
VERY ROUGH NOTES ON SPECTRAL DEFORMATION THEORY

1. Classical Deformation Theory

I want to begin with some classical deformation theory, before moving on to the spectral
generalizations that constitute Lurie’s work.

Definition 1.1. Let k be a field. A formal moduli problem is a functor

F : Artk −→ Groupoids

such that F (k) = ∗. Here, Artk is the category of local Artinian k-algebras and continuous
homomorphisms.

Remark 1.2. The prototypical local Artinian k-algebra is the dual numbers k[ε]/ε2. Any local
Artinian k-algebra arises from k by a series of square-zero extensions. A more complicated
example is

k[x, y]/(x2, y3, xy2) ∼= k ⊕ kx⊕ ky ⊕ kxy ⊕ ky2.

Example 1.3. Fix a finite height formal group law f(x, y) over a perfect field of characteristic
k. One can define a functor

Def?(−) : Artk −→ Groupoids

that takes A to the collection of pairs (g(x, y), i), where g(x, y) is a formal group law over A and
i is a strict isomorphsim of the reduction of g with f .

The kind of theorem Lurie seeks to generalize is as follows:

Theorem 1.4. (Lubin–Tate) There exists a complete local ring E, with residue field k, such
that for any Artinian k-algebra A continuous maps from E into A represents the same functor
as π0Def?(A).

Before discussing the generalization, let’s briefly review how one might prove representability
theorems classically. Here’s a theorem with much too restrictive hypothesis, just to give you an
idea of the kind of things involved.

Theorem 1.5. (Schlessinger) Suppose that F : Artk −→ Sets is a Sets valued moduli problem,
such as π0 of some other moduli problem. Suppose that F satisfies the following criteria:

(1) If A′, A′′ −→ A are two surjections, then F (A′ ×A A′′) ' F (A′)×F (A) F (A′′).
(2) F is formally smooth, meaning that for any surjection A′ −→ A, the map F (A′) −→

F (A) is surjective.
(3) The tangent space to F , F (k[ε]/ε2) is of finite dimension g.

Then the functor F is pro-representable.

Remark 1.6. I should clarify what I mean when I say that F (k[ε]/ε2) has finite dimension
g. After all, this tangent space is a priori just a set. The idea is to use the natural map
k → EndArtk(k[ε]/ε2, k[ε]/ε2) that sends a to αa(x + yε) = x + ayε. Applying F to αa gives a
candidate for scalar multiplication by a, that in fact forms a vector space structure.
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Remark 1.7. Condition (1) is a gluing condition, and so is only reasonable when the set-
valued fiber product agrees with the groupoid fiber product. In fact, Def?(A) happens to be
a discrete groupoid, so there is no real difference between π0(Def?(A)) and Def?(A). Many
classical deformation problems are similarly discrete, such as deformations of elliptic curves or
more general abelian varieties.

Proof of Schlessinger’s theorem. Choose a basis a1, a2, · · · , ag of F (k[t]/t2). Since F is formally
smooth, we may lift each ai to an element in W (k)[[t]]/(p2, t2). In the limit, this gives elements

αi ∈ F (W (k)[[t]]) = lim
n
F (W (k)[[t]]/(pn, tn).

Here, we define F on the non-Artinian W (k)[[t]] by the filtered limit formula. Since F is product
preserving, we get a single element

(α1, α2, · · · ) ∈ F (W (k)[[t1, t2, · · · , tg]]).

By Yoneda, that is the same data as a morphism of functors

(1) Hom(W (k)[[t1, t2, · · · , tg]],−) −→ F (−)

We would like to show that this map of functors is an equivalence, as it is by construction on
k[ε]/ε2. We prove that (1) is an equivalence on all A by induction on the length of A. To this
end, suppose that A is an Artinian k-algebra, with a non-zero x ∈ A annihilated by the maximal
ideal in A, such that (1) is an equivalence when evaluated on A/x. We will show that (1) is an
equivalence when evaluated on A.

