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Here’s an outline for the rest of the seminar. First I and Eva will talk about formal and
p-divisible groups over an E∞ ring R. Then Jeremy will talk about the spectral deformation
theory of p-divisible groups (this is about the RunG from Jacob’s talk). Finally, we’ll turn to
the essential idea in this paper of orientations of spectral formal groups, and study how this
relates to objects we already know something about like Lubin-Tate theory. That will give us
RorG .

1. Prologue: adic E∞-rings

Definition 1. An adic ring is a pair (R, τ) (where R is a ring and τ is a topology on R)
such that τ is the I-adic topology for some finitely generated ideal I ⊂ R. Note that I is not
determined by this data.

I is called an ideal of definition for this adic ring.

Definition 2. An adic E∞ ring is a pair (R, τ) where R is an E∞ ring and τ is a topology
on π0R making it into an adic ring (so it admits a finitely generated ideal of definition).

Let CAlgad be the category of adic E∞ rings, where the morphisms are E∞ ring morphisms
that are continuous on π0.

Definition 3. Let R be an E∞ ring and M an R-module. Given x ∈ π0R, we say M is

(x)-complete if lim←−(. . .
x→M

x→M
x→M) is contractible.

Equivalently,

Ext1
π0(R)(π0R[x−1], πkM) = Homπ0(R)(π0R[x−1], πkM) = 0

for all k. (Proof of equivalence: apply the Milnor exact sequence, where the Ext1 corresponds
to the lim1 term.)

(Take-away: it’s just a condition on homotopy.)

For a finitely generated ideal I ⊂ π0R, say that M is I-complete if it is (x)-complete for all
x ∈ I. It turns out that this is true iff it is true for a set {xi} ⊂ I of generators.

There is a completion functor M 7→ MÎ , which is the left adjoint of the inclusion of the
I-complete modules in all modules. It is symmetric monoidal if I-complete modules are given
the I-completed tensor product.

1



Definition 4. Given an adic R-algebra A (where R is an E∞ ring), define Spf(A) to be a
functor CAlgR → S where Spf(A)(B) = MapctsCAlgR

(A,B) where π0B is discrete. Spf defines

a functor CAlgadR → Fun(CAlgR, S).

This is not fully faithful—for example, Spf(A) ' Spf(AÎ). However, it is fully faithful on
complete adic R-algebras (see SAG 8.1.5).

2. Formal groups

We’re going to think about formal groups in three ways, which will be relevant for different
reasons.

A formal group over R is a functor

Ĝ : CAlgR → ModcnZ ' Ab(S)

where Ab(S) denotes abelian group objects in spaces. (Why connective? Grouplike E∞
spaces are connective spectra, not all spectra.) Note we’re enforcing strict commutativity in
our group objects. They’re all affine: the composition Ω∞ : CAlgR → Ab(S) → S can be
represented as Spf(A). But we want to make some restrictions on A.

Classically, if R = k, then A = k[[t1, . . . , tn]] where the ideal of definition is (t1, . . . , tn). In
topology, we usually confine ourselves to n = 1, but that doesn’t make anything simpler.

More generally, over a discrete ring R, we want A ∼= R[[t1, . . . , tn]] only Zariski locally on
SpecR (only after inverting some element). Whatever condition we want on a formal group,
it should be checkable Zariski-locally.

How do you generalize the notion of a power series ring to the E∞ case? If E is a 2-periodic
E∞ ring (like Lubin-Tate theory) then we want Spf ECP∞ to be a formal group. If we just
choose some specific model of formal power series, it won’t be broad enough to include this
example. For example, we could take R[N]⊗R . . .⊗R R[N] =: R[t1, . . . , tn] and complete it at
(t1, . . . , tn). We could ask for things that are isomorphic to this as an E∞ ring, and that’s too
restrictive. It’ll end up that everything in our actual definition is isomorphic to this as an E1

ring, but we want to include many ways to extend that E1 structure.

Over an E∞-ring R, we want to let A be any adic R-algebra such that

π∗A ∼= π∗R[[t1, . . . , tn]]

Zariski-locally on π0R.

