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Let’s start with a review of the Hopkins-Miller theorem. Let k be a perfect field of characteristic

p, and let Ĝ0 be a 1-dimensional formal group of finite height n < ∞ over k. Then Lubin

and Tate showed Ĝ0 has a universal deformation Ĝ over a complete local Noetherian ring
RLT (the “Lubin-Tate ring”) with residue field k. It’s a deformation in the sense that when

you reduce everything modulo the maximal ideal of RLT , you get the formal group Ĝ0 that
you started with. And it’s universal: any deformation in this sense over a complete local
Noetherian ring R can be obtained from the universal deformation by some map RLT → R
that’s the identity on residue fields.

There is a non-canonical isomorphism

(1) RLT ∼= W (k)[[v1, . . . , vn−1]].

(The Witt vectors W (k) sits canonically inside RLT but nothing else is canonical.) Morava
showed that this formal group satisfies Landweber’s criterion, which implies that there exists
an (essentially) unique even periodic cohomology theory E such that π0E ∼= RLT . Moreover,
it’s even periodic, and in particular complex orientable, and the associated formal group is

the universal deformation: Ĝ ' Spf(E0(CP∞)).

This turns out to be better behaved than you’d expect. Landweber’s criterion produces a
cohomology theory, and that’s represented by a spectrum with a homotopy commutative
multiplication. A priori, you don’t know this is E∞ etc. You also don’t know that this depends

functorially on the information given: Lubin-Tate gives RLT functorially from k and Ĝ0, and
obtaining the cohomology theory is functorial, but Brown representability is not a functorial
thing.

Theorem 1 (Goerss-Hopkins-Miller). E has an essentially unique E∞-structure, and depends

functorially (as an E∞ ring spectrum) on (k, Ĝ0). In particular, E admits an action of

Aut(Ĝ0) (defined at the spectrum level and preserves the E∞ structure on E).

This was originally proved using obstruction theory. You write down a moduli space for all
E∞ structures on E compatible with the homotopy commutative multiplication you start
with. You write a spectral sequence to compute the homotopy groups of this moduli space.
One of the pages of the spectral sequence is identically zero, which shows that the moduli
space is contractible, and that’s where the “essentially unique” bit comes from.

The paper you’re studying is a generalization of this story. What if you start with a family of
formal groups?

Question 2. What if we try to replace k by a commutative Fp-algebra R0?

Disclaimer: These are notes I took during the lecture. I, not the speaker, bear responsibility for mistakes. If
you do find any errors, please report them to: <ekbelmont at gmail dot com>.
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I claim this is a bad question. In families, formal groups don’t have a good deformation
theory: 1-dimensional formal groups are classified by a moduli stack

MFG ' (A∞)/(group of all coordinate changes).

Here A∞ is the moduli space of formal group laws (it’s an affine space of infinite dimension by
Lazard’s theorem). It doesn’t make a lot of sense to talk about the dimension of MFG: both
A∞ and the group of coordinate changes are infinite dimensional, and indeed the dimension
of MFG varies across points. Each formal group over a perfect field of characteristic p gives
rise to a point in the moduli stack, and each RLT describes a formal neighborhood of that
point. (1) says the formal neighborhood of a point corresponding to a height-n formal group
has dimension n.

A better question:

Question 3. What if we replace k by R0 and Ĝ0 by a p-divisible group G0 over R0?

Definition 4 (Tate). Let R be a commutative ring. A p-divisible group over k is a functor
G : {commutative R-algebras} → {abelian groups} such that:

(1) G(A) is p-power torsion group, i.e. G(A) =
⋃
G(A)[pn] (here [pn] means pn-torsion).

(2) p : G→ G is surjective locally in the flat topology: given x ∈ G(A), you’re allowed to
(non-uniquely) divide x by p in some faithfully flat extension of A.

(3) For each n ≥ 0, the functor A 7→ G(A)[pn] is represented by a finite flat R-scheme.

Example 5. Suppose Ĝ is a formal group over a field k and [p] : Ĝ→ Ĝ is finite flat. Then Ĝ
is a p-divisible group over k. Such Ĝ are known as connected p-divisible groups over k (where
k has characteristic p).

You can also think of formal groups as functors from commutative R-algebras to abelian
groups, and some of them might be p-divisible.

Example 6. Define Qp/Zp(A) = the set of locally constant (Qp/Zp)-valued functions on

Spec(A). (The underline means I’m thinking of this as a sheaf.) More generally, one
considers powers (Qp/Zp)n, where you replace “(Qp/Zp)-valued” with “(Qp/Zp)n-valued” in
the definition. These are called constant p-divisible groups.