Consider

Hom(W (k)[[t1, t2, · · · , tg]], A) F (A)

Hom(W (k)[[t1, t2, · · · , tg]], A/x) F (A/x).

We will show that the fibers of each vertical surjection of sets map bijectively onto one another.
To this end, consider the pull-back square

F (A×A/x A) F (A)

F (A) F (A/x)

Notice that A ×A/x A ∼= A ×k k[ε]/ε2, via the isomorphism that sends ε to x and A to the

diagonal. The addition of x map thus exhibits A as a (k[ε]/ε2)-torsor over A/x. Since F is
product-preserving, and F (A) surjects onto F (A/x), it follows that F (A) is naturally a torsor
for F (k[ε]/ε2) over F (A/x). The same is true for the functor Hom(W (k)[[t1, t2, · · · , tg]],−). �

2. Spectral deformations of p-divisible groups

Through the next few talks, we are going to greatly extend the above story in several directions:

(1) We replace the field k with a more general Noetherian Fp algebra R0.
(2) We will replace the formal group law f(x, y) with an arbitrary p-divisible group G0 over

R0.
(3) We replace the category of local Artinian k-algebras with the much more general category

of all adic E∞-ring spectra.

Fix for the remainder of the talk a Noetherian Fp-algebra R0, as well as a p-divisible group
G0 over R0. What does it mean to give a deformation of G0 to an arbitrary adic E∞-ring A?
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Definition 2.1. Let A be an adic E∞-ring and G a p-divisible group over A. A G0-tagging of
G is a triple (I, µ, α), where I ⊂ π0(A) is an ideal of definition, µ : R0 −→ π0(A)/I is a ring
homomorphism, and

α : (G0)π0(A)/I ' Gπ0(A)/I

is an isomorphism of p-divisible groups over the commutative ring π0(A)/I.
A pair of G0-taggings (I, µ, α) and (I ′, µ′, α′) are equivalent if there exists a finitely generated

ideal of definition J ⊂ π0(A), containing both I and I ′, for which the square

R0 π0(A)/I

π0(A)/I ′ π0(A)/J

commutes, and α agrees with α′ upon restriction to (G0)π0(A)/J .

Remark 2.2. Giving a G0-tagging of G is equivalent to giving a G0-tagging of the p-divisible
group Gπ0(A)/I , so this is all really a π0 construction.

Definition 2.3. A deformation of G0 over an adic E∞-ring A consists of a p-divisible group G
over A together with an equivalence class of G0-taggings of A. This can be organized into an
∞-category

DefG0(A) = colimIBTp(A)×BTp(π0(A)/I) Hom(R0, π0(A)/I),

where I ranges over all finitely generated ideals of definition I ⊂ π0(A).

Remark 2.4. If π0(A) is Noetherian, then A admits a largest ideal of definition I ⊂ π0(A), and
so the above filtered colimit collapses.

Definition 2.5. Let G denote a deformation of G0 over an adic E∞-ring R. We will say that G
is a universal deformation if, for every complete adic E∞-ring A, the extension of scalars map

MapCAlgad
cpl

(R,A) −→ DefG0(A)

is an equivalence.

Remark 2.6. This universal property guarantees that a universal deformation (R,G), if it exists,
is unique up to contractible choice.

We do not expect a universal deformation to always exist. For example, we need an analogue
of the classical condition that the field k be perfect.

Definition 2.7. The Fp-algebra R0 is F -finite if the Frobenius homomorphism φ : R0 → R0

makes R0 into a finitely presented R0-module.

That’s the analogue of a field k being perfect. Now, if R0 is much bigger than a field, we
can think of the formal group G0 as already being a sort of deformation of its reductions at the
residue fields of R0. We need to know that this R0 deformation is in some sense as non-trivial
as possible, and that we haven’t already ruined the universality of our deformation.

