
VERY ROUGH NOTES ON SPECTRAL DEFORMATION THEORY

1. A bit of review

To the best of my understanding, let’s understand what we discussed so far:
Suppose R is a putative E∞-ring we would like to build. There are various ways to try

construct R. We talked a lot about them in a previous semester of juvitop.

(1) One can try to present R as the Thom spectrum of an infinite loop map.
(2) One can filter the E∞-operad. This leads to Robinson or Goerss–Hopkins obstruction

theory, with Goerss–Hopkins obstruction theory involving the added wrinkle of simulta-
neously building up the underlying spectrum. This is the classically easiest way to build
Morava E-theory.

(3) One can attach E∞-cells, essentially presenting the ring by E∞-generators and relations.
This can yield some beautiful filtrations related to what we study in the Thursday sem-
inar, such as the Arone–Lesh–Rognes filtration

F0 = (QCP∞)γ −→ F1 −→ · · · −→MU.

Sanders gave a talk in the Monday seminar about how such cell structures provide
homological stability results.

(4) A final way is to build the ring by a sequence of square-zero extensions. This works best
when building connective E∞-ring spectra R, which we’ll focus on now. The classical
Postnikov tower of R is a sequence of square-zero extensions, for instance, which Basterra
and Mandell use to prove that BP is an E4-ring spectrum.

Jacob’s new approach is to make a rather different looking sequence of square-zero extensions
converging to a connective adic E∞-ring R.

Starting with a ring R0 under R, we may try to build a new ring via a square-zero extension
that is the universal square-zero extension a little bit closer to R. To do this, we use the canonical
map LR0 −→ LR0|R.

This makes a square-zero extension R1, and then we can repeat the process, forming R2 from
LR1

−→ LR1|R, etc.
We produce a tower of square-zero extensions
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Crucially, to build this tower we do not need to have the ring R in hand. We just need a
recipe for transforming rings Ri into Ri-module spectra LRi|R together with maps

LRi
−→ LRi|R.

It then becomes necessary to understand convergence of the tower. How might we understand
its limit, or if we have an E∞-ring R already in hand, how do we check that the natural map

R −→ limRi

is an equivalence?
Jacob’s answer is to look at the comparison map

Hom(limRi, S) −→ Hom(R,S)

for various E∞-rings S. For truncated rings S (i.e. rings with homotopy groups in a small range
of degrees), we can check that these two mapping spaces are the same. Roughly speaking, that’s
because through the eyes of S the tower becomes constant.

Let’s see an example. Suppose we start with R0 = HFp and R = Sp, the p-complete sphere
spectrum. Jacob spends a lot of pages on this example because Sp is the universal unoriented
deformation of Gm over Fp. If S is any Fp-algebra with homotopy groups concentrated in degree
0, then any map Ri −→ S will factor through HFp ' R0. So we know that the comparison map
is an equivalence at least for this class of S.

One can slowly build up the class of rings S on which one knows the functor of points to be
an equivalence. For suitably truncated S, with finitely many finite homotopy groups, I believe
that the tower eventually looks constant.

To finish these convergence proofs, and understand what happens for non-truncated S, Allen
explained that it was essential that each LRi|R be a suitably finite thing. In technical terms, we
want LRi|R to be an almost perfect Ri-module. For the sorts of functors − 7→ L−,R that show
up in Jacob’s paper, this just comes down to checking that LR0

be almost perfect.

2. The F -finiteness theorem

Suppose that A is a coherent, connective E∞-ring. The word coherent just means that

(1) Every finitely generated ideal in π0(A) is finitely presented.
(2) The group πn(A) is a finitely presented π0(A)-module for each n > 0.

Noetherian rings are coherent, but Z[x1, x2, · · · ] is coherent without being Noetherian.

Remark 2.1. If A is a classical coherent ring, then finitely generated submodules of finitely
presented modules are finitely presented. If M and N are finitely presented A-modules, then
the kernel and cokernel of any map f : M → N is also finitely presented. One proof of this
sort of thing proceeds by first checking the case when either M or N is free, and then diagram
chasing elements along exact sequences that express finite presentation, like in the proof of the
five-lemma.

Definition 2.2. The category of almost perfect A-modules is the smallest subcategory of
LModA, closed under retracts, shifts, and finite colimits, that contains any geometric realization
|P•| of finite rank free R-modules.

Proposition 2.3. An A-module M is almost perfect if and only if

(1) πmM = 0 for all sufficiently small m.
(2) For every integer m, πmM is a finitely presented π0A-module.
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Proof. A fairly simple proof can be found in Higher Algebra. Let’s at least remark here why it
is reasonable that almost perfect modules satisfy both properties. It is obvious that the class
of modules satisfying both properties is closed under retracts and shifts. The homotopy groups
of finite colimits and geometric realizations can be analyzed by spectral sequences, using the
previous remarks and the fact that finitely presented modules are closed under extension. �

Corollary 2.3.1. Z is an almost perfect S-module.

