there is a universal orientation of G◦⊗Run

G0
Ror

G0
. This E∞-ring is the

desired analogue of Morava E -theory for p-divisible groups (compare with Example 3.14
and Snaith’s theorem).

It is not clear that Ror
G0

agrees with Morava E -theory when R0 is an algebraically closed
field of characteristic p and G0 is a p-divisible formal group over R0; this will be the con-
tent of the following two lectures. The method of proof of this result is a generalization
of the moduli-theoretic proof of Snaith’s theorem (see [Mat12]). In order to prove this
result, it will be simpler to work in the K(n)-local category: it turns out that this does
not lose any information since one can prove that Ror

G0
is itself K(n)-local. We will now

develop some methods allowing us to prove that an E∞-ring is K(n)-local, which will be
useful in the sequel.

4. K(n)-LOCALITY OF COMPLEX PERIODIC E∞-RINGS

Let us begin with a classical observation3.

Proposition 4.1. Let R be a complex oriented ring spectrum (not necessarily an E∞-ring).
Then there is an equivalence

R //

''

LK(n)R

∼
��

holimJ∈Nn v−1
n R/I J

n =: Rvn
,

where In = (p, v1, · · · , vn−1)⊆ BP∗ and I J
n = (p J0 , v J1

1 , · · · , v Jn−1
n−1).

Proof. We must first show that the map R → Rvn
factors through LK(n)R. It suffices

to show that each v−1
n R/I J

n is K(n)-local. The spectrum v−1
n R/I J

n is built from v−1
n R/In

by a finite number of cofiber sequence, so it suffices to prove that the spectrum v−1
n R/In is

K(n)-local. This spectrum is a v−1
n BP/In -module, hence v−1

n BP/In -local. As 〈v−1
n BP/In〉=

〈K(n)〉, it is also K(n)-local.
To prove that the map LK(n)R→ Rvn

is an equivalence, we must show that K(n)∗R
∼−→

K(n)∗Rvn
. It suffices to prove this after smashing the map R → Rvn

with a finite com-

plex of type n. Consider the type n complex X = S/(p I0 , v I1
1 , · · · , v In−1

n−1) for some cofinal
(I0, I1, · · · , In−1) coming from the Devinatz-Hopkins-Smith nilpotence technology (see
[DHS88, HS98]); then

Rvn
∧X ' holimJ∈Nn (v−1

n R/I J
n ∧X )' v−1

n R/I I
n .

Therefore, as K(n)∗(R∧X )'K(n)∗(R/I I
n ), we learn that

K(n)∗(R∧X )'K(n)∗(v
−1
n R/I I

n )'K(n)∗(Rvn
∧X ),

as desired. �
3I don’t know of a reference for this statement.
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Corollary 4.2. A complex oriented ring spectrum R is K(n)-local iff R is In -complete and
vn is a unit modulo In (in other words, the underlying formal group of the Quillen formal
group over π0R has height at most n).

Our goal in this section is to give another proof of Corollary 4.2 for E∞-rings which
des not rely on Devinatz-Hopkins-Smith.

Recall (a standard reference is Paul Goerss’ paper [Goe08] on quasicoherent sheaves
on Mfg):

Definition 4.3. Let G0 be a formal group over a (classical) Fp -scheme S. Then G0 has
height ≥ n if there is a factorization

G0
ϕ //

[p]

**

G(p)0

ϕ(p) // · · ·
ϕ(p

n−1)
// G(p

n )
0

T
��

G0

Construction 4.4. The map T induces a map T ∗ : ωG0
→ ωG(p

n )
0
' ω⊗pn

G0
. As ωG0

is

a line bundle, this is the same as a map OS → ω⊗(p
n−1)

G0
. This defines a global section

vn ∈ω
⊗(pn−1)
G0

, called the nth Hasse invariant. Let M(n+1) be the closed substack of Mfg

defined by the line bundleω⊗pn−1
G0

and the section vn .

Definition 4.5. Let In denote the ideal sheaf defining the closed substack M(n), so that
In is the image of the injection vn :ω⊗−(p

n−1)
Guniv

→ OMfg
. If S = Spec R is a Fp -scheme and

G0 is given by a map f : S→Mfg, the pullback f ∗In =: I G0
n defines an ideal of R. This is

called the nth Landweber ideal of G0.

Notation 4.6. If R is an E∞-ring and G is a formal group over R, we set I G
n = I G0

n ⊆π0R.
Let R be an E∞-ring, and G be a formal group over R. Say that G has height < n if
I G

R =π0R.

Definition 4.7. If R is complex periodic, we set In = I
ÒGQ

R
n , with R left implicit; this is the

nth Landweber ideal4 of R.

Let ÒGQn
R denote the base change ÒGQ

R ⊗π0R π0R/In . By construction, ÒGQn
R has height

≥ n. Moreover, it follows from Proposition 2.2 thatω
ÒGQn

R
=π2(R)/In . The section vn is

now an element of π2(pn−1)(R)/In . Let vn denote any lift of vn to π2(pn−1)R; then In+1 is
generated by In and vnπ−2(pn−1)R.

We can now state the generalization of Corollary 4.2. Assume that we have p-localized
everywhere.

Theorem 4.8. Let R be a complex periodic E∞-ring and let n > 0. The R-module M is
K(n)-local if and only if the following conditions are satisfied:

(1) M is complete with respect to In ⊆π0R.
(2) multiplication by vn induces an equivalence Σ2(pn−1)M →M .

4Jacob denotes this by IR
n , but again, I do not know how to write a fraktur I.
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Proof. Assume that (1) and (2) are satisfied. It suffices to prove the following statement
for all 0 ≤ m ≤ n: if N is a perfect R-module which is Im -nilpotent, then M ⊗R N is
K(n)-local. Indeed, when n = 0, choosing N = R gives us that M =M⊗R R is K(n)-local.

This statement is proved by descending induction along m. We first prove the state-
ment in the case m = n. To prove that M ⊗R N is K(n)-local, we need to show that for
any K(n)-acyclic5 spectrum X , the space MapSp(X , M⊗R N )'MapSp(X ⊗N∨, M ) is con-
tractible. As usual, N∨ denotes the R-linear dual of N . It therefore suffices to prove that
X ⊗N∨ is zero.

The spectrum M U P⊗R is faithfully flat over R; this is a classical result (e.g., in Adams’
blue book) but we have chosen to rephrase it in fancy language. Therefore it suffices to
prove that X ⊗N∨⊗R M U P ⊗R'X ⊗N∨⊗M U P is contractible.

Let u ∈ π2M U P be an invertible element. As vm ∈ π2(p m−1)M U P/I M U P
m , we can

choose elements wm ∈π0M U P such that wm = v m u−(p
m−1). By construction, (w0, · · · , wn−1)

generate I M U P
n . Clearly I M U P

n and In generate the same ideal insideπ0(R⊗M U P ), so per-
fectness and In -nilpotence of N implies that N∨⊗M U P is a perfect module over R⊗M U P
which is I M U P

n -nilpotent.
N∨⊗M U P is a retract of N∨⊗M U P/(wk

0 , · · · , wk
n−1) for k� 0 by construction, so

it suffices to prove that each X ⊗N∨⊗M U P/(wk
0 , · · · , wk

n−1) vanishes. However, as we
can build M U P/(wk

0 , · · · , wk
n−1) from M U P/(w0, · · · , wn−1) by a finite number of cofiber

sequences, it suffices to show that X ⊗N∨⊗M U P/(w0, · · · , wn−1) vanishes.
As before, wn acts invertibly on N∨⊗M U P , so it can be regarded as a R⊗M U P [w−1

n ]-
module. In particular, it suffices to show that X ⊗N∨⊗M U P/(w0, · · · , wn−1)[w

−1
n ] van-

ishes. However, M U P/(w0, · · · , wn−1)[w
−1
n ] is v−1

n BP/In -local, hence K(n)-local. As X
is K(n)-acyclic, we learn that X ⊗M U P/(w0, · · · , wn−1)[w

−1
n ] is contractible, as desired.

To prove that (1) and (2) imply that M is K(n)-local, it remains to establish the inductive
step. Concretely, we need to show that N being a perfect R-module which is Im -nilpotent
implies that M⊗RN is K(n)-local. Condition (1) says that M is In -complete, so perfectness
of N implies that M ⊗R N is also In -complete. Therefore

M ⊗R N = holim M ⊗R (N/vk
m).

Each N/vk
m is Im+1-nilpotent, so M⊗R (N/vk

m) is K(n)-local by the inductive hypothesis.
It remains to establish that if M is K(n)-local, then (1) and (2) are satisfied. To establish

(1), we need to show that M is (x)-complete for every x ∈ In . In other words, we must
show that for every R[1/x]-module N , the space MapModR

(N , M ) is contractible. As M
is K(n)-local, there is an equivalence

MapModR
(N , M )'MapModR

(LK(n)N , M ).

It therefore suffices to show that LK(n)N = 0, i.e., K(n)⊗N = 0. This is a K(n)⊗R[1/x]-
module, so it suffices to show that K(n)⊗R[1/x] = 0. This is easy: the ringπ0(K(n)⊗N )
carries two formal group laws, namely the height n formal group law from K(n), and the
height < n formal group law from R[1/t ]. These cannot be isomorphic as they are of
different heights, so K(n)⊗R[1/x] = 0, as desired.

To establish (2), we need to show that the map Σ2(pn−1)M
vn−→ M is an equivalence. As

M is K(n)-local, it suffices to show that Σ2(pn−1)M⊗K(n)
vn−→M⊗K(n) is an equivalence.

5There is a typo in Jacob’s book.
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As the formal group law over π0(R⊗K(n)) has height n, this map is an isomorphism on
homotopy, as desired. �

This recovers a special case of Corollary 4.2:

Corollary 4.9. Let R be a complex periodic E∞-ring and let n > 0. Then R is K(n)-local if
and only if:

(1) R is In -complete.
(2) In+1 =π0R, i.e., ÒGQ

R has height ≤ n.

Proof. Suppose (1) and (2) are satisfied. As R is In -complete, Theorem 4.8 says that R is
K(n)-local if and only if multiplication by vn induces an equivalence Σ2(pn−1)R→ R of
R-modules. In other words, it suffices to establish that vn is invertible in π∗R. We know
that In+1 = π0R is generated by In and the image of vn : π−2(pn−1)R→ π0R. Therefore,
vn is invertible modulo In . We are now done: the In -completeness of π0R implies that
vn is itself invertible.

The proof of the other direction is exactly the same, with the steps reversed. Assume
R is K(n)-local. Theorem 4.8 implies that R is In -complete, so it suffices to establish that
In+1 = π0R. Again, In+1 is generated by In and the image of vn : π−2(pn−1)R→ π0R —
but condition (2) implies that the latter map is an isomorphism (as vn is invertible inπ∗R
by Theorem 4.8). Therefore In+1 =π0R. �

Remark 4.10. Note that this result is strictly weaker than Corollary 4.2: it requires that
R be weakly even periodic and an E∞-ring.
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