Construction 2.8. Suppose x ∈ |Spec(R0)| and d is a derivation

d : R0 −→ κ(x),

where κ(x) denotes the residue field of R at x. Then the projection β0 : R0 −→ κ(x) extends to
a map

β : R0 −→ κ(x)[ε]/(ε2),
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given by the formula β(t) = β0(t) + εdt. Let Gd be obtained by G0 via extension of scalars along
β. We say that Gd is trivial iff it is isomorphic to extension along the composite

β0 : R0 −→ κ(x) −→ κ(x)[ε]/(ε2).

Definition 2.9. The p-divisible group G0 is non-stationary if, for all choices of κ(x) and
non-zero derivations d, Gd is non-trivial

Example 2.10. Suppose that R0 is semiperfect, meaning that the Frobenius φ : R0 → R0 is
surjective. Then, for every R0-module M , every derivation d : R0 → M is trivial. This is just
because d(xp) = pxp−1dx = 0. Thus, in this case G0 is automatically non-stationary.

We can state the main theorem of the next few talks

Theorem 2.11 (Lurie). Let R0 denote an F -finite Noetherian Fp-algebra and G0 a non-stationary
p-divisible group over R0. Then there is a univeral deformation (R,G), where R = RunG0

is connec-
tive and Noetherian. Furthermore, the natural map R −→ R0 induces a surjective homomorphism
π0(R)→ R0, with kernel an ideal of definition for R.

To apply a Schlessinger’s criterion argument, we need to roughly:

(1) Know some ‘formal smoothness’ property for DefG0
(−).

(2) Obtain a complete understanding of the ‘tangent space’ to DefG0
. We ought not just

understand deformations over k[ε]/ε2, but also deformations in ‘derived directions’. We
need to show that this tangent space is in some sense finite.

I won’t talk about formal smoothness much in this talk, but maybe we’ll talk about it in
future talks. I will try to explain first a bit about (2), which is where the condition of F -finiteness
becomes necessary.

The formal group law G0 is given by a map Spec(R0) −→MBT . The notion of tangent space
is replaced with the formalism of the relative cotangent complex

LSpec(R0)/MBT
.

We will want to talk about the thoery of cotangent complexes in more detail in future talks. Let
me get started now, and eventually move to explain why the F -finiteness condition is relevant.

3. Cotangent Complexes of Rings

Suppose that A is an E∞-ring spectrum. Then its cotangent complex LA is an A-module with
the following universal property

For any A-module M ,

Der(A,M) = HomE∞−rings/A(A,A⊕M) ' HomA-mod(LA,M)

This is a categorification of the notion of Kahler differential, which captures the usual cotan-
gent space in algebraic geometry.

If B → A is a map of E∞-ring spectra, there is also a relative version

HomA−modules(LA|B ,M) ' HomE∞−ringsB/

/A
(A,A⊕M)

We want to know when a certain (relative) cotangent complex has a finiteness property. The
correct notion of finiteness is ‘almost perfection’.

Definition 3.1. Suppose that R is an E∞-ring. Then a perfect R-module is a compact object
in the category of R-modules. The perfect R-modules are those generated from finitely many
copies of R under shifts, extensions, and retracts.
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Example 3.2. Suppose that R is a classical Noetherian commutative ring, and that M is a
classical finitely generated R-module. Then M admits a resolution

· · · −→ P2 −→ P1 −→ P0 −→M,

where each Pi is free and finitely generated over R. However, M is only perfect if we can take
the Pi to be 0 for i� 0. This is not always the case.

Definition 3.3. If R is a coherent E∞-ring spectrum (meaning that R is connective, π0(R) is
coherent, and each πn(R) is finitely presented), the category of almost perfect R-modules is the
smallest one closed under retracts, shifts, finite colimits, and containing any geometric realization
|P•| of finite rank free R-modules.

Example 3.4. Z is an almost perfect S-module.

In a future talk, we will discuss the following:

Theorem 3.5 (Lurie). Let R be a classical Noetherian Fp-algebra. Then R is F -finite if and
only if the absolute cotangent complex LR is almost perfect as an R-module. Furthermore, in the
case that G0 is non-stationary, LSpec(R)|MBT

, is 1-connected and almost perfect.


