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Abstract. Classical obstruction theory can be applied to the problem of
finding an S-algebra structure, or a commutative S-algebra structure, on
a ring spectrum. It is shown that there is no obstruction to upgrading the
homotopy unit in the ring spectrum to a strict unit in the S-algebra.

1. Introduction

A ring spectrum is a spectrum E equipped with a homotopy-associative
multiplication map µ : E ∧ E → E which has a two-sided homotopy unit
η : S → E. It is a commutative ring spectrum if µ is homotopic to µτ , where
τ interchanges factors in E∧E. Thus the (commutative) ring spectra are the
(commutative) monoids in the stable homotopy category.

We should like to replace the multiplication µ by a strictly associative mul-
tiplication map in the general case; and by a strictly associative and commu-
tative multiplication map in the case of a commutative ring spectrum. (The
object E may be replaced by a weakly equivalent object in the process.) These
are notions at the point set or model category level, and they make sense if
the model category which we are using has a symmetric monoidal smash
product. We work in the category of S-modules, which has this property. It
would be possible to adapt the theory, making necessary modifications, to
other symmetric monoidal model categories for stable homotopy theory or to
other contexts such as differential graded objects in an abelian category.

We consider the associative case in §2. The strictly associative multiplica-
tion which we seek on the S-module E can equivalently be described as an
action of the associative operad M, given by a morphism φ : M → End(E)
of topological operads. To construct the action φ we replace M by a suit-
able cofibrant resolution (in the appropriate category of topological operads).
Under our assumptions regarding units in the multiplicative theories, this is
the Stasheff operad A of associahedra. In §3 we describe in detail an obstruc-
tion theory for finding a morphism of topological operads φ : A → End(E),
beginning with the map φ2 which takes the one-point space A2 to the point
µ ∈ End(E)2 = Map(E ∧ E,E). The vanishing of the obstructions suffices
for E to be weakly equivalent to an S-algebra. This is a refinement of the
theory described in [16]; by comparing the new theory with the old, we show
in 3.12 that there is no obstruction to upgrading a homotopy unit to a strict
unit when the multiplication is associative.
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In §§4–5 we develop the corresponding obstruction theory for refining a
commutative ring spectrum to a commutative S-algebra. This runs exactly
parallel to the foregoing associative theory, except that the obstructions lie
in the Γ-cohomology of the Hopf algebroid E∗E instead of the Hochschild
cohomology. Our results here are refinements of those for the homotopy-
unital case outlined in [17].

2. Background to the associative case

Suppose that E is an S-module which is also a ring spectrum. Let M
be the topological operad governing associative multiplications. We work
here without permutations (these are “non-Σ operads”), so that every space
Mn has a single point. We denote by End(E) the operad with nth space
Map(E(n), E), where E(n) = E ∧E ∧ · · · ∧E is the S-module smash product
of n factors. The structure which we should like to have on E is a morphism
of non-Σ operads M → End(E), as this makes E into an S-algebra. We
shall show that it is sufficient to construct this when M is replaced by a
cofibrant resolution. This apparently weaker requirement can be tackled by
obstruction theory. We make essential use of properties of cofibrant operads.
It is not really necessary for our purposes to formalize the model category
concerned, because we only need mapping properties for specific examples
where they can be verified simply and directly. However, the formalization
can be done: a closed model structure on the category of operads has been
described in the algebraic case by Hinich [9] and the model structure on
topological operads can be defined in close analogy with [9, §6]. The fibrations
(resp. weak equivalences) are the maps of operads which are fibrations (resp.
weak equivalences) at each level.

The canonical cofibrant resolution of M is the operad WM of “plane
trees with stumps” described in [5] and [10]. A morphism WM → End(E)
corresponds to a multiplication on E which satisfies all higher associativity
conditions and has a two-sided homotopy unit S → E satisfying all expected
coherence conditions.

The operad WM is larger and freer than is necessary for our obstruction
theory. (The situation resembles one in homological algebra, where one need
not use a free resolution to calculate Tor, if a flat resolution is much simpler;
nor need one use an injective resolution to calculate sheaf cohomology, as a
flasque resolution will do.) The simplification here arises from the fact that
it is unnecessary to investigate coherent homotopy units because strict units,
which are better, are so easy to analyse. Let A be the Stasheff operad of
associahedra, described in detail below. We note that there is a factorization
WM → A → M of the cofibrant resolution WM → M; in the terminology
of [4] the first map corresponds to making stumps ignorable. In plainer terms,
A represents A∞-structures with strict unit.
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We need to examine the Stasheff operad A in some detail. For n = 0
and n = 1 the space An is a point, corresponding in these two cases re-
spectively to the unit element and the identity map. For n ≥ 2 the space
An is a convex affine cell of dimension n − 2, and the composition maps
Ai ×Aj → Ai+j−1 are affine inclusions corresponding precisely to the inclu-
sions of the top-dimensional faces ofAi+j−1. IndeedA2 is a point, representing
a map specifying a multiplication of two factors. Next, A3 is a line segment,
representing an associativity homotopy between the maps represented by its
two endpoints, which correspond to the substitutions of the multiplication
A2 for either of the two factors in that multiplication. Then A4 is the famous
Stasheff pentagon, in which the five edges correspond to substitutions of A2

for variables in the 3-factor multiplication A3, or vice versa. The polytope
A5 is an affine 3-cell which has six pentagonal faces isomorphic to A4 × A2

or A2 ×A4, and three rectangular faces isomorphic to A3 ×A3; and so on.
If E were an S-algebra, we should have a morphism of operads

A → M → End(E)

obtained by composing the M-action with the resolution above. This com-
posite is, philosophically speaking, the real homotopical nub of the algebra
structure. The following proposition shows that an S-algebra can be recov-
ered from it.

