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The idea is to do a more spectral version of what Jeremy talked about last time. We want to
understand the deformation theory of a p-divisible group; by definition, this is a morphism
SpecR0 →MBT (moduli of p-divisible groups). We would like to understand why there is a
universal deformation, which corresponds in our context to a factorization

SpecR0
//

%%

MBT

Spf RunG0

::

Think about this as a formal neighborhood of SpecR0 inside MBT .

Here’s a first pass at what I’ll try to explain.

Theorem 1. When MBT has a good deformation theory and LSpecR0/MBT
is 1-connective

and almost perfect, then you get a factorization as above.

A lot of the details surrounding “good deformation theory” are in Elliptic 1. For now, we’ll
try to focus on the role that the cotangent complex plays in the story. The almost perfect
condition is satisfied in our case because of the F -finiteness assumption Jeremy mentioned
last time - we’ll see more on that next time.

Notation 2. If X is a spectrum, write X ≥ n if X is n-connective. If f is a map, write
f ≥ n if fib(f) ≥ n.

The idea is to make a hopefully convergent sequence

SpecR0 → SpecR1 → SpecR2 → · · · →MBT .

The toy example to keep in mind is SpecA/x → SpecA. Then the sequence would be
“successively fattening this up”, i.e. SpecA/x→ SpecA/x2 → SpecA/x4 → · · · → SpecA. At
each stage, the thing you’re adding on is the module of differentials - in the spectral setting,
this will be replaced with the cotangent complex.

1. Primer on square-zero extensions

Say R is a classical ring and M ∈ ModR. Say M → R̃→ R is a square-zero extension. Note

R̃ may or may not be trivial (if it’s trivial R̃ splits as R⊕M). The example to keep in mind
for the non-split case is Z/p2 → Z/p.

Disclaimer: These are notes I took during the lecture. I, not the speaker, bear responsibility for mistakes. If
you do find any errors, please report them to: <ekbelmont at gmail dot com>.
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Fact 3. The automorphisms in the category of rings with a map to R are given by

(1) AutR(R̃) = Der(R,M) = HomR(ΩR,M)

Say R is an E∞-ring. On the derived side, you have the (absolute) cotangent complex LR,
which has the universal property that MapE∞(R,R⊕M) = MapR(LR,M). (Dylan thinks L
is for “left-derived”.) We want a space-level version of (1).

Dream 4. Square-zero extensions of R by M = MapR(LR,ΣM).

Depending on how you set up the theory, there might be some issues with this. However, you at
least have a map Map(LR,ΣM)→ square-zero extensions, sending η : LR → ΣM to the square

zero extension R̃ classified by η. It will be given by the formula R̃ = fib(R→ R⊕ΣM → ΣM).

2. Connectivity of the cotangent complex

Let f : A→ B. We now study its relative cotangent complex LB/A. I just want to recall one
fact - that there is a cofiber sequence (of B modules)

f∗LA → LB → LB/A.

Question 5. In what sense does LB/A approximate the difference between A and B?

An example theorem we’d like to prove is: let f : A→ B be a map of connective E∞-rings.
Then f is an equivalence iff π0f is an isomorphism and LB/A ' 0.

For this, we will need the following construction which explicitly compares the cofiber of f to
the relative cotangent complex of f .

Construction 6. There’s a natural map η : LB → LB/A classifying certain square-zero
extensions of B; in particular, it classifies diagrams

A
f
//

��

B

Bη

square zero

f ′
>>

This gives a map cofib(f) → cofib(f ′) = LB/A of A-modules. Tensor this up to a map of
B-modules to get εf : B ⊗A cofib(f)→ LB/A. This is the comparison map we’ll be studying.

Here’s a refined version of the example theorem:

Theorem 7. Let f : A → B be a map of connective E∞-rings. If cofib(f) ≥ n then
εf : B ⊗A cofib(f)→ LB/A is 2n-connective.
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Proof. Say a map f is “n-good” if εg ≥ 2n. We’ll try to prove εf is n-good by making a
filtration by killing free E∞ cells. This is a good idea because the cotangent complex of a free
E∞ algebra is easy.

Construction: Suppose f : A→ B satisfies f ≥ n− 1. The idea is to kill the bottom cell with
an E∞ cell to make it more connected.

fib(f) //

&&

FE∞(fib(f)) //

��

S

��

A //

f
%%

A′

f ′

��

B

FE∞ is the free E∞ ring and A′ is defined as the pushout. It’s not too hard to see that f ′ ≥ n,
so I’ll skip this.