If k is algebraically closed of characteristic p, any p-divisible group G splits canonically as
Ginf ⊕Gconst, where Ginf comes from a formal group (“inf” means “infinitesimal”) and Gconst

is constant. More generally, you have a SES

0→ Ginf → G→ Gét → 0

called the “connected-étale sequence,” where Gét is étale (becomes constant when you pass to
the algebraic closure of k). The sizes of the two components can vary, which is why thinking
about just the size of the formal group (the infinitesimal part) is not a good thing to do. For
example, some elliptic curves have height 1 and some have height 2 (the supersingular ones);
i.e. the dimension of the formal group part changes as you move around the moduli space of
elliptic curves, but the p-divisible group story is nicer.
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More generally, given a p-divisible group G over SpecR, for every point x ∈ SpecR, you
get a p-divisible group Gx over the residue field κ(x). If κ(x) has characteristic p, by the
connected-étale sequence there’s an associated formal group at that point, and the associated
étale part at that point, which looks like (Qp/Zp)n with a Galois action.

In general, there’s a procedure for extracting a formal group from a p-divisible group.

Let R0 be a nice Fp-algebra, and let G0 be a nice 1-dimensional p-divisible group over R0.

Then G0 has a universal deformation. That is, there exists a Noetherian ring Rcl
G0

(“classical

deformation ring”) with a surjection ε : RclG0
→ R0 such that RclG0

is complete w.r.t. ker(ε) (if
R0 were a field, this would be saying it’s a complete local ring) and a p-divisible group G over
RclG0

such that
G×Spec(Rcl

G0
) Spec(R0) ' G0,

and moreover (G, Rcl
G0

) is the universal thing with this property. (R0 is the analogue of k in
the Lubin-Tate story.)

What did we mean by “nice”, above? Say R0 is nice if R0 is finitely generated as a module
over (R0)p. We ask for a finite map ϕR0 : R0 → R0. G0 is nice if the “restriction of G0 to any
tangent vector in Spec(R) is non-constant”. (This is called non-stationary in the paper. We’re
trying to avoid G0 ×X over Spec(R0)×X, i.e. something “constant in the X direction”.)

Theorem 7. In this situation, there is an even (weakly) periodic cohomology theory E such
that E0(pt) = RclG0

and G◦ ' Spf(E0(CP∞)) where G◦ is the identity component. (So far, you
can produce this from Landweber’s theorem.) Moreover, E has a canonical E∞-structure (i.e.
the space of such structures has a distinguished point) which depends functorially on (R0,G0).

Definition 8. Let R be a commutative ring with p nilpotent and let G be a p-divisible group
over R. Then define

G◦(A) = ker(G(A)→ G(Ared)).

Theorem 9 (Messing). G◦ is a formal group.

From this definition it’s clear it commutes with base change. This is what was meant earlier
by saying you can extract a formal group from a p-divisible group; but only over a field do
you get that SES.

Idea of proof of Theorem 7. The proof is totally different from the Goerss-Hopkins-Miller
approach. The idea is to try to repeat the definition of the classical deformation ring RclG0

but
in the setting of E∞ ring spectra. This was a commutative ring complete w.r.t. a topology,
which has a universal property—it’s where the universal deformation of G0 lives. The idea is
that the spectrum version should admit a similar universal property in the realm of E∞ ring
spectra.

The first goal is to make sense of p-divisible groups and formal groups over ring spectra. You
also want to make sense of the “take the identity component” construction.
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We started with the classical story of thickening up G0 over SpecR0 to get Gcl over Spec(RclG0
).

This is universal if you’re interested in purely algebraic deformations, but if you’re interested
in studying deformations in ring spectra, there’s a “more universal” one, which we call G over
Spec(RunG0

).

Theorem 10. G0 has a universal deformation in the setting of p-divisible groups over ring
spectra. This universal deformation lives over E∞ ring spectrum RunG0

.

RunG0
is connective, Noetherian (all homotopy groups are finitely generated over RclG0

), and

π0(RunG0
) ∼= RclG0

(this is basically the definition—when you restrict to ordinary rings, the new
universal object has to satisfy the same universal property as the old one). Also we have
(πnR

un
G0

)[p−1] ∼= 0. Note that this is not the ring spectrum E in the theorem; it’s connective as
opposed to 2-periodic. In homotopy theory, there’s a particular formal group we care about,
coming from Quillen’s theorem, and so far there’s nothing here to relate to that.

Let’s recall how formal groups are related to homotopy theory. Let E be a homotopy
commutative, complex orientable, and 2-periodic ring spectrum. Then R = E0(pt) is a

commutative ring and the formal spectrum Ĝcl := Spf E0(CP∞) is a formal group over R.
This is a construction due to Quillen. There’s a variant of this: if E is an E∞-ring spectrum,

then you can also make a formal group Ĝ = Spf(ECP∞
+ ) (I mean the function spectrum).

Definition 11. Let G be a p-divisible group over a p-complete E∞-ring R. An orientation
of G is an isomorphism G◦ ∼= Spf RCP∞

+ . If R is not complex-oriented and 2-periodic, then
there are no orientations.