Audience question: Why do we want to consider abelian group objects and not all grouplike
E∞ spaces in our definition of formal groups?
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Well, let’s consider the case of the multiplicative group (the formal case is similar). We could
look at GL1(R), defined by

GL1(R) �
�

//

��

Ω∞R

��

(π0R)× // π0R

This will be co-represented by S{t}[t−1], where S{t} denotes the free E∞ ring on one variable
t. The issue is that this is not flat over the sphere spectrum. On the other hand, you can
define Gm(R) := MapE∞(Z, GL1R). This is co-represented by S[t][t−1]. The homotopy of

this is π∗(S)[t±1], and that is flat over S. So Gm is a much better behaved version of the
multiplicative group than GL1 from the point of view of spectral algebraic geometry.

As promised, here are three ways of describing a formal group Ĝ:

(1) as an adic R-algebra A with properties as above;

(2) Homcts
ModR

(A,R) (as a coalgebra); This is equivalent to (1) but has the advantage that
you don’t need to remember the topology.

(3) functor of points: Ĝ : CAlgR → S

These are related via the following diagram:

(1) oo
dual //

``
Spf

OX   

(2)

cSpec~~

(3)

(1) has the advantage that it’s identifiable in nature. For example, once I’ve computed
π∗(E

CP∞), I can check that Spf(ECP∞) is a formal group. The coalgebra perspective is
technically useful perspective for proving theorems about how these things work. (3) is the
most conceptual and categorically nice perspective.

I’ll run through the classical case of this diagram (where R is a discrete ring). Then we’ll see
it for the E∞ case. From there we’ll define formal groups formally, and using the work in the
earlier sections we’ll observe that we’ve already proved a bunch of nice properties about them.

3. Classical case

Let R be a discrete commutative ring and M a flat R-module.

Definition 5. Let Γ∗R(M) :=
⊕

n≥0 ΓnR(M) where ΓnR(M) := (M⊗Rn)Σn . We give this a

coalgebra structure as follows: the co-unit Γ∗(M)→ Γ0
R(M) = R is the projection and the
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co-multiplication is given by summing up

Γn+m
R (M)

∆ //

��

Γn+m
R (M ⊕M)

��

(M ⊕M)⊗n+m

��

H h

uu

ΓnR(M)⊗ ΓmR (M) �
�

// M⊗n ⊗M⊗m

If M is finitely generated projective (equivalently, Zariski-locally equivalent to Rn), then
Γ∗R(M) is called a smooth coalgebra over R. Zariski-locally this is

Γ∗(Rn) = (R[[t1, . . . , tn]])∨

where the dual is defined in terms of continuous maps.

The part I want to focus on in this case is that the horizontal arrow (1) ↔ (2) works. Let
(Γ∗R(M))∨ denote the R-linear dual. Using the fact that dualizing invariants is co-invariants,

this is '
∏
n≥0 Symn

R(M∨). This is the completion ̂Sym∗R(M∨) at Sym>0
R (M∨) = IM .

There’s an issue—the topology is not defined canonically in terms of the coalgebra, but rather
in terms of M . I want to show that you can get the topology canonically without reference to
M .

Proposition 6. The IM -adic topology on (Γ∗R(M))∨ is equivalent to the subspace topology
induced by

(Γ∗R(M))∨ ↪→
∏

x∈Γ∗R(M)

R = MapSet(Γ
∗
R(M), R)

where the right hand side is given the product topology.

Theorem 7. Let C,P ∈ cCAlgsmR be smooth commutative coalgebras. Then dualization
induces an isomorphism HomcCAlgR

(D,C)→ Homcts
CAlgR

(C∨, D∨).

The proof comes from using the universal property of divided power coalgebras.

4. E∞ case

First I’ll define what I mean by a coalgebra. Let C be a symmetric monoidal ∞-category.
Define cCAlg(C) = CAlg(Cop)op to be the ∞-category of commutative coalgebras.

Warning 8. A lax monoidal functor C → D does not induce a map cCAlg(C)→ cCAlg(D).

(You need the functor to be co-lax.) In particular, the functor π0 : ModcnR → Mod♥π0R is lax

symmetric monoidal. (Jacob writes ♥ for discrete, because it’s the heart of a t-structure.)
I.e. π0 of a coalgebra is not a coalgebra. This is annoying because we want to define things
in terms of π0. Fix this by restricting to flat coalgebras, i.e. π0M is flat over π0R and
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πnR⊗π0R π0M → πnM is an equivalence. Then π0 above is symmetric monoidal on the nose
becuase the Künneth spectral sequence collapses.

Let Mod[R denote flat R-modules. Then define

cCAlg[R := cCAlg(Mod[R).