Proposition 2.1. Let E be an S-module which is also a ring spectrum. Sup-
pose that there is a morphism of operads A → End(E) under which the point
A2 is mapped to the given multiplication on E. Then E is weakly equivalent
to an S-algebra.

Proof. Using the cofibrancy of A, we can construct an augmentation A → L
from the operad A into the linear isometries operad L, because the spaces
Ln are contractible. Now we can apply the non-Σ variant of [8, II, Prop. 4.3]
to replace the A-spectrum E by a weakly equivalent non-Σ L-spectrum. By
[8, II, Props. 4.6 and 3.6] this yields an A∞ ring spectrum, which can be
converted (by smash product with S) into a weakly equivalent S-algebra. □

3. Obstruction theory in the A∞ case

We now need to describe how obstruction theory can allow us to prove
that the hypotheses of Proposition 2.1 can be satisfied. This will require
some conditions on the homology theory represented by our ring spectrum
E.

In order to simplify the algebra, we shall assume that E is homotopy com-
mutative. We denote by R the graded coefficient ring π∗E, and by Λ the
graded ring E∗E. Our assumption implies that these are both commutative;
and Λ becomes an R-algebra by means of the homomorphism, conventionally
denoted ηL, induced in homology by the unit map η : S → E. The multi-
plication map on E induces an augmentation Λ → R, so that Λ splits as a
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Λ-module into R⊕ Λ̃, where Λ̃ is the quotient module Λ/R or the augmenta-
tion ideal of Λ.

Definition 3.1. The ring spectrum E satisfies the perfect universal coefficient
formula if the following two conditions hold.

(1) The algebra Λ is R-flat. Consequently E∗(Y ∧ E) ≈ E∗Y ⊗R Λ for
every spectrum Y . By induction, the smash power E(n) has E-homo-
logy Λ⊗n.

(2) The natural map

E∗(E(n)) −→ HomR(E∗(E
(n)), R) ≈ HomR(Λ

⊗n, R)

is an isomorphism for every n.

The first condition in 3.1 is satisfied by many ring spectra including all
those representing Landweber exact homology theories. The second is more
restrictive, but is true for a wide range of useful spectra (see [14]).

The second condition can be rewritten in a more convenient way. Assuming
that 3.1(1) holds, the algebra Λ is the Hopf algebroid of E-homology co-
operations, or dual Steenrod algebroid, and the homology of any spectrum Y
is a Λ-comodule via a natural homomorphism E∗(Y ) −→ E∗(Y )⊗R Λ. Using
the cofreeness of the Λ-comodule Λ, we can write the condition in 3.1(2) as

3.1(3) E∗(E(n)) ≈ CohomΛ(E∗(E
(n)), E∗E) ≈ CohomΛ(Λ

⊗n,Λ)

where Cohom denotes homomorphisms of comodules.

Standing hypothesis 3.2. We assume henceforth throughout this paper
that the ring spectrum E has a perfect universal coefficient formula: that is,
E satisfies Definition 3.1; and that the map η : S → E is a cofibration.

(It would be interesting to know whether the obstruction theory can be set
up when these conditions are relaxed. There may well be a derived-category
variant which works more generally.)

Hochschild complexes 3.3. We shall need two versions of the Hochschild
cochain complex of Λ over R. Let C∗∗(Λ|R;R) be the standard unnormalized
edition (with R as coefficients): thus

Cm,∗(Λ|R;R) ≈ Hom∗
R(Λ

⊗m, R)

where the second grading is the internal grading in the rings. The Λ-module
structure on R is given by the augmentation Λ = π∗(E ∧ E) → π∗E = R,
and the formula for the coboundary δ : Cm,∗(Λ|R;R) −→ Cm+1,∗(Λ|R;R) is

(δθ)(λ0 ⊗ λ1 ⊗ · · · ⊗ λm) = λ0·θ(λ1 ⊗ · · · ⊗ λm)

+
m∑
i=1

(−1)iθ(λ0 ⊗ · · · ⊗ λi−1λi ⊗ · · · ⊗ λm)

+(−1)m+1θ(λ0 ⊗ λ1 ⊗ · · · ⊗ λm−1) · λm .
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On the other hand the normalized Hochschild cochain complex of Λ over R
is C̃m,∗(Λ|R;R) ≈ Hom∗

R(Λ̃
⊗m, R) where Λ̃ is Λ/R (which is isomorphic to the

augmentation ideal). The formula above still defines a coboundary, making
C̃∗,∗(Λ|R;R) a subcomplex of C∗,∗(Λ|R;R). By the Normalization Theorem,
the inclusion is a weak equivalence, so that each complex has cohomology
HH∗∗(Λ|R;R).