Successively do this procedure and create a sequence

A = An → An+1 → An+2 → · · · → A2n+1 → B.

By virtue of the construction, this filtration has the following two properties:

(1) cofib(Am → B) ≥ m

(2) For all m ≥ n, there exists M ≥ m− 1 such that there’s a pushout in CAlg

FE∞(M) //

��

S

��

Am
im // Am+1.

In this situation, n-good morphisms turn out to be closed under composition (warning: not
generally - you need some connectivity assumptions), so you reduce to showing to showing
the following statements:

(1) A2n+1 → B is n-good.

(2) Each Am → Am+1 is n-good (this is the key calculation)

The first of these is true just because the map is highly connected. We’ll do the second
one. It turns out that everything works well w.r.t. base change, and it suffices to show that
FE∞(M)→ S is n-good when M ≥ n− 1.

FE∞(M) is free so its cotangent complex is just M . Running through our construction of the
map εf , we get the triangle

FE∞
f

//

$$

S

M ⊕ S
f ′

<<

which yields a map cofib(f)→ cofib(f ′), which after tensoring up the source is the map
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ε :
∨
n≥1

(ΣM)∧nhΣn
→ ΣM.

which is 2n-connective because M ≥ n− 1 so (ΣM)∧2
hΣ2
≥ 2n. �

We can now prove the promised result.

Corollary 8. Let f : A→ B be connective E∞-rings.

(1) If cofib(f) ≥ n then LB/A ≥ n.

(2) If LB/A ≥ n and π0f is an isomorphism, then cofib(f) ≥ n.

Proof. For (2), say cofib(f) is (n − 1)-connective (i.e. not connective enough). π0f is an
isomorphism, so n ≥ 2. From the theorem, εf ≥ 2n−2 ≥ n. Consider the following composite:

πn−1(cofib(f))→ πn−1(cofib(f)⊗A B)
εf→ πn−1LB/A.

The first map is clearly an isomorphism, and the second map is an isomorphism by what we
have just showed. The assumption about the connectivity of cofib(f) says that the first term
is nonzero, and that implies the last term is nonzero, a contradiction. �

3. Enlarging a point in a stack to a formal neighborhood

Theorem 9 (Special case of SAG 18.2.5.1). Let B be an E∞-ring and Y be a stack. Let
f : SpecB → Y be a natural transformation of functors CAlgcn → S. Assume:

(1) Y is nilcomplete (Y (R) = limn Y (τ≤nR)) and infinitesimally cohesive (analogue of
saying there’s patching—this is the thing in Jeremy’s talk where if you have a surjective
map of rings you get a pullback square) and admits a cotangent complex.

(2) Y is formally complete along f (this means colim SpecB(R/I)→ colimY (R/I) is an
equivalence, where the colimit is over all nilpotent ideals).

(3) f admits a relative cotangent complex LSpecB/Y which is 1-connective and almost perfect.

Then Y is representable by an affine formal spectral Deligne-Mumford stack Spf(A).

In the classical case, we had SpecB → Y and created Spf(W (k)[[t1, . . . , tn]]) (free power
series thing on the tangent space) that it factors through. We wanted to show that
Spf(W (k)[[t1, . . . , tn]])→ Y is an equivalence; that’s a formal consequence of both of these
things satisfying (1) and (2), and the relative cotangent complex vanished. We’re going to
focus on producing this affine object. Classically, this relied on the tangent space being
finite-dimensional; this is the analogue of (3). (1-connective has to do with smoothness, which
is why you get an actual formal power series and not that mod something.)

Construction: Let’s construct a sequence of formal schemes

SpecB = SpecB0 → SpecB1 → SpecB2 → · · · → Y.
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Assume we have Bn. Do what we did in the first half: there’s a map LBn → LSpecBn/Y

that classifies a square-zero extension. So you get a factorization SpecBn → SpecBn+1 → Y .
Define U = colim SpecBn. Define U so U(R) = limm U(τ≤mR) (forcing it to be nilcomplete).
We’ll eventually prove that U is affine.