Then cCAlgsmR is the full subcategory of C such that π0C is smooth over π0R.

Here are some important, and not-too-hard-to-prove facts (using facts about modules etc.
and working on π0):

(1) There is a canonical equivalence −⊗τ≥0R R : cCAlg[τ≥0R
� cCAlg[R : τ≥0.

(2) IfR is connective, then nilcompleteness holds: that is, the map cCAlg[R → lim←− cCAlg[τ≤nR

is an equivalence of ∞-categories.

(3) (Clutching/ cohesiveness) Given a pullback of E∞-rings

A //

��

A0

��

A1
// A01

then cCAlgA → cCAlgA0
×cCAlgA01

cCAlgA1
is fully faithful. Furthermore, if π0A0 →

π0A01 ← π0A1 are surjective then cCAlgA[ → cCAlg[A0
×cCAlg[

A01

cCAlg[A1
is an equiva-

lence. If π0A→ π0A0 has nilpotent kernel then cCAlgsm
A → cCAlgsm

A0
×cCAlgsm

A01
cCAlgsm

A1

is an equivalence.

When you try to prove something about smooth coalgebras, you often first reduce to the
connective case, and then to the truncated case, and from there you can build up inductively
via square-zero extensions using the Postnikov tower.

Fact 9. R→ cCAlgsmR satisfies étale descent.

Now let’s consider duality in the E∞ case.

Map
R

: ModopR ×ModR → ModR is lax symmetric monoidal. Thus we get an induced map on

commutative algebras cCAlgopR ×CAlgR → CAlgR.

Definition 10. Define C∨ := Map
R

(C,R).

If C is smooth then it’s projective in an appropriate sense. Then you can show the spectral
sequence computing its homotopy groups of C∨ degenerates, which implies that π0(C∨) =
(π0C)∨. This is an adic R-algebra.

Theorem 11. Given C,D ∈ cCAlgsmR ,

MapcCAlgR
(D,C)→ MapCAlgad

R
(C∨, D∨)
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is a homotopy equivalence. (Here the ad in CAlgadR means continuous maps.) This implies
that dualization is fully faithful into adic objects.

I wanted to say something about the proof of this, but it looks like I don’t have time. The
basic idea is that you reduce to the connective case, then to the case of each truncation,
which you handle inductively by going up the Postnikov tower. You then reduce a bit
more and everything ends up following from duality for perfect R-modules. The key is that

duality is an anti-equivalence (Modperf
R )op → Modperf

R symmetric-monoidally. (Perfect means
generated under finite colimits by free things.) This implies that the dualization functor

(cCAlgperf
R )op → CAlgperf

R is an equivalence.

Now let’s characterize the image of the dualization funtor on smooth coalgebras.

Proposition 12. Let A be an adic R-algebra. TFAE:

(1) A ' C∨ for C ∈ cCAlgsmR ;

(2) for M finitely generated projective,

π∗(A) '
∏
n≥0

(Symn
π0R(M)⊗π0R π∗R)

(this would be a power series ring if I took M to be free).

Again, do reductions and go up the Postnikov tower. There’s some stuff you need to check
about completions working out.

I’ll finish by defining coSpec and defining formal groups.

Let C ∈ cCAlg[R where R is connective. Then cSpec(C) is a functor CAlgcnR → S such that
cSpec(A)(A) = MapcCAlgA

(A,A ⊗R C). (If this were classical, it would just be group-like

elements.)

Fact 13. cSpec(C) ' Spf(C∨)

Corollary 14. c Spec : cCAlgsmR → Fun(CAlgcnR ,S) is fully faithful.

This follows from the fact that C∨ is complete and the aforementioned fact thatthat Spf is
fully faithful on complete adic R-algebras, which is in SAG 8.1.5.

Definition 15. A formal hyperplane over R is a functor X : CAlgcnR → S in the essential
image of cSpec on cCAlgsmR .

Definition 16. A formal group over R is a functor Ĝ : CAlgcnR → ModcnZ = Ab(S) such that
the composite CAlgcnR → Ab(S)→ S is a formal hyperplane.

6



There’s a formal multiplicative group: take the multiplicative group I defined earlier and
complete it at the identity setion. On the level of functors of points, this means that I take

Ĝm(R) = fib
(
Gm(R)→ Gm(Rred)

)
,

where Rred is just the reduction of π0R.
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