Definition 3.4. An Ân-structure on the ring spectrum E is a collection of
maps µm : Am → End(E)m for 2 ≤ m ≤ n, such that

(1) the point A2 is mapped by µ2 to the multiplication in E
(2) the conditions for a morphism of operads are satisfied where defined.

The second clause in this definition means the following. Recall that the
boundary of the (m− 2)-cell Am is a union of faces, each an embedded copy
of Ai ×Aj where i + j = m + 1. The condition is that the restriction of µm

to each face must be the composite c ◦ (µi × µj), where c is the correspond-
ing composition in the operad End(E). Note that we are here temporarily

working with operads without unit, as was done in [16]. (The notation Â is
intended to suggest that something is omitted.) The homotopy unit is present
in E, but is not part of the operad structure.

The unit condition 3.5. We have assumed that the given homotopy unit
η : S → E is a cofibration. Hence the wedge (S∧E)∨(E∧S) is now included
as a subspectrum in the smash product E∧E by the cofibration (η∧1)∨(1∧η).
Since E is assumed to be an S-module, this wedge is isomorphic to E ∨ E.

Lemma 3.6. The given multiplication µ2 : E ∧E → E can be deformed by a
homotopy to make its restriction into the folding map 1E ∨ 1E.

Proof. By the homotopy extension property, it suffices to show that µ2|E∨E
is homotopic to the folding map. However, it is not obvious that this condition
is satisfied, because there is no reason why the left and right unit homotopies
should agree on S ∧S. Thus there appears to be an obstruction in π1E. This
obstruction is in fact zero, by the same argument as proves that an H-space
is always simple. □

Thus η can be assumed to be a strict unit for µ2.
We should like to have an A∞ structure in which η is a strict unit for all

the maps µn : An → End(E)n. Let us consider what that means.
The Stasheff cells An are related not only by face maps but also by degen-

eracy maps si : An → An−1 which are defined for 1 ≤ i ≤ n and are related to
the principal faces of An very much as faces and degeneracies among simplices
are related [20]. In terms of trees, si corresponds to pruning off the ith twig.
In terms of operads, the si define the n operad compositions A0×An → An−1

with the one-point space A0, thus completing the operad A to an operad with
unit.
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For 1 ≤ i ≤ n there is a cofibration ηi : E(n−1) → E(n) defined as the
composite

E(n−1) ≈ E(i−1) ∧ S ∧ E(n−i)
1(i−1)∧η∧1(n−i)

// E(n)

We define the large wedge
∨n E to be the union of the images of the ηi for

1 ≤ i ≤ n: it is the S-submodule of points with at least one factor in S.

Definition 3.7. We say that η is a strict unit for µn if the following diagram
commutes for 1 ≤ i ≤ n

An

si

��

µn // End(E)n

Map(ηi, 1)

��
An−1

µn−1 // End(E)n−1

which can be interpreted by saying that a product of n factors is unaffected
by a unit in the ith place among the arguments.

We note that the above condition just fixes the value of µn on the image
of ηi for each i. The relations among the degeneracy maps si imply that if η
is a strict unit for µn−1 and for µn, then Definition 3.7 prescribes the adjoint
µ′
n : An ⋉ E(n) → E uniquely and coherently on An ⋉

∨n E.

Definition 3.8. An An-structure on the ring spectrum (E, µ, η) is a Ân-
structure (see 3.4) such that the map η : S → E is a strict unit for µm,
2 ≤ m ≤ n.

We are now ready to set up the obstruction theory in the associative case.

Theorem 3.9. Let an An−1 structure µ on E be given, where n ≥ 3 and E
satisfies the conditions 3.2. Then the following hold.

(1) There is an obstruction cocycle θ̃n(µ) in the normalized Hochschild
cochain group Hom3−n

R (Λ̃⊗n, R) which vanishes if and only if µ can be
extended to an An structure on E.

(2) The Hochschild cohomology class [θ̃n(µ)] ∈ HHn,3−n(Λ|R;R) is zero
if and only if the underlying An−2 structure on E can be extended to
an An structure.

Proof. To extend µ to an An structure on E, we need only construct µn :
An → End(E)n, or equivalently its adjoint µ′

n : An ⋉ E(n) −→ E, in such
a way as to be compatible with composition in the operads. There are two
cases of this condition, and we must consider them separately. Preserving
the compositions Ai × An → An+i−1 when i > 0 means that µn is already
defined on the decomposable elements of An, which form the boundary of
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this (n− 2)-cell. Preserving the compositions A0 ×An → An−1, which is the
condition of strong unitality, means that µ′

n is already defined on An⋉
∨n E.

In all, the condition fixes µ′
n on ∂An ⋉ E(n) ∪ An ⋉

∨nE.
The obstruction to extending µ′

n over An ⋉E(n) therefore lies in the group

E−1((An, ∂An)⋉ (E(n)/

n∨
E)) .