You get a factorization

SpecB //

##

Y

U

??

and:

Fact 10. U ' Y

This is actually not the hard part. It’s the analog of when we saw in Jeremy’s talk that
after producing a natural transformation between Spf(W (k)[[t1, . . . , tn]]) and the functor in
question, it was automatically an equivalence by the formal deformation theoretic properties
of the functors. The hard part is showing that U ' Y is affine.

(Instead of writing U I’ll write Y now.) Γ(Y ) = lim←−Bn =: A is a connective E∞ ring with a
natural map f : A→ B0 = B. There’s a global map of functors Y → SpecA and the claim is
that it factors through Spf A, where I’m thinking of A as adic by the ideal kerπ0f . Y will be
affine if and only if this is an equivalence; it should be believable at this point that what you
need to see is the following proposition.

Proposition 11. In this situation, LY/SpecA ' 0.

Strategy: The idea is to build up the analog of Spf(W (k)[[t1, . . . , tn]]) (from the classical
situation) by successive approximation. We’ll show that for each m > 0, there is an “m-good
replacement” for Y → SpecA. An m-good replacement is the data of a diagram

SpecB
f(m)

//

f
$$

Y (m) //

��

SpecA(m)

��

Y // SpecA

where

(1) the square is a pullback

(2) A(m) is almost perfect over A

(3) the map π0A→ π0A(m) is a surjection

(4) LSpecB/Y (m) ≥ m.

The Y (m)’s are supposed to be getting successively close to B.

Remark 12. If you have a replacement in the above sense, Γ(Y (m))→ A(m) is an equivalence.
By definition, Y (m) = SpecA(m)×SpecA colim SpecBn. We’re in spaces, so we can pull out
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the colimit:
Γ(Y (m)) = lim←−A(m)⊗A Bn.

There’s always a map A(m) = A(m)⊗A lim←−Bn → lim←−A(m)⊗A Bn; the condition that A(m)
is almost perfect allows you to conclude that this map is an equivalence.

Lemma 13. In this situation, suppose LSpecB/Y ≥ m. Then for any n ≥ 0,

(1) LSpecBn/Y ≥ m

(2) fib(Bn+1 → Bn) ≥ m− 1

(3) fib(A→ Bn) ≥ m− 1

(4) θ : cofib(A→ B)→ LB/A → LSpecB/Y is surjective on πm. (This is saying that this is
surjective on the bottom homotopy group.)

The first 3 claims are more or less immediate. For (4), look at

B1

$$

A

>>

// B = B0

The claim is that analyzing how the diagram relates to θ shows cofib(θ) = cofib(A→ B1) ≥ m.

Remark 14. We’re trying to prove something about LY/ SpecA. But

LY/SpecA

∣∣
SpecB

= LY (m)/ SpecA(m)

∣∣
SpecB

because of the pullback for Y (m) and properties of cotangent complexes. There’s a fiber
sequence

LY/SpecA

∣∣
SpecB

= LY (m)/ SpecA(m)

∣∣
SpecB

→ LSpecB/ SpecA(m) → LSpecB/Y (m).

By part (3) plus the stuff we’ve prove, LSpecB/ SpecA(m) is ≥ m. By part (1), the last term is
≥ m. Then we find the LHS is very connected. Since we can do this for every m,

LY/ SpecA

∣∣
SpecB

' 0.

Since A is built as a nilpotent extension of B, it’s a general fact (SAG 2.7.3.2) that this also
implies

LY/ SpecA ' 0.

Let’s now try to indicate how to prove the proposition.

Proof sketch for Proposition. Idea: proceed by induction; part (4) is telling you you can kill
E∞ cells on the bottom.

Suppose m = 1. Then Y (1) = Y and A(1) = A so it’s OK.

Now assume we have it for m. Replace Y by Y (m) and A by A(m), so we can assume we’re in
the situation where LSpecB/Y ≥ m (i.e. where you can apply the last lemma). By assumption,
LSpecB/Y is almost perfect. This implies that πm is finitely generated over π0A. We also have
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cofib(A→ B)→ LB/A → LSpecB/Y is surjective on πm. Choose a free A-module P and map

Σm−1P → fib(A→ B) such that ΣmP → cofib(A→ B)→ LSpecB/Y is surjective on πm.

Define A(m+ 1) := A⊗FE∞/A(Σm−1P ) A and Y (m+ 1) = Y ⊗FE∞/A(Σm−1P ) A. You then have

to show this works... �
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