Proposition 12. Let G be any p-divisible group over R. Then there is a universal map
R→ R′ such that G×Spec(R) Spec(R′) has an orientation.

R′ is an R-algebra, such that if you want to map to any other R-algebra, that’s the same as
giving an orientation of R base-changed to that R-algebra.

Now we continue with the proof of Theorem 7. Let G be the universal deformation of
G0. This lives over Spec(RunG0

). Now apply Proposition 12 to (RunG0
,G), to get a universal

map RunG0
→ E; moreover just as G lives over RunG0

, GE = G ×SpecRun
G0

Spec(E) lives over E.

Moreover, G◦E ' Spf ECP∞
+ . Over π0E, you also get an isomorphism G◦π0(E)

∼= Spf E0(CP∞).

We have a corresponding map RclG0
= π0(RunG0

) → π0E. The main step in the proof of the
theorem is showing that this is an isomorphism. You also need to compute π1(E) ∼= 0.

In the classical approach to this, you use Landweber exactness and Brown representability so
you know the homotopy, but you don’t know it’s E∞. With this approach, you know it has
good properties, but you don’t know it’s the thing you want—for example, you don’t know
what you’ve constructed isn’t just zero. The hard work is in showing it’s the right size.

Why is it the right size?
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Question 13. How do you compute π∗E?

Strategy: Use naturality properties of the construction. We started with G0 → Spec(R0), and
everything depends functorially on the p-divisible group you started with. For example, if I
had a pullback

G1
//

��

G0

��

Spec(R1) // Spec(R0)

I could attempt to run the same construction on the LHS, getting E′ on the left and E on
the right. You can use this to get information on π∗E from π∗E

′ and vice versa. You could
start by taking R1 = k. If you understand the resulting E′, you learn about E formally
completed w.r.t. the ideal gotten by cutting out the point. This strategy allows you to reduce
the problem to working over a field k. You can even reduce to the case where k is algebraically
closed.

Earlier we said that there is a splitting G0
∼= Gconnected ⊕ (Qp/Zp)n. Recall E came from

working with G0 over k, but we can also do the construction with Gconnected instead of G0,
getting a map Econnected → EG0 . So without loss of generality R0 = k is algebraically closed
and G0 is connected, i.e. it is a formal group. This is the situation we started the lecture with:
we have

RclG0
= RLT ← RunG0

→ E

and the claim is that, in this case, the resulting E is the Lubin-Tate spectrum. To show this
(this is not what’s done in the paper), use your knowledge of the Lubin-Tate spectrum and
show that this E satisfies the same universal property in the world of K(n)-local E∞-ring
spectra. So in this case you can compute π∗E by checking that E is a Lubin-Tate spectrum.
(Actually, you don’t know yet that E is K(n)-local; so you can show LK(n)E is the Lubin-Tate
spectrum, and so you know its homotopy groups. It turns out that LK(n) doesn’t change the
homotopy groups, but that requires some work.)

This approach gives a new proof of the Goerss-Hopkins-Miller theorem—you don’t need
to use this to show that E is the right thing. Idea: start with G0 over Spec(k) as before.
Construct RunG0

→ E → LK(n)E. The latter thing has an easy universal property in the world
of K(n)-local ring spectra. Mapping it to something involves a map RunG0

to something, and it
also has to factor through E. You started with a connected p-divisible group. The upshot
that, in order to map to something, the data you need is on the level of π0. More precisely:

Proposition 14. If A is a K(n)-local E∞ ring, Hom(LK(n)E,A) is empty unless A is 2-

periodic and complex oriented, and in that case it is the set of identifications of Spf(A0(CP∞))
with deformations of G0.

(Warning: I’m using deformation in a weird way—A might not be local etc. A deformation
over R means a p-divisible group over R and an ideal, and when you reduce modulo that
ideal you get something that can be expressed as a base-change.) The classical construction
of Lubin-Tate spectra calculates this, and gets the same universal property. (Specifically, they
did it for A = LK(n)E, but they didn’t need this.) But you don’t actually need that here, so
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you get a new construction of Lubin-Tate spectra.

Hom(LK(n)E,A) ∼= HomA(A ∧ LK(n)E,A)

Remark 15. You can use this universal property to compute π∗LK(n)E. The strategy is to
smash with (2-periodic) complex bordism: we have

LK(n)MP → LK(n)(MP ∧ E)← LK(n)(E).

You can compute π∗ of the middle thing in two ways: (1) use the second map to look at this
as an E-algebra; this reduces to computing the E-homology of complex bordism; (2) use the
first map, which behaves like it is étale. You have a universal property of E in the K(n)-local
category and that gives a universal property of MP ∧E as an MP -algebra. You can explicitly
write down an MP -algebra with that universal property and compute the homotopy groups
of that MP -algebra as an algebra over π∗MP . So the input to working out π∗LK(n)E is the
complex oriented homology of MP and the homotopy of MP—exactly what comes out of
Quillen’s theorem.
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