By the Künneth Theorem we know that

E∗(E
(n)/

n∨
E) ≈ E∗((E/S)(n)) ≈ Λ̃⊗n

and the homology sequence of the pair (E(n),
∨n E) splits.

Furthermore An/∂An is an (n − 2)-sphere, so by the universal coefficient
formula the above group becomes

E−1((An, ∂An)⋉ (E(n)/
n∨
E)) ≈ E−1(Sn−2 ∧ (E(n)/

n∨
E))

≈ Hom3−n
R (Λ̃⊗n, R)

≈ C̃n,3−n(Λ|R;R) .

Therefore the obstruction is a normalized Hochschild cochain, as claimed. We
denote it by θ̃n(µ). If θ̃n(µ) = 0, then the homotopy classes of extensions µn

are enumerated by difference classes in C̃n,2−n(Λ|R;R).

Consider the effect upon the obstruction cochain θ̃n(µ) of changing µn−1

while keeping theAn−2 structure fixed. Making this change alters the already-
specified map µ′

n | (∂An ⋉E(n) ∪ An ⋉
∨n E) on An ⋉

∨n E, and on certain
faces of An. Altering µ

′
n on An⋉

∨nE does not affect the obstruction cochain,
because the homology sequence for the pair (E(n),

∨n E) splits. To find the
effect of altering µn|∂An we consider the faces separately. On a face which is
an embedded copy of Ai ×Aj, the restriction of µn is determined by µi × µj.
Since we are changing only µn−1, those affected are the two faces isomorphic
to A2 × An−1 and the n − 1 faces isomorphic to An−1 × A2. These faces
correspond precisely to the n + 1 terms (of two kinds) in the above formula
for the Hochschild coboundary.

Let us briefly explain why these faces give precisely the terms in the
Hochschild coboundary formula. For the first and last terms, this is verified
most easily by using formula 3.1(3). For all the other terms in the Hochschild
formula, it is obvious, apart from the sign. We have to verify that the signs
alternate. This is forced by the fact that, as we show at the end of this proof,
the geometrical obstruction must always be a cocycle. (The details of calcu-
lation need to be slightly elaborated in the lowest case n = 3, but the result
is the same.)

It follows that changing µn−1 by a difference class α ∈ C̃n−1,3−n(Λ|R;R)

has the effect of altering the obstruction cochain by θ̃n(µ) by δα.
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Therefore the obstruction θ̃n(µ) can be reduced to zero by altering µn−1

if and only if it is a Hochschild coboundary. To complete the proof of The-
orem 3.9 we show that θ̃n(µ) is always a cocycle. This is true because the
coboundary of θn(µ) is, by the argument over faces used above, the obstruc-
tion to extending µ over the boundary of the boundary of An+1; and this is
an empty space. □

To apply 3.9 recursively, we need a A2 structure to start the induction.
This is provided by Lemma 3.6 In fact we only need the cohomology to be
zero for n ≥ 4, because the obstruction cohomology class for the existence
of a A3-structure is always zero, as we shall see in Theorem 3.12 below.
This means we can always choose the associativity homotopy µ3 so that it is
constant when one of the three factors is the unit. (It is not particularly easy
to prove this by direct, bare-hands construction.)

Corollary 3.10. If HHn,3−n(Λ̃|R;R) = 0 for all n ≥ 4, then the ring spec-
trum E has an A∞ structure. By Proposition 2.1, E can thus be represented
by an S-algebra.

Comparison with the homotopy-unital theory 3.11. In [16] we devel-
oped a theory exactly parallel to the above, but without the strict unital
condition. The given ring spectrum E has a homotopy unit, but now we do
not regard the unit as part of the operad structure. In terms of trees, we
allow no stumps. In this case one again builds the Ân-structure – that is,
the higher associativity conditions – by induction on n. The obstructions lie
in the unnormalized Hochschild cochain complex. The proof is a simplified
version of the proof of 3.9.

A ring spectrum is homotopy associative, and therefore already has an A3

structure. We can therefore begin a recursive application of our homotopy-
unital analogue at n = 4.

This result was used in [16] to show every Morava K-theory at an odd

prime has an Â∞ structure (indeed, has uncountably many such structures).
We therefore have two variants of the obstruction theory, which seem to

be essentially equivalent: they just give rise to the normalized and non-
normalized Hochschild complexes, which have the same homology. One there-
fore guesses that the existence of a strict unit is, homotopically speaking, no
more of a restriction than the existence of a homotopy unit; a fact which
is confirmed by the next theorem. (This is not too surprising. There is a
close analogy with the theory of H-spaces, and it has long been known, for
instance through quasifibration theory, that a connected associative H-space
with homotopy unit is equivalent to a Moore loop space, which has a strict
unit.)

Theorem 3.12. Suppose E is a ring spectrum satisfying 3.2. Let 3 ≤ n ≤ ∞,
and suppose that E admits a Ân structure. Then
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(1) E admits a An-structure

(2) if An(E) (respectively Ân(E)) denotes the space of An-structures (re-

spectively Ân-structures) on E, then the forgetful map Φ : An(E) →
Ân(E) is a weak homotopy equivalence.

Proof. We shall show that all the homotopy groups of the map Φ are trivial.
Specifically, if for any k ≥ 0 we have any maps f : ∆k → Âr(E) and g :
∂∆k → Ar(E) such that f |∂∆k ≃ Φg, then g extends to a map ∆k → Ar(E).
Since we can take k = 0, this will prove (1) as well as (2).

We prove the claim by setting up obstruction theory like that in 3.9, pro-
ceeding step by step up the operad. At the rth stage, we have precisely
the problem of extending, over the interior of a k-cell, a deformation of
µ′
r | (Ar ⋉

∨r E) into the map prescribed by the unitality condition. (By
homotopy extension, the deformation over Ar ⋉ E(r) then follows.) The ob-
struction is a cocycle in the kth suspension of the mapping cone of the stan-
dard cochain map from the normalized Hochschild complex Hom∗

R(Λ̃
⊗∗, R) to

the unnormalized one, because the E-homology of
∨r E is the degenerate part

of Λ⊗r. Since normalization does not affect cohomology, this mapping cone
is contractible; so the cocycle is a coboundary, and the extension exists. □

4. Background to the commutative case: gamma homology

We now aim to prove theorems exactly analogous to 3.9 and 3.12 which
will handle commutativity and associativity simultaneously. This will allow
us to replace a commutative ring spectrum (which is an abelian monoid ob-
ject in the stable homotopy category) by a commutative S-module (which
is the equivalent at the point-set level) provided that certain cohomological
obstructions vanish.

Whereas Hochschild cohomology of algebras has been known for 50 years
and the Stasheff operad for 40 years, the cohomology theory for commutative
algebras and the cofibrant resolution of the commutative operad C needed
here are recent developments. The cohomology theory is Γ-cohomology [18].
It is no longer very new: this homology for commutative algebras had its
origins in different ideas developed independently by the author and by F.
Waldhausen in the late 1980’s. A related theory, called topological André-
Quillen cohomology, was invented for essentially the same purpose by Basterra
[2] and Kriz. The dual homology theory also arises as an instance of Schwede’s
stable homotopy of algebraic theories [19]. The relations among all these
different approaches are surveyed by Basterra and Richter [3].

We need a commutative ground ring for our homological algebra. With a
view to the application, we denote it by Λ. There is no restriction on the
characteristic. From our point of view, the homology involves the Lie repre-
sentations of the symmetric groups. The connection of these with geometry
will become apparent in 5.6.
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The Lie representations 4.1. Let Ln be the free Lie algebra over Λ on
the set of generators {xi}1≤i≤n. We denote by Lien the so-called multilinear
part of Ln. This can be described in many different ways. First, it is defined
as the direct summand of Ln spanned by all Lie monomials containing each
of the n generators exactly once. Second, it is the nth module in the Lie
operad. Third, it is isomorphic to the module of all natural transformations
Φ⊗n → Φ, where Φ is the forgetful functor from Lie algebras to Λ-modules.

The symmetric group Σn acts upon Lien by permuting the n generators.
The Σn-module thus obtained is known as the Lie representation. We twist
it by the sign character, so that the left action of Σn on the abelian group
Lien is defined by setting

σ · f(x1, . . . , xn) = ε(σ) f(xσ(1), . . . , xσ(n))

for every multilinear Lie monomial f and every σ ∈ Σn, where ε(σ) is the
sign of σ. Let Lie∗n be the dual module Hom(Lien, Λ), which is thus a right
Σn-module.

We shall require the following properties of Lien (see [21, 2.3]):
(1) the left regulated Lie brackets

σ · [x1, [x2, [x3, . . . , [xn−1, xn]..]]] for σ ∈ Σn−1

form a Λ-basis of Lien. Therefore
(2) the Λ-modules Lien and Lie∗n are free of rank (n− 1)!, and
(3) the restricted Σn−1-modules ResΣn

Σn−1
Lien and ResΣn

Σn−1
Lie∗n are respec-

tively isomorphic to the left and right regular representations.

The Ξ-complex and stable homotopy 4.2. Let Γ be the category of finite
based sets, and [n] the typical object {0, 1, . . . , n} with 0 as the basepoint. A
left Γ-module is a functor Φ from Γ to Λ-modules. Such a functor converts
simplicial finite sets into simplicial modules. Bousfield and Friedlander [6],
developing ideas of G.B. Segal, show that the homotopy groups πn+iΦ(S

i) are
independent of the simplicial model of the sphere Si, and indeed independent
of i for i > n. One therefore defines

πnΦ = πn+iΦ(S
i) for i > n .

This result was originally proved for the more general case of Γ-spaces, but
we now specialize to Γ-modules. A right Γ-module is a cofunctor from Γ to
Λ-modules.

Let Ω be the category of unbased finite sets n = {1, 2, . . . , n}, n ≥ 0, with
surjective maps as morphisms. Adding a disjoint basepoint defines an inclu-
sion functor Ω → Γ taking n to [n]. We regard the morphisms in the image of
this functor, and other surjections, as face operators in Γ, and strict injections
as degeneracy operators. There are additive categories ΛΓ and ΛΩ with the
same objects, indexed by non-negative integers, as Γ and Ω, but having as
morphisms the free Λ-modules generated by the morphism-sets of Γ or Ω. We
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regard these additive categories as rings with many objects. Pirashvili has
shown [13] that there is a Morita equivalence between the categories ΛΓ-mod
and ΛΩ-mod. Indeed, let J be the complement Γ\Ω; that is, the subset of mor-
phisms φ ∈ Γ which satisfy φ−10 ̸= {0}. Then ΛJ is a (ΛΓ,ΛΩ)-submodule
of ΛΓ; and the promised Morita equivalence ΛΩ-mod −→ ΛΓ-mod is given by
tensoring on the left with the quotient (ΛΓ,ΛΩ)-module ΛΓ/ΛJ . The inverse
equivalence is the cross-effect functor

cr : ΛΓ-mod −→ ΛΩ-mod

given by an idempotent in ΛΓ which kills non-surjective morphisms of Γ. For
the categories of right modules there is a dual situation.

Let t be the right ΛΓ-module HomSets∗(−, Λ). We denote Tor of ΛΓ-
modules by TorΓand Tor of ΛΩ-modules by TorΩ. The following is proved in
[13, 2.2].

Theorem 4.3. (Pirashvili) There is a natural isomorphism for ΛΓ-modules
Φ

π∗Φ ≈ TorΓ∗ (t, Φ) . □
If we take Θ to be the cofunctor t of 4.3, then cr t is the unique Ω-module

Θ such that Θ(1) = Λ and Θ(n) = 0 for n ̸= 1.

These Tor-groups can in turn be calculated from a certain bicomplex [17]
called the Ξ-complex. It is based upon a projective resolution of the module
t, constructed from the representations Lie∗n.

Theorem 4.4. Let Φ be any Γ-module. There is a natural bicomplex Ξ(Φ)
in which the (q − 1)st row is the two-sided bar construction B(Lie∗q,Σq,Φ[q]),
the vertical differential is induced by the Leibniz differential of [12] and the
homology is

HΞ(Φ) ≈ TorΓ∗ (t, Φ) . □
The Morita equivalence converts the projective resolution of t into a projec-

tive resolution of the right Ω-module Θ = cr t described above. We therefore
have:

4.5.

HΞ(Φ) ≈ π∗Φ ≈ TorΓ∗ (t, Φ) ≈ TorΩ∗ (Θ, cr Φ).

The Loday functor and the Γ-homology of commutative graded al-
gebras 4.6. Let R = {Rn}n∈Z be an associative graded ring with unit which
is commutative in the usual graded sense: that is, yx = (−1)mnxy when
x ∈ Rm and y ∈ Rn. Let Λ be an augmented R-algebra, and G a Λ-module.
(We usually omit the word “graded”, but it is to be understood.) Unmarked
tensor products are over the ground ring R.
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We denote by (Λ|R)⊗ the tensor algebra of Λ over R. Then (Λ|R)⊗ ⊗R G
has a natural ΛΓ-module structure: if φ : [n] → [m] is any morphism in Γ,
we set

φ∗(λ1 ⊗ · · · ⊗ λn ⊗ g) = ε γ1 ⊗ · · · ⊗ γm ⊗ h

in which

γi = λi1 . . . λir if φ−1(i) = {i1, . . . , ir} where i1 < i2 < · · · < ir

h = λj1 . . . λjsg if φ−1(0) = {0, j1, . . . , js} where j1 < j2 < · · · < js

and in which ε is the sign of the permutation that rearranges {1, 2, . . . , n} in
the order in which λ1,...,λn appear in the expansion of the product γ1 . . . γm.
When φ is a permutation σ : [n] → [n] this means that φ∗ rearranges the
factors and multiplies by the sign (compare [13, p.158])

σ∗(λ1 ⊗ · · · ⊗ λn ⊗ g) = ε(σ)λσ−11 ⊗ · · · ⊗ λσ−1n ⊗ g .

Definition 4.7. The above ΛΓ-module (Λ|R)⊗ ⊗R G is called the Loday
functor L(Λ|R ;G) since it was first defined in the ungraded case by Loday
[11]. The functor L(Λ|R ; Λ) is also denoted L(Λ|R) and is called the Γ -
cotangent complex of Λ over R.

The Γ -homology and Γ -cohomology of Λ relative to R, with coefficients in
the Λ-module G, are defined as the homotopy and cohomotopy of the Loday
functor:

HΓ∗(Λ|R ;G) = π∗((L(Λ|R)⊗Λ G))

HΓ ∗(Λ|R ;G) = π∗HomΛ(L(Λ|R), G) .

Since the Γ-modules here are graded, all these constructs have a further in-
ternal grading.

By Pirashvili’s theorem and Theorem 4.4 above, we can write Γ-homology
as a Tor-group, and therefore as the homology of a Ξ-complex:

HΓ∗(Λ|R ;G) ≈ TorΓ∗ (t, L(Λ|R ;G)) ≈ HΞ∗(L(Λ|R ;G)).

As the Ξ-complex is based upon a projective resolution of the right Γ-module
t, this can be dualized to write Γ-cohomology in terms of Ext and the dual
Ξ-cohomology complex:

HΓ ∗(Λ|R ;G) ≈ Ext∗Γ(t, HomΛ(L(Λ|R), G)) ≈ HΞ∗(L(Λ|R) ;G).

Our claim is that gamma homology of commutative algebras is a precise
analogue of Hochschild homology of associative algebras; and the Ξ-complex
of the Loday functor is the corresponding analogue of the standard Hochschild
chain complex. As evidence for this, we show that gamma homology, like
Hochschild homology, satisfies a normalization theorem.

Proposition 4.8. The cross-effect functor L̃(Λ|R ;G) of L(Λ|R ;G) satisfies

L̃(Λ|R ;G)(n) = cr L(Λ|R ;G)(n) = Λ̃⊗n ⊗G

where Λ̃ is the quotient R-module Λ/R.
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Proof. In our case Λ̃ is isomorphic to the augmentation ideal, and the propo-
sition is immediate from the construction of the cross-effect functor. The
general non-augmented case is treated in [13, 1.10], where an explicit formula
is given for the action of morphisms of Ω on these tensor products. □

Now the complex Ξ(Φ) depends only upon the action in Φ of the surjections
(face operators) of Γ. It can be defined for any Ω-module Φ by making
surjections outside Ω (that is, those in J) act by zero.

Corollary 4.9. (Normalization Theorem for Γ-homology) The Ξ-complex for
this reduced Loday functor L̃(Λ|R ;G) also has homology HΓ∗(Λ|R ;G). The
analogous result holds in cohomology.

Proof. Since Λ̃ is the augmentation ideal, we have Λ ≈ Λ̃⊕R, and the tensor
power ⊗

qΛ ≈
⊗

q(Λ̃⊕R)

splits Σq-equivariantly as a direct sum
⊕q

i=0 Vi, where Vi is a sum of q!/i!(q−i)!

copies of
⊗i Λ̃. In the Ξ-complex of the Loday functor, the (q − 1)st row

B(Lie∗q,Σq,
⊗q Λ⊗G) splits accordingly. The homology of the row-summand

containing Vi is zero if 0 < i < q because Vi is induced up from a representa-
tion of Σi × Σq−i, and Σi acts freely on Lie∗q by 4.1(3). The row-summands
with i = 0 make up the Ξ-bicomplex for L(R|R ;G), which is contractible.
The summands with i = q make up the Ξ-complex of the reduced Loday func-
tor; and this must be quasi-isomorphic to the whole of Ξ(L(Λ|R ;G)) since
we have shown that all the rest is contractible.

For the cohomology case, we use the Ext-interpretation of 4.7. □
In the next section, we shall further justify the analogy with Hochschild

theory, by showing that the Ξ-complex arises in the commutative obstruction
theory exactly as the Hochschild complex arose in the associative case.

5. Obstruction theory in the commutative case

Resolving the commutative operad 5.1. In the theory of ring spectra
we used the Stasheff operad as a convenient resolution of the associative
operad M. In the commutative case M is replaced by C, where each space
Cn is a single point upon which the symmetric group Σn acts. To build our
obstruction theory, we need a suitable resolution B → C. It must satisfy
two properties: each space Bn should be contractible (in order for B to be
a resolution) and Σn-free (in order for B to be cofibrant). That is, B must
be an E∞ operad. However, being E∞ is not sufficient. The Barratt-Eccles
E∞ operad D, in which Dn is the standard Eilenberg-Mac Lane model for
EΣn, is not cofibrant because it fails the test that the faces (the images of
compositions Di × Dj −→ Dn) should intersect one another only in faces of
faces. Better in this respect is the tree operad T , (which differs from that
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discussed in [18] only in that stumps are permitted). Thus Tn is the Σn-space
of trees having leaves labelled by {1, 2, . . . , n}, and stumps. Though Tn is
contractible and its faces intersect correctly, it is not Σn-free, and so T is not
an E∞ operad.

Definition 5.2. Our standard resolution is the product operad B = D ×
T . Since its factors are augmented over the commutative operad C, this is
augmented over C × C = C; furthermore, it inherits the facing properties of
T and the Σ-freeness of D. It follows that B is E∞ and that B → C is a
cofibrant resolution of C.

In analogy with 2.1 we have the following. The operads now have permu-
tations, but the proof is otherwise exactly as before.

Proposition 5.3. Let E be an S-module which is also a ring spectrum. Sup-
pose that there is a morphism of operads B → End(E) under which one point
of B2 is mapped to the the given multiplication on E. Then E is weakly
equivalent to a commutative S-algebra.

The geometry of the operad B 5.4. The problem of replacing E by a
commutative S-algebra is reduced by 5.3 to the problem of constructing a
morphism of operads B → End(E). This in turn we shall tackle by using
obstruction theory. As before, we impose a strict unitality condition: we only
look for actions of B in which stumps are ignorable. In 3.7, this was equivalent
to requiring the map of operads to commute with degeneracies. The operad B
inherits degeneracies from its factors D and T , and the ignorability of stumps
(or the condition that η : S → E be a strict unit) is interpreted just as before.
It means that at the nth inductive step, the map is already defined on the
large wedge subspectrum

∨n E of E(n).
It is natural to try using induction on n to construct a sequence of Σn-

equivariant maps Bn → End(E)n = Map(E(n), E) which satisfy the condi-
tions, as far as these are defined, for a morphism of operads. This would be
a direct analogue of our procedure in §3, but it turns out to be too naive. It
leads to intractable obstructions, and we need a better way.

We recall that Bi = Ti × Di = Ti × EΣi. The bar construction EΣi has
a well-known filtration: in the best-known model, EΣij is the join of j + 1
copies of the group Σi. Therefore Bi is also filtered by setting

Bij = Ti × EΣij ,

and the composition in the operad B respects the filtration.

Definition 5.5. The diagonal filtration ∇ on the operad B is defined using
the bar filtration described above: we set ∇nBi = Bi,n−i. An n-stage for
an E∞ structure on E is a family of Σi-equivariant maps µi : ∇nBi −→
End(E)i preserving composition wherever defined, and such that a point of
∇nB2 represents the given multiplication in E.
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We remark that the 2-stage representing the given multiplication upon E
can be extended to a 3-stage. In fact, this is exactly equivalent to stating
that the multiplication is homotopy associative and homotopy commutative,
by homotopies strictly preserving the unit.

Extending an n-stage in the commutative case 5.6. In the associative
case, the problem of extending an An-structure to an An+1-structure leads
one to consider the Stasheff polyhedron formed of all coherent bracketings
of n + 1 factors in fixed order. This polyhedron is a single cell of dimension
n− 1.

The commutative case is more complex. First, the maps are required to
be equivariant with respect to permutation of factors. Second, the lattice
of coherent bracketings of n + 1 ordered factors is replaced by the lattice of
all partitions of the set {1, 2, . . . , n + 1}. The geometric realization of this
lattice is a wedge of n! spheres of dimension n−1, and the action of the group
Σn+1 upon its homology is the twisted dual Lie∗n+1 of the Lie representation
[21] described in 4.1 above. The connection between E∞-structures and Lie
representations, discovered by F. R. Cohen [7], underlies the appearance of
the integral representations Lie∗n in the bicomplex for Γ-homology. The next
theorem gives the connection: it is a direct analogue of Theorem 3.9, with
Hochschild cohomology replaced by Γ-cohomology. As before, R is the graded
coefficient ring π∗E, and Λ the Hopf algebroid E∗E. A version of this theorem,
with homotopy units in place of strict units, was published in [17].

Theorem 5.7. Let E be a commutative ring spectrum which satisfies the
perfect universal coefficient condition of 3.1. Then given an n-stage µ for
an E∞ structure on E, there is a natural (n, 2 − n)-cocycle θ(µ) of the total
complex TotΞ(L̃(Λ|R ;R)) which vanishes if and only if there exists an (n+1)-
stage extending µ. The cohomology class [θ(µ)] ∈ HΓ n,2−n(Λ|R ;R) is zero
if and only if there exists an (n + 1)-stage which has the same underlying
(n− 1)-stage as µ. □

Corollary 5.8. If the groups HΓ n,2−n(Λ|R ;R) are zero for all n ≥ 3, then
the commutative ring spectrum E has an E∞ structure, and by 5.3 is therefore
weakly equivalent to a commutative S-algebra. □

The difference cochains belong to Ξn,1−n(L̃(Λ|R ;R)). Therefore if the
groups HΓ n,1−n(Λ|R ;R) are zero for all n ≥ 2, then E has at most one
E∞ structure. (The indexing of Γ-homology, like that of André-Quillen ho-
mology, differs by one from that of Hochschild homology, which is why the
cohomological indices in 5.7 differ from those in 3.5)

The above results can be applied to a spectrum representing the Lubin-Tate
theory corresponding to a Honda formal group law. Here HΓ ∗∗(Λ|R ;R) ≈ 0
[15], so 5.7 and 5.8 imply that these spectra have one and only one E∞
structure. This reproves theorems of Goerss, Hopkins and Miller.
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Baker and Richter [1] have further applications of the results. They prove
that the Adams summand E(1) of the complex K-theory spectrum KU has
one and only one E∞ structure. Using a continuous Γ-cohomology, they
prove that the completions of all the Johnson-Wilson spectra have unique
E∞ structures. (For the standard non-completed Johnson-Wilson spectra
the question is still open.)

The analogue of Theorem 3.12 is also true in the E∞ situation. The space
of E∞ structures on E (or of ∇nB-structures for any n) is unchanged up to
weak homotopy type if one neglects the strict unit condition and relies upon
the homotopy unit. The proof uses Corollary 4.9.
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