Remark 2.4. The ring S is obviously coherent, in the above sense, but the ordinary ring π∗(S)
is far from Noetherian. Note that if it were Noetherian then the ideal of positive degree classes
would be finitely generated, and in fact these generators would have to generate π∗(S) as a Z-
algebra. Since every positive-degree element of the homotopy groups of spheres is nilpotent, this
is impossible.

The main thing for today will be to prove the following theorem, whose proof is spread over
2 sections of Chapter 3 of Lurie’s :

Theorem 2.5. Let R denote a classical Noetherian Fp-algebra. Then the following conditions
are equivalent:

(1) The absolute cotangent complex LR is an almost perfect R-module.

(2) The algebraic cotagent complex Lalg
R is an almost perfect R-module.

(3) The algebra R is F -finite, meaning the Frobenius φ : R −→ R presents R as a finitely
generated R-module.

We’ll also try to better understand what kinds of rings are F -finite, and in particular why
F -finiteness is preserved as we go up a tower of nice square-zero extensions.

First, let’s talk about (i) vs (ii). Once we prove the equivalence of (i) and (ii) we’ll be in
great shape, because (ii) and (iii) are both purely algebraic conditions and we might consider
algebra a bit simpler than homotopy theory.

How can we show that (i) and (ii) are equivalent? It is a formal result in SAG that, for any
morphism A→ B of classical commutative rings,

LalgB/A ' B ⊗B⊗SZ LB/A.

Using this, the result follows from the fact that Z is an almost perfect S-module.
Now, why are (ii) and (iii) related? Well, the more important direction for our purposes is

that (iii) implies (ii), so I’ll do that direction.

The fiber sequence R ⊗Fp
Lalg
Fp
−→ LalgR −→ LalgR/Fp

shows that we need only show that LalgR/Fp

is an almost perfect R-module.
Let R1/p denote R thought of as an R-algebra via the Frobenius map. The F -finiteness of

R implies that LR1/p/R is an almost perfect R1/p-module (this uses that R and hence R1/p are

coherent, so one can just check that the homotopy groups are finitely presented).
Now, there is a fiber sequence

R1/p ⊗R LalgR/Fp
−→ Lalg

R1/p/Fp
−→ Lalg

R1/p/R

The final term in this fiber sequence is almost finite. We want to show that the middle term is
almost finite, because there is no difference between asking for the middle term to be an almost

finite R1/p-module and asking that LalgR/Fp
be an almost finite R-module.

Our worry is that the map

R1/p ⊗R LalgR/Fp
−→ Lalg

R1/p/Fp
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might have a large image in homotopy groups, causing much cancellation. However, we will
prove below that this map is just the 0 map. It is in the proof that the map is 0 that we really
use the trick of exchanging topological for algebraic cotangent complexes.

Considered as a simplical Fp-algebras, any R is a geometric realization |P•| of polynomial
algebras Pn = Fp[x1, x2 · · · ], on possibly finitely and possibly infinitely many generators. In this
way, Jacob reduces things to the calculation of, for each n, the map

ΩPn/Fp
−→ Ω

P
1/p
n /Fp

.

But d(xp) = pxp−1 = 0 for any x ∈ Pn.
To finish, I ought not to omit the following fact:

Theorem 2.6. Let R be a Noetherian Fp-algebra which is complete with respect to an ideal
I ⊂ R. If R/I is F -finite, then R is F -finite.

This makes it reasonable that, in Jacob’s strategy of building a tower of approximations to
an E∞-ring, the F -finiteness condition is really on a condition on the base of the tower. Since
I is not assumed finitely generated, this is one theorem where the word Noetherian is really
highlighted, as opposed to merely coherent.

Proof. Since R is Noetherian, we may choose a collection (x1, · · · , xn) of elements generating I.
Let J denote the ideal (xp1, x

p
2, · · · , xpn), so that we have Ip

n ⊆ J ⊆ I.

The strategy is to first check that, since R/I is F -finite, (R/J)1/p is also finitely generated as
an R-module.

This lets us picking generating elements y1, y2, · · · , ym, so that, for each t ∈ R,

t ≡ cp1,1y1 + · · · cp1,mym
modulo J .

In fact, we can make a sequence of m-tuples of elements ci,1, ci,2, · · · , ci,m such that

t ≡ cpi,1y1 + · · · cpi,mym
modulo J i, and where ci+1,m ≡ ci,m modulo Ii.

Since R is complete with respect to I, we obtain by completion an integral equation

t = cp1y1 + · · · cpmym.
�


