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1. February 15: Hood Chatham, Obstruction theory for A∞ rings

This is based on a paper by Robinson of the same name.

Let R be an E∞-ring, E an R-algebra (with potentially no associativity condition).

What does the A∞-operad look like? (This is a non-symmetric operad.) In degrees 0, 1, and
2, you have a point; in degree 3 you have an interval; in degree 4 you have a pentagon; and in
higher degrees you have higher associahedra. In general, Kn

∼= Dn−2. Suppose we have an
An−1 structure on E, and we want an An-structure. We want an extension

∂Kn+ ∧ E∧n

��

// E

Kn+ ∧ E∧n

99

Recall ∂Kn ' Sn−3. This is just a “can I fill in a cell” obstruction problem, and the obstruction
would live in E0(∂Kn+ ∧ E∧n) ∼= E3−n(E∧n). We’re looking at the LES

[∂Kn+/Kn+

Sn−2

∧E∧n, E]→ [Kn+

Dn−2

∧E∧n, E]→ [∂Kn+

Sn−3

∧E∧n, E]→ [Σ−1(∂Kn+/Kn+)

Sn−3

∧E∧n, E].

Definition 1.1. Define Es,t1 := E−t(E∧s).

Theorem 1.2. The obstruction to extending An−1 to An is some cn ∈ En,n−3. If there is at

least one extension, the set of them is an En,n−2
1 -torsor. (Given one extension, look at maps

on the cofiber Σ∂Kn+ ∧ E∧n of the vertical map above.)

Here E is the cofiber of the unit map R→ E, and it appears because this is what happens
when you require the map to respect the unit axiom.

Suppose E has an A3-structure. Then E1 is a cosimplicial group:

(dif)(x1, . . . , xn+1) = f(x1, . . . , xixi+1, . . . )
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Kn+ ∧ (E∧(i−1) ∧ (K2+ ∧ E∧2) ∧ E∧(n−i))

Notice that E1 is not a spectrum; it is a bigraded group. Let E∗∗2 be the cohomology of E∗∗1 .

Theorem 1.3. Given an An−1-structure for n ≥ 4, the obstruction to extending the underlying

An−2 to An lives in En,n−3
2 .

If E is A∞ and E∗E is projective over E∗
1, then there is a spectral sequence

Extπ∗(E∧Eop)(E∗, E∗) =⇒ THCR(E).

If E is not A∞, then you can only define the differentials up to a certain stage: if E is
An−1, where n ≥ 2r, then the Er page makes sense, and the obstruction to extending the
An−r-structure to An lies there.

We’re aiming towards the special case of Morava K-theories.

Morava K-theories are a regular quotient of Morava E-theory, which is an E∞ ring spectrum.

Theorem 1.4. If R is E∞ and even (e.g. Morava E-theory), then every An−1-structure on
R/I extends to an An-structure. By “extends”, I mean that you might have to change the
An−1 structure, but not change the An−2-structure. (Here I is the ideal generated by a regular
sequence.)

Proof. We assumed that I was generated by a regular sequence; let that sequence be (gi),
where |gi| = 2di. By a standard Koszul duality argument, π∗(E ∧R E) = E∗(αi) where
|αi| = 2di + 1. Then

Extπ∗(E∧REop)(E∗, E∗) = E∗[qi]

where |qi| = (1, 2di + 2). So everything is in even total degree. Since En,n−3
2 is in odd total

degree, it is zero. So there are no obstructions. (It might be a boundary, but you can change
the An−1 structure (without changing the An−2-structure) so this is actually zero.) �

Applying this to R = Morava E-theory, we see that any An−1 structure on Morava K-theory
extends in at least one way. The next question is how many A∞ structures are there?

By the theorem, we’re looking at Ej,j−2
2 -torsors, and that’s even so it’s probably nonzero.

Recall |vi| = 2(pi − 1). So π∗(K(n) ∧K(n)op) = K(n)∗[q0, . . . , qj−1], where |qi| = 2pi. Jun-
Hou objects that these qi’s should be called ti. We want a monomial with j qi’s, and we
want the topological degree to be 2. Suppose we have qi1 . . . qij , and we can multiply by
vrn (remember this r can be negative!). We want the degree of all of this to be 2. We have

|qi1 . . . qij | = 2(pi1 + · · · + pij ). The dimension (over Fp) of Ej,j−2
2 is the number of such

sequences (i1, . . . , ij) such that pi1 + · · ·+ pi
j ≡ 1 (mod pn − 1). When j < p there are zero

ways (you can’t get up to pn − 1). If you have p of them, there are p choices, and for j > p
there are countably many choices (and so uncountably many A∞ structures). There is possibly
an issue with being able to go back and change things, but I claim this doesn’t mess it up.

1Why this assumption? If E∗E is projective over E∗, then π∗E
∧(•+1) is a projective resolution of E∗ over

π∗(E ∧R E
op).
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2. February 22: Denis Nardin, THH

E1-algebras and their modules. Let R be a ring [spectrum] and M,N left R-module[-
spectra]. Then there are two spectral sequences

Torπ∗R(π∗M,π∗N) =⇒ π∗(M ∧R N)

Extπ∗R(π∗N, π∗M) =⇒ π∗FR(N,M)

Proof. Choose F0 → N that is surjective on π∗. You can always arrange this, by F0 =
∨

Let
K0 be the fiber of F0 → N and let F1 be a free R-module that surjects onto K0 (i.e. on π∗).
Then let K1 be the fiber of F1 → K0.

Get LES of each of the fiber sequences associated to

N // ΣK0
// Σ2K1

F0

OO

ΣF1

OO

−1
oo Σ2F2

OO

−2
oo

The fact that the aforementioned maps are surjections in π∗ says that the LES splits as
0→ π∗Ki → π∗Fi → π∗Ki−1 → 0. To get the spectral sequences, hit this diagram with the
functors π∗(M ∧R −) and π∗(FR(−,M)). This gets

E1
s,t = πt(M ∧R Fs) = π∗M ⊗π∗R π∗Fs.

This gives the Tor spectral sequence. You can get the Ext one similarly, with a projective
resolution on the source. �

If E is E∞, then you get

TorE∗R(E∗M,E∗N) =⇒ E∗(M ∧R N)

in the same way (the ring spectrum is then E ∧R and E ∧M and E ∧N are modules).

If E is homotopy commutative and E∗R is flat over π∗R is flat and even-graded, then
E∗M ∼= E∗R ⊗π∗R π∗M . (There is a map in one direction E∗M ← E∗R ⊗π∗R π∗M by
smashing with stuff, and in the other direction use the fact that it’s a map of cohomology
theories over R and it’s an isomorphism when M = R.)

Let A be an E1-ring of the form A = R/(x1, x2, . . . ) where (x1, . . . ) is a regular sequence.
Look at the spectral sequence

Torπ∗R(π∗A, π∗A
op) =⇒ π∗(A ∧R Aop).

Since you’re quotienting by a regular sequence, you have a canonical choice of resolution,
namely the Koszul resolution. Write E = π∗R 〈α1, . . .〉 where |αi| = |xi|. Take the dg-algebra∧∗
π∗R

E such that dαi = xi.

You get that the E2 page of the spectral sequence is
∧
π∗A
〈αi〉 where |αi| = |xi|+ 1.

For degree reasons all the differentials vanish. This works additively, but there might be
multiplicative extensions – maybe α2

i 6= 0. Note I never used the “op” (but then it would
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be false). You need to add another hypothesis, namely that A has a homotopy associative
multiplication. Maybe there is an issue at p = 2?

Where is α2
i ? It must be hit by some element in π∗A. Since we have a homotopy-associative

multiplication, A is an A-bimodule and we have a map A ∧ Aop ε→ A which induces an
isomorphism on the 0-line of the spectral sequence. Homotopy associativity gives a diagram

A ∧Aop ∧A ∧Aop ∧A //

��

A ∧Aop ∧A

��

A ∧Aop ∧A // A

Chase the diagram for (αi, αi, 1). One way around goes to 0 and one way goes to α2
i . So

under these hypotheses, α2
i = 0.

Let R be an E∞-algebra, A an E1 R-algebra, and M an (A,A)-bimodule. This means that
I can see it as an A ∧R Aop left module, and an A ∧R Aop right module (where secretly the
second A ∧R Aop is the “op” of the first). Then define

THHR(A,M) = M ∧A∧Aop A

THHR(A,M) = FA∧Aop(A,M)

(So A is a left A ∧Aop-module, and M is a right A ∧Aop-module.) The previously discussed
spectral sequences compute these things.

THHR(A,A) can be thought of as endomorphisms of A as an (A,A)-bimodule. So it’s at
least E1. If A is discrete, this endomorphism ring is just the center. So you might hope for
better commutativity in general.

Theorem 2.1 (Deligne conjecture). If C is a stable En-monoidal ∞-category (e.g. E2 is a
braided monoidal category), then End(1) has a canonical structure of an En+1-ring spectrum.

“Proof”. E1 ⊗ En = En+1. �

The following is the original statement of the Deligne conjecture.

Corollary 2.2. THHR(A) := THHR(A,A) is E2.

THHR(A) is sometimes thought of as the center, but that’s unfair because it’s not commutative.
But you can iterate this until it becomes E∞.

If C is the category of [dg] categories, End(1) is called the Drinfeld center.

We would like a more explicit construction of THH.

Claim 2.3.
THHR(A,M) = colim(M oooo M ∧A oooo

oo
M ∧A ∧A . . . )
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where the object you’re taking the colimit is the cyclic bar construction and the ∧’s are all ∧R’s.
Think of arranging all the A’s and the M in a circle; the di face map is just multiplication.
In the homology (as opposed to cohomology) case:

THHR(A,M) = lim(M //
//F (A,M) //

//
//F (A∧2,M) . . . ).

Proof. THHR(A,M) = M ∧A∧Aop THHR(A,A∧Aop). The claim is that the simplicial object
A ∧Aop ⇒ A ∧Aop ∧A . . . is just computing A ∧A A = A. �

Why is this better? You can prove duality statements with it. For example, you can prove
that THHR and THHR are dual. Unfortunately this does require some hypotheses. (In the
general case I’m not sure why we’re calling these “cohomology” and “homology”.)

Proposition 2.4. If M is a symmetric bimodule and A is E∞, then

THHR(A,M) = FA(THHR(A),M).

Proof. Both sides are limits of the same cosimplicial diagram. �

The real reason we care about this:

Theorem 2.5. When A is E∞, THHR(A) is also an E∞-ring (it’s a colimit of E∞ rings

and maps), and moreover THHR(A) = A∧RS
12. Furthermore, THHR(A) = NS1

(A) where
N is the HHR norm.

Because it’s the norm of an E∞-spectrum, it automatically inherits the structure of a cyclotomic
spectrum.

Let K be an operad in spaces. Let O be the category of totally ordered finite sets (this is
sometimes called ∆+ because it also contains ∅). Let O∗ be the category of totally ordered
finite sets with a distinct maximum and minimum. The objects are the same, but I also ask
the maps to preserve the max and min. (This is sometimes called ∆op because it’s equivalent
to ∆op but this is a red herring.) Let OK be the category with the same objects as O∗
and Map(S, T ) =

⊔
f :S→T∈O∗

∏
t∈T Kf−1t. (I’ve decorated every element of T with a way to

multiply two objects in the preimage.)

Let A be an algebra over the operad K, and let M be a bimodule over the operad (this
essentially means that A⊕M is an augmented algebra). Say A,M are in a category C.

Let K be the associative operad. Actually, in Angeltveit’s paper [next week’s topic], he insists
on using the associahedron model of the associative operad – there will be an underived smash
product below, which is why this even has a chance of mattering.

2I’m going to define A⊗K for a simplicial set K: tensor levelwise with K (using disjoint unions) and then take
geometric realization.
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Theorem 2.6.

THHR(A,M) =

∫ OK

W ∧ (S 7→M ∧AS)

THHR(A,M) =

∫
OK

F (W, (S 7→ F (AS ,M)))

where ∧ is the underived smash product and W is a certain explicit object that depends on S.

Corollary 2.7. A map THHR(A,M) → B is the same thing as a natural transformation
WS ∧M ∧AS → B. A map B → THHR(A,M) is the same thing as a natural transformation
B ∧WS ∧AS →M .

If you replace K with K≤n, then you get Totn−1 THHR and skn−1THH
R instead. You only

need the An structure to define these skeleta/totalizations.

3. March 1: Andy Senger, “THHS(Kn) = En if you choose the right
A∞-structure on Kn”

Notation: Kn is the 2-periodic K-theory, not the vn-periodic K-theory.

We know
(En)∗ = W(k)[[u1, . . . , un−1]][u±].

Define
Kn = En/(p1, u1, . . . , un−1) = En/p ∧En E/u1 ∧En . . . ∧En En/un−1

(in order to define that smash product you need to use the fact that we have an E∞ structure
on En). I haven’t yet fixed an A∞-structure on Kn, so THHS(Kn) isn’t defined (i.e. THH
depends on the A∞-structure).

There’s a map THHEn(Kn)→ THHS(Kn) (this is THH-cohomology, not homology). Fact:
this is an equivalence. (The motivation is that S → En is a Kn-local [pro]-Galois extension,
so this has to do with Galois descent.)

I want to compute THHEn(Kn). This is reasonable, because Kn is gotten by taking En and
modding out by a regular sequence, and this sort of thing is easier to compute. We have a
spectral sequence

Ext∗∗π∗(Kn∧EnK
op
n )(Kn∗,Kn∗) =⇒ THH∗En

(Kn)

and moreover the LHS is actually computable: Denis proved in this sort of context that
π∗(Kn ∧En Kn

op) ∼= Λ(Kn)∗(α1, . . . , αn) and |αi| = |ui|+ 1 = 1 where u0 = p. But we know
how to compute Ext over an exterior algebra! So our spectral sequence is

E2 = (Kn)∗[q1, . . . , qn] =⇒ THH∗En
(Kn)

where |qi| = (1,−1). This is great, because the qi’s are all in even total degree, and the
spectral sequence collapses.

But this is not the end of the story: there could be nontrivial additive extensions (in fact
there are lots of them) – the RHS is an (En)∗-algebra, and the ui’s can act nontrivially there.
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The point of this talk is to understand the additive extensions in terms of the multiplication
on Kn.

Now I’m going to look at a slightly more general context. Let R be an even E∞-ring spectrum,
I = (x1, . . . , xn) ⊂ R∗, and A = R/I. In this context the entire same thing is true: we
still have a collapsing spectral sequence A∗[q1, . . . , qn] =⇒ π∗THHR(A) and we want to
know about additive extensions. Since the RHS is an R∗-algebra, there is a map of rings
R∗ → π∗THHR(A), and we just want to know where the elements xi ∈ R∗ go. One way to
approach this is to look at the following diagram:

Σ|xi|R
xi //

&&

R

structure map

��

THHR(A)

The diagonal map represents a homotopy element, and we want to know what it is. Continue
the cofiber sequence

Σ|xi|R
xi //

%%

R

��

// R/xi

yy

THHR(A)

The map ΣR→ THHR(A) (making the diagram commute) is the obstruction to getting the
dotted map. You can think of this as lifting things in the Tot tower. Let’s reduce to thinking
about lifting one step in the Tot tower:

Σ|xi|R
xi //

''

R

��

// R/xi

ww

Tot1(THHR(A))

This corresponds to finding the image of xi modulo cohomological filtration of at least 2.

Let’s write out the Tot tower:

R

��

// Tot1(THHR(A))

��

R/xi

66

// Tot0(THHR(A)) = A

By using the definition and adjointing some things, this lifting problem is the same as the
following: suppose we have a multiplication R/xi ∧R A → A. I’m interested in the map
(∂A1)+ ∧ R/xi ∧R A → A. (Here ∂A1 is a 1-simplex.) There are two maps: ϕ (just the
multiplication), and ϕop (which involves a swap map). The equivalent lifting problem is

(∂A1)+ ∧R/xi� _

��

//
//
A

(∆1)+ ∧R/xi ∧R A

77
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This is sort of a homotopy commutativity statement. We’re working in spectra so we can just
subtract the maps, and the obstruction is just ϕ− ϕop : R/xi ∧R A→ A. But to be able to
compute this, we need precise control over the A2-structure on A.

In Hood’s talk, we saw that any A2-structure on A which extends to an A3-structure extends
to an A∞-structure.

Let’s do the simple case where I = (x). I have ϕ : R/x ∧R R/x→ R/x, and smashing gives a

map Σ|x|R/x
x→ R/x→ R/x ∧R R/x. I claim that, because it’s regular, this multiplication

by x map is zero. There exists a section, and this is an A2-structure. Suppose I have two
different A2-structures ϕ and ϕ. We can view R/x as a 2-cell R-module, with the top cell
attached by x. So this smash product is a 4-cell R-module. Unitality fixes what has to
happen on the bottom 3 cells; they can only differ on the top cell. If I call projection to
that cell β : R/x → Σd+1R where d = |x| (because it’s the Bockstein), the difference is
ϕ− ϕ = u ◦ (β ∧ β) where u ∈ π2d+2(R/x). Given any A2-structure I can just add this map
onto it, and the set of A2-structures is a torsor for π2d+2(R/x) (I’m just saying that the
difference factors through projection to the top cell).

I claim that all of them extend to A3-structures. Associativity says that we can look at
ϕ ◦ (ϕ ∧ 1− 1 ∧ ϕ) = v ◦ (β ∧ β ∧ β) (again unitality forces the only interesting thing to be on
the top cell) for v ∈ π3d+3(R/x) = π3d+3(R)/x. But R was assumed to be an even spectrum,
so 3d+ 3 is odd and π3d+3(R) = 0, and our map is zero.

I want to compute ϕ− ϕop, but ϕop is another A2-structure, so ϕ− ϕop = c(ϕ) ◦ (β ∧ β) for
some c(ϕ) (think of c as an invariant of ϕ). This tells us what x ∈ π∗THHR(R/x) is, modulo
filtration ≥ 2.

What is the answer? It projects to something in filtration 1. If you work a bit you figure
out that x ≡ c(ϕ)q where this is the q of the THH spectral sequence (but there’s just one
because there’s just one x). (The q corresponds to a β. . . ) Sanity check: x ∈ π∗THHR(R/x)
and there is a spectral sequence (R/x)∗[q] =⇒ π∗THHR(R/x). Details in the paper were

confusing. . . Hint: π∗FR(R/x,R/x) = Λ(R/x)∗(α) and 0 = R/x
β→ R→ R/x. . .

The map Σ|xi|R→ Tot1 earlier represents an element of π|xi|(Tot1), and that is the obstruction.

If c(ϕ) is invertible, then
π∗THHR(R/x) ∼= R∗

∧
(x).

(We’re using that the spectral sequence converges strongly.)

In general there is a canonical map from the Bousfield localization lim←−R/x
n = R∧R/x

∼=→
THHR(R/x) = F (R/x,R/x).

I want to show that I can guarantee that there is such an A2-structure on K1 so that c(ϕ) is
invertible. Since the coefficient ring is a field, this is just saying it’s nonzero.

If I choose ϕ = ϕ+ u ◦ (β ∧ β), then it’s not hard to show that c(ϕ) = c(ϕ) + 2u. Why? This
is telling me something about ϕ− ϕop; one u is what I’ve added to the top cell; the other is
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from flipping the smash product in the top cell, and that introduces a sign. If 2 is invertible
in R/x, and R is 2-periodic (so for example π2d+2(R/x) is not empty), this implies that we
can choose c(ϕ) to be pretty much anything we want – in particular, we can choose it to be
invertible.

This immediately tells us that E1
∼= THHE1(K1) away from 2 (and you can smash them

together away from 2). At 2, you have to know that K1 is not commutative; this is precisely
saying that our thing isn’t zero.

This was the case where I is generated by a single element. Now suppose I = (x1, . . . , xn).

(1) Given ϕi : R/xi ∧R R/xi → R/xi I can form ϕ̃ : R/I ∧R R/I → R/I, so there exists
some sort of A2-multiplication, and it extends to an A3-structure.

(2) All A2-structures on R/I that extend to A3-structures (this is no longer an empty
condition) can be written uniquely as ϕ̃ ◦

∏
i 6=j(1+ vijβi ∧ βj) for some unique ϕ̃ (“a

diagonal one”) (here
∏

means iterated composition). In theory I can smash more than
two of these together, but then it no longer extends to an A3-structure.

(3) Define an n× n matrix C(ϕ) = (cij(ϕ)) where

cii(ϕ) = c(ϕi)

cij(ϕ) = −vij − vji
where ϕ̃ = ϕ1 ∧ . . . ∧ ϕn.

(4) In particular, if R is 2-periodic and n ≥ 2, then I can make c(ϕ) invertible. (“Just futz
around with stuff – you can choose the off-diagonal entries.”) So the problem at p = 2
disappears once n ≥ 2.

(5) Thinking about the maps R/xi ∧R R/I → R/I, you get

xi ≡
∑
j

cij(ϕ)qj (mod filtration ≥ 2).

(6) If I make c(ϕ) invertible (which I can because everything is 2-periodic), then from
the spectral sequence we find that π∗THHR(R/I) ∼= R∧I , which means the Bousfield
localization R∧R/I → THHR(R/I) is an isomorphism. (“This is some Weierstrass

preparation thing in multiple variables.”)

(7) This implies that there exists an A∞-structure on Kn such that En → THHEn(Kn) is
an isomorphism.

4. March 8: Morgan Opie, André-Quillen (co)homology and Beck modules

The goal is to set up an analogy for Jun-Hou’s talk next week. Quillen describes this for a
pretty general kind of category; I want to just gesture towards the larger theory.

Outline:

(1) Vague stuff about the general theory
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(2) Specific case of the cotangent complex for rings (applying the general theory to R-
algebras over a given R-algebra)

4.1. General theory. Given R → B → A and an A-module, you get a derivation exact
sequence

0→ DerB(A,M)→ DerR(A,M)→ DerR(B,M)→ . . . .

Quillen wanted a framework that would extend this to a long exact sequence. He wants to
work in an algebraic category C such that, given a particular object c, we can talk about the
abelian objects in the slice category C/c, called (C/c)ab, and such that the forgetful functor
(C/c)ab → C/c admits a left adjoint Ab (abelianization). We want to get a good model
structure on these things. The philosophy is that we want to get a homology object LAb(X)
for all X ∈ C.

4.2. Commutative R-algebras AlgR. What does abelianization look like? Because we have
a trivial final object, (AlgR)ab is trivial. The solution is to make the final object nonzero, and
work in AlgR /A for some A ∈ AlgR. The strategy is to identify (AlgR /A)ab with something
more concrete, and then compute the abelianization functor.

Proposition 4.1. There is an equivalence of categories (AlgR /A)ab ' ModA.

The goal is to compute AlgR /A
Ab→ (AlgR /A)ab

'→ ModA. Let’s construct a map ModA →
(AlgR /A)ab: to a module M we associate A⊕M as underlying module, with multiplication
given by (a, y) · (a′, y′) = (aa′, ay′ + a′y). The map to A is just projection. Call this object
AoM . (This is the square zero extension of A by M .)

We need to show it’s an abelian group object. To say it’s an abelian object is to say that
Homs into it have an abelian group structure. So we analyze maps into it.

Lemma 4.2. HomAlgR /A
(B,AoM) ∼= DerR(B,M)

If we have a diagram

B
f
//

ε

��

AoM

A

we can write f = ε ⊕ df . The claim is that df is a derivation. The verification is not too
tricky, because f(bb′) = (ε(bb′), df (bb′)), and because it’s an algebra morphism, this is

f(bb′) = (ε(b), df (b)) · (ε(b′), df (b′))

= (ε(b)ε(b′), ε(b)df (b′) + ε(b′)df (b))

Corollary 4.3. AoM is an abelian object of AlgR /A.

Proof. Exercise. �
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Now we will determine the abelianization functor.

Definition 4.4. The augmentation ideal of X ∈ AlgA /A is ker(X
ε→ A).

Definition 4.5. The module of indecomposables of a non-unital A-algebra is

QA(X) := coker(X ⊗A X → X).

We care about this because we can define the module of Kähler differentials.

Definition 4.6. The B-module of Kähler differentials of an R-algebra B is defined to be

ΩR(B) = QB(IB(B ⊗R B)).

There is a universal derivation B → ΩR(B), and

DerR(B,M) ∼= ModB(ΩR(B),M).

There is an adjunction

A⊗(−) ΩR(−) : AlgR /A� ModA : Ao (−).

This will pretty much solve all of our problems.

One can show that any abelian object can be written as AoM . So then

HomAlgR /A
(B,AoM) ∼= DerR(B,M)

∼= HomModB
(ΩR(B),M)

∼= HomModA
(A⊗R ΩR(B),M).

André-Quillen homology is the left derived functor of abelianization. Let’s compute it in this
case.

For A ∈ AlgR(A) and M ∈ ModA, we define AQ∗(A,R;M) as follows. Choose a resolution
P• → A where Pn is a free commutative R-algebra on (a set of) generators Xn, where under
degeneracies, Xn ⊂ Xn+1. Apply A⊗(−) ΩR(−) levelwise. For A ∈ AlgR /A, define

LR(A) = A⊗P• ΩR(P•).

What does L stand for? Maybe “linearization”. Then define

AQ∗(A,R;M) = HnCh(A⊗P• ΩR(P•)⊗AM)

(where Ch is the associated chain complex under the Dold-Kan correspondence). Note that:

AQ0
∼= ΩR(A)⊗M

AQ0 ∼= DerR(A,M)

Example 4.7. Look at R→ R[t], it’s easy to resolve this by R-algebras – you just take the
constant thing and that’s a cofibrant replacement; the maps are alternating 0 and 1. So you
get that for any A = R[t]-module M ,

AQ∗(R[t], R;M) =

{
M i = 0

0 otherwise.
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Proposition 4.8. Here are some key properties:

• Given
R //

��

R′

��

A // A′

you get a map A′ ⊗A LR(A)→ LR′(A
′).

• Given R→ B → A, we get a distinguished triangle in D(ModA):

LR(B)⊗A→ LR(A)→ LB(A)→ ΣLR(B)⊗B A
which gives rise to a LES of André-Quillen homology groups

· · · → AQ1(A,B;M)→ AQ0(B,R;M)→ AQ0(A,R;M)→ AQ0(A,R;M)→ AQ0(A,B;M)→ 0.

• If R→ A is surjective, then we have AQ(A,R;M) ∼= ker(R→ A)/ ker2⊗AM .

Example 4.9. Let’s compute R→ R/(r) for r a non-zero divisor. (This is following Iyengar’s
notes; he describes a fairly explicit way to compute cofibrant replacements.) The strategy is
that, in order to kill things, you want to attach polynomial generators. Suppose you have A•
which is supposed to be resolving A but fails at some point. Suppose α ∈ An that you want
to be zero. Then add variables in degree ` (for ` ≥ n+ 1) corresponding to each surjection
[`] � [n+ 1]. This results in a simplicial object

R⇔ R[x01] oo oo
oo

R[x001, x011] oooooo
oo

R[x0001, x0011, x0111]

where x01
d07→ r, x01

d17→ 0, and in general xI 7→ xI·di if it’s surjective and zero otherwise.

Applying R/(r)⊗(−) ΩR(−), you get

AQ1(A,R;M) = M, AQi(A,R;M) = 0.

Now use induction and apply the LES to

R→ R/(r1, . . . , rn−1)

Rn−1

→ R/(r1, . . . , rn)

Rn

.

The inductive hypothesis is that AQk(Rn−1, R) = 0 for k ≥ 2 and k = 0, and using the
previous computation, we get AQk(Rn, R;M) = 0 for k ≥ 2, and we get a SES 0→Mn−1 →
??→M → 0. We want to show that it splits, but actually we don’t have to do this because
we can use AQ(A,R;M) ∼= ker(R→ A)/ ker2⊗AM .

5. March 15: Jun Hou Fung, Introduction to topological André-Quillen
(co)homology

5.1. Introduction to TAQ. Last time, we had a commutative ring R and an R-algebra B.
Morgan produced for us the cotangent complex ΩB/R. Given another R-algebra A, we have
an adjunction

A⊗(−) Ω(−)/R : AlgR /A� ModA ' (AlgR(A))ab : An (−).

Given M ∈ ModA, we defined André-Quillen homology

AQR∗ (A,M) := TorA∗ (ΩA/R,M)
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and similarly cohomology
AQ∗R(A,M) = Ext∗A(ΩA/R,M).

Everything (including Ω) is derived; usually people write L instead of Ω for this object.

Today we’ll do a topological analogue of this. Let R be an E∞-ring, B ∈ AlgR, and M ∈ ModR.
Then we have functors

IB : AlgB /B → AlgnuB

QB : AlgnuB → ModB

(here (−)nu means non-unital) which can be defined using some diagrams:

IB(X) //

��

A

X

ε

��

∗ // B

N ∧B N //

�� I

∗

��

N // QB(N)

These are the analogues of the augmentation ideal and indecomposables, respectively.

Definition 5.1 (Basterra). The cotangent complex is

ΩB/R := LQBRIB(B ∧LR B) ∈ hModB

and topological André-Quillen cohomology and homology are

TAQ∗R(B;M) := Ext∗B(ΩB/R,M) = π−∗FB(ΩB/R,M)

TAQR∗ (B;M) := TorB∗ (ΩB/R,M).

After this line I’ll never write L etc. and just assume everything is derived.

Remark 5.2. We have a Quillen equivalence

K : AlgnuB � AlgB /B : I,

where K is square-zero extension. There is also a Quillen adjunction

Q : AlgnuB � ModB : Z

where Z is the functor that forms the algebra with zero multiplication.

Proposition 5.3. A ∧(−) Ω(−)/R : hAlgR /A� hModA : An (−)

Corollary 5.4. TAQkR(A,M) ∼= hAlgR /A(A,An ΣkM)

Corollary 5.5. There is a forgetful map TAQkR(A,M)→ Hk(A;M).

Properties of TAQ (same as for AQ):

• functoriality

• transitivity (which gives a LES)

• flat base change (which gives additivity)

These look like the axioms for generalized homology theories. Indeed,
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Theorem 5.6 (Basterra-Mandell). Every cohomology theory on AlgR /A is equivalent to
TAQ for some A-module M .

Remark 5.7 (Stabilization). This is not Kriz’s original definition of TAQ. For B ∈ AlgR /R,
you can construct the stabilization

Σ∞B := colimn Ωn(Sn ⊗ IB)

Theorem 5.8 (Basterra-McCarthy, Basterra-Mandell).

QN ' colim Ωn(Sn ⊗N)

Corollary 5.9. D1(1AlgR /R
) ' TAQ (this means first Goodwillie derivative)

Example 5.10. Let E be a connective spectrum. Then

TAQS(Σ∞+ Ω∞E) ' E

5.2. Postnikov towers of E∞-rings. Recall, if E is connective we have

...

��

τ≤2E
k2 //

��

Σ4Hπ3E

τ≤1E
k1 //

��

Σ3Hπ2E

E //

==

FF

τ≤0E
k0 // Σ2Hπ1E

Remark 5.11. [kn] ∈ Hn+2(τ≤nE, πn+1E)

Proposition 5.12 (Kriz, Basterra). if R is a commutative E∞-ring, we have a Postnikov
tower

...

��

τ≤2R
k̃2 //

��

τ≤2Rn Σ4Hπ3R

τ≤1R
k̃1 //

��

τ≤1Rn Σ3Hπ2R

R //

>>

FF

τ≤0R
k̃0 // τ≤0Rn Σ2Hπ1R

14



where the τ≤nR’s are constructed inductively using the pullback diagram

τ≤n+1R //

��

τ≤nR

��

τ≤nR
k̃n // τ≤nRn Σn+2Hπn+1R

in AlgR. (Here the n thing is ∨ on spectra, but is a square-zero extension as a ring spectrum.)

The proof is similar to the proof for connective spectra E, but relies on the following lemma.

Lemma 5.13. Suppose A→ B is an n-equivalence of connective E∞-rings for n ≥ 1. Then

πiΩB/A =

{
0 i ≤ n
πnA i = n+ 1.

Proof of proposition, given lemma. We have R
f0→ Hπ0R =: τ≤0R. This can be made an

E∞-map. This is a 1-equivalence, so the lemma says that

πiΩτ≤0R/R
∼=

{
0 i = 0, 1

π1R i = 2.

Get c0 : Ωτ≤0R/R → Σ2Hπ1R. This corresponds to the k-invariant k̃0 : τ≤0R → τ≤0R n
Σ2Hπ1R. Then you can construct τ≤1R by pullback, and R→ τ≤1R is a 2-equivalent. Rinse
and repeat. . . �

Remark 5.14.

[k̃n]
_

��

∈ TAQn+2(τ≤nR,Hπn+1R)

��

[kn] ∈ Hn+2(τ≤nR, πn+1R)

Corollary 5.15. A connective spectrum E has the structure of an E4 ring iff all its k-
invariants lift to TAQ k-invariants.

5.3. Computation of TAQ∗(HFp) := TAQ∗S(HFp, HFp).

5.3.1. Warm-up. First let’s try to show that TAQ1 6= 0. This uses the Postnikov thing in a
way that’s not circular. If you stare hard at the definition of stabilization, you find

TAQ∗(Fp) ∼= TAQ∗+2
HFp

(S2 ⊗HFp
Y

, HFp).

What is Y ? Look at the auxiliary thing X := S1 ⊗HFp ∼= THHS(HFp, HFp). Bökstedt has
shown that π∗X = P (x) where |x| = 2. Then Y := S1 ⊗X ∼= HFp ∧X HFp. The Künneth
spectral sequence gives π∗Y = Λ(y) for |y| = 3.
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Now consider the Postnikov tower but just as a ring. So it has two cells, one in degree zero
and one in degree 2. So it’s classified by a single k-invariant in THH3+2

S (Fp,Fp). By dualizing
the Bökstedt calculation, we see that this is actually zero. So Y is a square-zero extension
HFp n Σ3HFp. We have

TAQ1(Fp) ∼= TAQ3
HFp

(HFp n Σ3HFp, HFp) 3 1HFpnΣ3HFp
.

The goal is to show that TAQ∗(HFp) is generated by this element in degree 1 under the
Steenrod operations.

5.3.2. Construction of the spectral sequence. This part goes back to Haynes Miller and (the
correct part of) the incorrect Kriz paper. When we’re working over a field, TAQ∗(Fp) =
π∗(QI(HFp ∧HFp))∨. Let N = QI(HFp ∧HFp). Let’s construct a bar resolution of N in
AlgnuHFp

using the free nonunital commutative HFp algebra monad in HFp-modules:

A : X 7→
∨
j>0

X∧HFpj/Σj .

We get
B∗N =

(
AN //A2N
oo
oo

//
//A3Noo

oo

oo

. . .
)

You get
Es,t2 = Hs(πtQB∗N) =⇒ πs+t(QI(HFp ∧HFp))∨.

What is this E2-page? You want to simplify π∗QAX. Recall that π∗ of a commutative
HFp-algebra has an allowable action of the Dyer-Lashof algebra R. Let

F : Vectgr � AlgnuR : U

be the free-forgetful adjunction. Then F = FU is a comonad.

Lemma 5.16. π∗AX ∼= Fπ∗X and π∗QAX ∼= QFπ∗X

We have π∗QB∗N ∼= Q(F∗(π∗N)) where π∗N ∼= IA (where A is the dual Steenrod algebra).
Then

Es,t2 = LFs (Fp ⊗R Q(−))(A)∨t
where LFs denotes the sth comonad F-left derived functor.

5.3.3. Computing the E2-page. This E2 page can be computed using a Grothendieck (composite
derived functor) spectral sequence.

In general, if you have:

• functors C F→ B E→ A
• a comonad (T, ε, δ) on C, and

• a comonad (S, ε′, δ′) on B
subject to some conditions3, then you get a spectral sequence

EGSS,2s,t = LSsE(LTt F (c)) =⇒ LTs+t(EF )(c).

3Conditions for the Grothendieck spectral sequence: for every object c ∈ C, you need FTc to be LS
∗E-acyclic

and ESn+1 to be exact for all n ≥ 0.
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(See Basterra, “André-Quillen cohomology of commutative S-algebras”, Proposition 7.1 for
this version of the Grothendieck spectral sequence, and more generally for this lecture.)

In our case, the composite functor is Fp ⊗R Q(−), and the spectral sequence is

EGSS,2s,t = TorDs (Fp,LFtQ(A)) =⇒ LFs+t(Fp ⊗R Q(−))(A)

where D is the comonad associated to the free-forgetful adjunction between the category of
graded vector spaces and the category of unstable modules (i.e. modules over the Dyer-Lashof
algebra with the unstable condition4). This Tor is called UnTor in some places, e.g. Haynes
Miller’s paper referenced below.

At p = 2, Miller (“A spectral sequence for the homology of an infinite delooping”) showed:

Proposition 5.17 (Miller). EGSS,2 is the homology of L(QA) where

• L(QA) ∼=
⊕

n≥0 L(n)⊗ (QA)n

• L(n) =
〈
SqI : I is admissible, ends with Sqj , j > n+ 1

〉
We also know the action by the Dyer-Lashof algebra

d1(SqIξi) = SqI,2
i−1−1 ξi−1

We can compute this. If i > 1 and j > 2i + 1 then SqI,j ξi 7→ SqI,j,2
i−1−1 ξi−1. If i > 1

and j = 2i + 1 then it receives a differential: SqI ξi+1 7→ SqI,2
i−1

. If i = 1, then you have
SqI ξ2 7→ SqI,3 ξ1. As a consequence, the E2 page is

E2 ∼= F2

〈
SqI ξ1 : I is admissible and ends with j > 3

〉
.

The Grothendieck spectral sequence collapses for degree reasons, and the original bar spectral
sequence computing TAQ also collapses. So the answer is

TAQ∗(Fp) ∼= F2

〈
SqI ξ∨1 : I is admissible and ends with j > 3

〉
.

5.4. TAQ from higher THH. The image Im(TAQ∗(Fq) → [HFp, HFp]∗ = A) consists of

multiples of the Bockstein β. For example, fiber(HF2
Sq4→ Σ4HF2) cannot be an E∞-ring.

TAQ is a colimit5

Ω(S1 ⊗HFp)→ Ω2(S2 ⊗HFp)→ · · · → TAQ(Fp).
We have S1 ⊗ HFp = THH(Fp), and we can call the next terms “higher THH”, written

Sn ⊗HFp = THH [n](Fp). That is,

TAQ∗(Fp) = colimn THH
[n]
n+∗(Fp).

4At p = 2, the unstable condition is Qnx = xp if |x| = n; at p > 2 the condition is Qnx = xp if 2|x| = n.
5What is up with this ⊗? This is not just ΣHFp. The idea is that ΣHFp is not an algebra, so instead you
define S1 ⊗HFp by taking the pushout of

HFp
//

��

∗

��

∗ // ??

in algebras. If you do this to an En algebra, you get an En+1-algebra.
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There exist Künneth-type spectral sequences that look like

E2 = TorTHH
[n]
∗ (Fp)(Fp,Fp) =⇒ THH

[n+1]
∗ (Fp).

It is an unpublished preprint by Basterra-Mandell that this collapses for all n. What’s actually
been published is that it collapses for n ≤ 2p+ 2.

Basterra and Mandell, in their paper “Multiplication on BP”, use this spectral sequence for
BP to show that BP is E4. The computation becomes too difficult to do at E5, probably
because some homology/homotopy groups fail to be even-concntrated, so the spectral sequences
don’t obviously work out. But given Tyler’s recent result, something happens between 4 and
12, but I don’t know whether this is reflected in the differentials of the spectral sequence or
whether this is a separate issue.

6. March 22: Hood Chatham, BP is E4

Last time we saw that, given a ring spectrum R, we have a “k-invariant” on the Postnikov
tower that lives in TAQ:

R[k]

��

R′
fk−1

//

;;

R[k − 1]
k // Hπ0R ∨ Σk+1HπkR

R[k] indicates Postnikov section, and kn(f) ∈ TAQk+1
En

(R;πkR).

From now on, everything (including MU , etc.) will be p-localized.

Base case: we have an E4 map MU → BP [0] = HZ(p) → MU [0]. (Because it’s even, we
could equally have said BP [1].)

We’re going to create an E4 structure on BP under MU , and also create an E4 section: we’ll

create MU
f→ BP [2− 1]

g→MU [2k − 1] that is E4.

Spectra are E0.

I have a spectrum-level k-invariant k0
2k(BP ), and the question is whether there’s a lift

k4
2k(BP [2k−1]) 7→ k0

2k(BP ). I definitely have k4
2k(MU) (because MU is already E∞). This is

the same as k4
2k(1MU ). I can also contemplate f∗g

∗k4
2k(MU) ∈ TAQ2k+1(MU,π2kMU) (here

I’m using the map BP →MU on the left and MU → BP on the right). This is in the right
place to be a k-invariant for BP .
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Aside: what do these pullbacks mean? You can read this off the following diagram:

Y [k]

��

X
f
//

k(f) $$

Y [k − 1]

''��

g∗
// Z[k + 1]

��

Σk+1HπkY // Σk+1HπkZ

(Maybe the f and g are swapped here. . . ) The reason I need the section is so I can push
forward and pull back my k-invariant.

By using f∗g
∗k4

2k(MU) I get an E4-structure on BP [2k + 1]. In order to rebuild the next
level of the inductive hypothesis, I need lifts

BP [2k + 1] //

��

MU [2k + 1]

��

MU
f
//

f2k+1

99

BP [2k − 1]
g
// MU [2k − 1]

The obstruction for the diagonal lift (getting f2k+1) is o2k ∈ TAQ∗E4
(MU ;Z(p)). I want to

show that this group is even, so all the obstructions vanish. Then I need to prove that
TAQ∗E4

(BP [2k + 1];Z(p)) is even to get the other lift. In the paper they do these the same
way; I’ll do them differently just for fun.

TAQ∗(MU ;Z(p)) is the space of E4 ring maps MU → HZ(p)

=MU [0]

∨Σ∗HZ(p) (this is by definition

of TAQ). MU is a Thom spectrum; there is a canonical truncation map MU → HZ(p).
Since it’s nonempty, E4-ring(Σ∞+ BU,HZ(p) ∨ Σ∗HZ(p)) is a torsor for this (with a chosen
identification because we have a favorite map). This is

E4-space(BU, SL1(HZ(p) ∨ Σ∗HZ(p))) = Space(B4BU,B4Ω∞Σ∗HZ(p))

= Space(B4BU,K(Z(p), ∗+ 4))

= H∗+4(B4BU ;Z(p))

By Bott periodicity, B4BU = BU 〈6〉, and we have a fiber sequenceK(Z, 3)→ BU 〈6〉 → BSU .
You run the Serre spectral sequence, and it’s polynomial on even generators.

So, the first lift exists, i.e. we have a f2k+1.

Now we need the second lift: we need to compute that TAQ∗E4
(BP [2n + 1];Z(p)) is even

through degree 2n+ 1. Sadly, BP is not a Thom spectrum, so we have to actually do work.

Warning: the paper heavily requires on the iterated THH paper, which is a lot of technical
stuff required to make this all work.
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We’re going to iterate the cyclic bar construction. Jun Hou said (briefly) that TAQE∞ =
D11E∞-ring. That is, TAQE∞ = colimn→∞Ωn(−⊗ (S1)n). To get TAQEn , you stop at the

nth stage:
E ∨ ΣnTAQEn(E) = E ⊗ (S1)n = THH [n](E)

(this is THH (i.e the cyclic bar construction B̃cycE) iterated n times, written B̃n(E)). There
is a spectral sequence which Jun Hou (vaguely) mentioned last time:

Torπ∗B̃
j(E)(Z(p),Z(p)) =⇒ π∗(HZ(p) ∨ Σj+1TAQEj+1)(E;HZ(p)).

The idea is we’re going to run this four times.

Let’s do this for BP [2k+ 1] (in the range of dimensions where this looks like BP ). The zeroth
bar construction we know. . .π∗BP [2k + 1] = Z[vi] (this and subsequent equal signs are true
in the appropriate range; you can sort of forget about the [2k + 1]). Start with Fp instead of
Z(p), and use the Bockstein spectral sequence at the end. (Actually, we just need to show
something is even, so we don’t care about the Bockstein spectral sequence anyway.) Then

Torπ∗BP (F(p),F(p)) = Λ(σvi)

There can’t be any differentials or extensions because of “exterior algebra stuff” (probably

degree reasons). This is the E2 page, and the E∞ page, and actually π∗(B̃cycBP [2k + 1]).

Now we do this again:

TorΛ(σvi)(F(p),F(p)) =
⊗

F(p)[γ
pnσ2vi]/(−)p

(the γ is a divided power). There are “clearly” extension problems. Use a comparison with
MU , because MU has lots of power operations. There is a surjection from what’s happening
on MU onto this stuff, in the appropriate dimensions. I claim

Qp
n+i
γp

n
σ2vi = (γp

n
σ2vi)

p.

On the other hand,

Qp
n+i
γp

n
σ2vi = γp

n
σ2(Qp

i
vi) ≡ γp

n
σ2vi+1 (mod decomposables).

(You have to spend actual effort showing that the Q’s commute with σ and the differentials
etc.)

Because of the comparison map, these extensions get resolved the same way for BP :

π∗B̃
2
cycBP [2n+ 1] = Fp[σ2vi]

in the appropriate dimensions. Do this again, and claim that there aren’t any problems. Do
it again; you get something even. Now do a Bockstein spectral sequence to get the Z(p) thing,
and this collapses because it’s even. Now do a universal coefficient spectral sequence which
collapses because it’s all concentrated in dimension 0.

So I get the lift BP [2k + 1]→MU [2k + 1].

I have time, so I can go through the “Jeremy proof”. The idea is to completely avoid the
cyclic bar complex. There’s a lot of technical content involved in setting up those Tor spectral
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sequences and getting the Dyer-Lashof operations to work. This argument avoids this by
taking advantage of the fact that MU is a Thom spectrum.

This argument doesn’t try to build an E4 section. We compute TAQ(MU), not TAQ(BP );
if you want a section, you’d have to compute TAQ(BP ).

We want to construct an E4 map ϕ : MU → MU such that kerϕ ⊃ ker(MU → BP ), and
hocolimn→∞(ϕn) = X. “By a Priddy-style argument”6, X ' BP . It’s an isomorphism on
H0. Since the attaching maps are nontrivial, the claim is that it has to carry up to be an
equivalence.

So, I want an E4 map MU →MU . This is the same as a map B4BU → SL1MU . I’m going
to do obstruction theory to get this, so I’m looking for

B4SL1MU [2n+ 1]

��

B4BU //

66

SL1MU

On the zero skeleton, it can be the map MU → HFp used to construct BP .

I have a counit Ω4Σ4BU → BU (note BU is E4). Delooping, I get

B4SL1MU [2n+ 1]

��

Σ4BU //

“spectrum map”
33

B4BU //

66

SL1MU

Think of Σ4BU as having the “free” E4 structure. By “spectrum map”, I mean that it’s a
space map, but after taking the Thom spectrum I get a map MU →MU [2n+ 1]; but it’s not
a ring map, just a spectrum map.

In degree 2pk − 2, we don’t care about controlling the lift – the lift exists. In all other
degrees, I have a new generator, and we want to send it to zero. On the spectrum level, I
can just pick a map that sends my new thing to zero. Basically, I need to argue that in
these degrees, the class of maps B4BU → B4SL1MU [2n− 1] surjects onto the class of maps
Σ4BU → B4SL1MU [2n− 1].

I have an AHSS for computing the B4SL1MU -cohomology of the BU stuff via cellular
approximation. B4SL1MU [2n− 1] has Z(p) in degree 6 (because of various degree shifts and
SL1 killing the bottom thing). I need to show that

H∗(B4BU ;Z(p))→ H∗(Σ4BU ;Z(p))

is surjective when ∗ 6= 2pn − 2. The LHS has been computed to be Z(p)[ci]i+16=pk ⊗Z(p)[cpk−1]
(where the ci’s are Chern classes), and the map sends the first ci’s to ci+2 and the other
cpk−1’s go. . . somewhere else.

6There’s a paper by Priddy called “cellular . . .BP” in which he gives a construction of BP . He starts with
spheres for the bottom cell and attaches cells with nontrivial attaching maps to kill the right homotopy.
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The AHSS is all even, so it collapses. But this is a map on the associated graded which is
surjective. Then you want to show that the AHSS is convergent enough that this implies it’s
surjective on the level of spaces.

(This was all for extending in degrees 6= 2pk − 2. For the 2pk − 2 case, you just have to find
any lift, and you can do space-level obstruction theory to get one.)

You could try to do this with B6BU instead of B4BU and the issue is that the cohomology
isn’t even.

H∗(BU 〈2n〉
B2n−2BU

;Fp) = H∗(BU)/(ci : σp(i− 1) < n− i)⊗ F (βP 1ι2n−3)

where σp is the digit sum when written in base p, F is the free unstable algebra, and ι2n−3 is
the fundamental class in that degree. (There’s a similar statement for odd truncation.) The
point is that all the things without β’s hit something; use the Wu formula.

7. April 5: Andy Senger, BP is not E12

This is about Tyler Lawson’s recent paper. Everything is at 2.

We have a composite BP → τ≤0BP = HZ(2) → F2. (This is essentially the original definition
of BP .) It is well known what this does on homology: this induces a map BP∗BP → H∗H
which is just the inclusion of the subalgebra F2[ξ2

1 , ξ
2
2 , . . . ] = F2[ξ1, ξ2, . . . ].

Suppose BP is En. Then this composite is automatically En: the second map is automatically
E∞, and the first map (a truncation map) is automatically En. If you want to show that BP
isn’t En, you can look at the action of the Dyer-Lashof algebra. The Dyer-Lashof action on
H∗H was computed by Steinberger. First you can check whether H∗(BP ) is a subalgebra; if
it wasn’t, then we would have a contradiction. Unfortunately, H∗(BP ) is a subalgebra.

But we haven’t used all the structure – this Dyer-Lashof structure only requires an H∞
structure, but we (assume) we have an E∞ structure. What does the additional coherence
give? This allows me to define secondary operations. If you find one that starts in H∗(BP )
and doesn’t land there, you win. But no one has every computed a secondary Dyer-Lashof
operation before, or even defined one!

We need two things:

(1) a secondary operation that gives a contradiction if you can compute it;

(2) the ability to actually compute secondary Dyer-Lashof operations in H∗H.

I’m going to focus on (2). (1) is kind of tricky; Tyler tried a bunch of things and they
didn’t work – the Nishida relations kept causing it to not cause a contradiction. There’s an
obstruction theory, based on Goerss-Hopkins obstruction theory, to help find new operations.
You can find some obstruction classes to BP being an E∞ ring spectrum, and that gives some
hints for what relations you need. I’m not going to write down the whole operation – that
would take a whole board.
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Let PEn
H (x, z30) denote the free En H-algebra (here H = HF2) on S2 ∨ S30. (Here |x| = 2.)

The claim is that, for n ≥ 12, there is a relation

PEn
H (x, z30)

R //

ε
++

PEn
H (x, y5, y7, y9, y13, y8, y10, y12)

Q
��

PEn
H (x)

ξ21 // H ∧H

Work in the category of En H-algebras under PEn
H (x). This is going to be some secondary

operation that takes in something of degree 2. Here ε is the unit in this category – roughly
speaking, because it takes x 7→ x and everything else to 0.

Furthermore, Q(ξ2
1) = 0 (Q(−) means post-compose with the map PEn

H (x)→ H ∧H). (This
is some complicated thing using the Steinberger relation.)

Now we’re in the right context to define a secondary operation. This category is a topological
category, so we can define a bracket

〈
ξ2

1 , Q,R
〉
. The point of this talk is to justify how to

attack the following claim:

Goal 7.1.
〈
ξ2

1 , Q,R
〉
≡ ξ5 (mod decomposables).

Also we claim that the entire indeterminacy is contained in decomposables, but that ends up
being easy for degree reasons.

Step 1: reduce to more reasonable functional operations. (This step depends heavily on what
the relation is.) There’s a map

PEn
H (x, z14)

Q→ PEn
H (x, y4)

f→ H ∧MU
p→ H ∧H

where Q(x) = x, z14 = Q10y4 + x2Q6y4, f(x) = b1, f(y4) = b2, p(b1) = ξ2
1 and p(b) = 0.

There’s a fact about how the Q’s act on H∗MU that says fQ(z14) = 0. The second composition
is also zero (or “zero”, namely it sends things that aren’t x to zero).

Now
〈
p, f,Q

〉
is defined. Up to indecomposables,〈

ξ2
1 , Q,R

〉
≡ Q16(

〈
p, f,Q

〉
).

This is essentially elementary, just using Adem relations.

Now I’m going to add on an extra map to the end and juggle once more:

PEn
H (x, z14)

Q→ PEn
H (x, y4)

f→ H ∧MU
p→ H ∧H i→ H ∧MU H

where the last map sends ξ2
1 7→ 0. We have a diagram

M ∧MU

%%

$$

// M ∧MU ∧H

����

H

&&

H ∧H

��

H ∧MU H
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where the RHS is the definition of H ∧MU H. There exists a juggling-type relation

i
〈
p, f,Q

〉
= 〈i, p, f〉Q.

Now we want to compute the RHS.

We want to know π∗(H ∧MU H) and we want to know what i does on homotopy. For the first
one, there is a Künneth-type spectral sequence

TorMU∗(F2,F2)

Λ(σxi)

=⇒ π∗(H ∧MU H)

(Here σ is to be read as “suspension”.) This completely degenerates for degree reasons, and
there are no extensions, so we get

π∗(H ∧MU H) ∼= Λ(σxi).

To analyze i, we use a different Künneth spectral sequence

TorH∗MU (F2, H∗H) =⇒ π∗H ∧MU H.

We need to understand the H∗MU -structure on H∗H. This is easy to write down: H∗MU ∼=
F2[b1, b2, . . . ] where |bi| = 2i, and the map H∗MU → H∗H = F2[ξ1, ξ2, . . . ] takes bn 7→ 0 if
n 6= 2k − 1, and b2k−1 = ξ2

k. The answer ends up being

TorH∗MU (F2, H∗H) ∼= Λ(ξi)⊗ Λ(σbn : n 6= 2k − 1).

We were trying to figure out what i did to π∗(H ∧ H); the point is that we know what i
does on the E2 page here. This doesn’t automatically collapse, but using the first spectral
sequence(?) it collapses for degree reasons. Modulo decomposables, we have

σbn ≡ σxn for n 6= 2k − 1

ξk ≡ σx2k−1−1

When you have a map of ring spectra S → R, in

P y→ R ∧ S p→ R ∧R i→ R ∧S R
we have 〈i, p, y〉 = σy. So we get 〈i, p, f〉 = σb2, and we just found out using the second
spectral sequence that σb2 ≡ σx2 mod decomposables.

Then we have
Q10(σx2) +Q2Q6(σx2) = Q10(σx2) ≡ i(

〈
p, f,Q

〉
).

If
〈
p, f,Q

〉
≡ ξ4, then i(−) ≡ σx7. Actually, this is an iff.

The upshot is that it suffices to compute a single Q10: we need

Q10(σx2) ≡ σx7

in π∗(H ∧MU H). The idea is to somehow realize σ : πkMU → πk+1H ∧MU H (for k > 0) as
coming from a map of more structured objects. This is the map that takes xi 7→ σxi. The
hope is to reduce some fact about how power operations act on σxi to how they act on xi.

The answer is a map SL1(MU)→ ΩSL1(H ∧MU H). How do we get this? Apply SL1 to

MU //

��

H

��

H // H ∧MU H
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to get

SL1(MU) //

��

SL1(H) ' ∗

��

∗ ' SL1(H) // SL1(H ∧MU H)

This is a homotopy coherent diagram of infinite loop spaces, so by definition of loops, this
defines precisely the map I want.

This induces a map πMU ∼= πkSL1(MU) → πk+1SL1(H ∧MU H) ∼= πk+1H ∧MU H. Then
you show that this map is actually σ.

(Dennis: this really looks like Bökstedt’s computation of THH.)

SL1(H ∧MU H) is an H E∞-algebra but SL1(MU) is not, so you have to induce up. So
I have a map BSL1(MU) → SL1(H ∧MU H) ↪→ Ω∞H ∧MU H. Adjointing this over we
get Σ+BSL1(MU) → H ∧MU H. Since the LHS is an H E∞ ring spectrum we can get
H ∧ (BSL1(MU))+ → H ∧MU H. Now this is a map of E∞ H-algebras.

This gives a map H∗(SL1(MU)) → H∗+1(BSL1(MU)) → H∗+1(H ∧MU H). If I let 〈−〉
denote the Hurewicz image, then this sends 〈xn〉 7→ σxn. This map came from a map of E∞
H-algebras, so this situation preserves the Dyer-Lashof action. This means that we just need
to actually compute Q10(〈x〉) ≡ 〈x7〉 modulo ker(σ : H∗(SL1(MU)))→ H∗+1(H ∧MU H).

I’ll give an idea of how to approach this final reduction. We have a big Hopf ring H∗(MU∗)
(where MU is the Ω-spectrum of MU). What we need to do now is compute the multiplicative
Dyer-Lashof action in this, modulo ker(σ) (it turns out that this kernel is very large).
H∗(MU∗) is described completely by Ravenel-Wilson. It turns out that there’s a power
operation P2 : MU2n → MU4n(BΣ2); this comes from the H2

∞-structure on MU . It turns
out that there’s some sort of commutative diagram

MU2n

Λ
��

P2 // MU4n(BΣ2)

Λ
��

H∗(MU2n)
Q
// H∗(MU4n)⊗̂H∗(BΣ2)

that gives Q as some sort of total multiplicative Dyer-Lashof operation.

You can identify MU∗(BΣ2) ∼= MU∗[[α]]/[2]F (α). Now if you view P2 as a map in these
coordinates MU∗ →MU∗[[α]]/[2]F (α), it all comes down to the following calculation:

P2(x2) ≡ x7α
3 mod (α4) and MU -decomposables.

This ultimately lets you deduce Q10(〈x〉) ≡ 〈x7〉 mod ker(σ).

(In the usual Hopf ring notation, where # is additive and ◦ is multiplicative, 〈xn〉 = [1]#([xn]◦
b◦n1 ). Here b is essentially a suspension. The magic is that σ kills a ton of stuff: #-
decomposables, ◦-decomposables, and the ideal (b2, b3, . . . ).)
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8. April 12: Peter Haine, Introduction to Γ-homology

Here is the plan:

(1) Define functor homology

(2) Derive HH, HC, and Γ-homology as examples

(3) Application: E∞-obstruction theory

The point is to get a conceptual framework that fits all of these things.

8.1. Functor homology. For right now and most of the time, we’ll have R be a discrete
commutative ring. Write Mod(R) for the category of R-modules. (I’ll use ModR for something
else.)

Definition 8.1. Let C be a category.

• A left C-module is a functor C → Mod(R).

• A right C-module is a functor Cop → Mod(R).

• Write C Mod := Fun(C,Mod(R)) and ModC = Fun(Cop,Mod(R))

Example 8.2. For c ∈ C we have R[C(−, c)] and R[C(c,−)] (i.e. these take an object c′ to
the free R-module on the appropriate Hom-set). These are projective generators for C Mod
and ModC , respectively.

Suppose I have a left C-module and a right C-module. I want to produce an R-module.

Definition 8.3. If F : C → Mod(R) and G : Cop → Mod(R) are C-modules, then the functor
tensor product is

G⊗C F :=

∫ c∈C
G(c)⊗R F (c).

I can also analogously define functor Hom.

Remark 8.4. R[C(−, c)]⊗C F ∼= F (c).

Definition 8.5. TorCn (G,F ) := G⊗Ln

C F

We can derive Hochschild homology and cyclic homology from this general story.

8.2. HH, HC, HΓ. Recall: the category of noncommutative sets Fnc has:

• objects: nonempty finite sets

• morphisms: f : I → J is a set map with a total order of f−1(j) for all j ∈ J

26



• composition: given I
f→ J

g→ K

(gf)−1(k) = *
j∈g−1(k)

f−1(j) =
⊔

j∈g−1(k)

f−1(j).

Here ∗ is the join of simplicial sets.

You can also do this with pointed sets: Fin∗,nc.

Our goal is to get HH and HC from Fnc-modules and Fin∗,nc-modules.

Definition/Example 8.6. BR : Fopnc → Mod(R) is defined as the coequalizer of

R[Fnc(−, {0, 1})]
0<1
//

1<0
// R[Fnc(−, ∗)]

Similarly, you can define BR : Finop∗,nc → Mod(R).

Definition 8.7. Let R be a ring, A an associative unital R-algebra, and M an A-bimodule.
The Loday functor L(A,M) : Fin∗,nc → Mod(R) sends I+ 7→M ⊗A⊗I .

Note: L(A,A) : Fnc → Mod(R).

Theorem 8.8 (Loday, Pirashvili-Richter). With the same notation as previously,

HC∗(A) ∼= TorFnc
∗ (BR,L(A,A))

HH∗(A,M) ∼= Tor
Fin∗,nc
∗ (BR,L(A,M)).

Definition 8.9. Define a functor LR : Finop∗ → Mod(R) as the coequalizer of

R[Fin∗(−, 1+ ∨ 1+)]
∇∗ //

χ1,∗+χ2,∗
// R[Fin∗(−, 1+)] ∼= Set∗(−, (R, 0)).

Here ∇∗ is the fold map and χ1,∗ is the “characteristic map” that crushes the second factor.

(This is usually written as t.)

Definition 8.10. The Γ-homology of a functor F : Fin∗ → Mod(R) isHΓ∗(F ) := TorFin∗
∗ (LR, F ).

8.3. Obstruction theory/ Robinson’s view. Robinson thinks about this stuff in a com-
pletely different way, that relates to E∞ things. I’ll talk about Γ-homology of the Loday
functor, but there will be some modifications.

R is still a commutative ring.

Definition 8.11. Write Lien for the nth module of the Lie operad. Equivalently, this is
the submodule of the free Lie algbera on x1, . . . , xn spanned by the monomials with no
repetitions. Equivalently, this is the module of natural transformations U⊗n =⇒ U (here
U : Lie(R)→ Mod(R) is the forgetful functor).
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A dual with eventually appear; this seems nice because the Lie operad and the commutative
operad are Koszul dual.

Definition 8.12. Given F : Fin∗ → Mod(R), construct a double complex Ξ∗,∗(F ) as follows.
First note that F (n+) has a natural Σn-action. Now we can do a 2-sided bar construction:
the (n− 1)st row of Ξ∗,∗(F ) is

Bar(Lie∨n ,Σn, F (n+)).

The action is permutation with sign. That is,

Ξp,q(F ) = Lie∨q+1⊗R[Σ×pq+1]⊗ F ((q + 1)+).

The horizontal differentials are bar differentials. The vertical differentials are complicated –
look at the paper.

Definition 8.13. HΞ∗(F ) = H∗(Tot Ξ(F ))

Theorem 8.14. HΞ = HΓ

You have a universal property for Tor, and you verify all the necessary things. You end up
looking at a bunch of projective generators and do a computation that involves a ton of
relations related to the vertical differentials.

Now work in the graded setting: R is a graded ring (think of this as the coefficient ring of
a spectrum E), A is a commutative R-algebra (this will be E∗E), and M is a symmetric
bimodule.

Definition 8.15. Define a twisted Loday functor Lσ(A,M) whose assignment on objects is
the same as L(A,M), and on morphisms you introduce a sign. Then define

HΓ∗(A|R;M) = HΓ∗(Lσ(A,M))

HΓ∗(A|R;M) = HΓ∗(HomA(Lσ(A,A),M)).

I’ll leave you with a “why we care” theorem.

Theorem 8.16. Start with an A2-spectrum E so that the “dual Steenrod algebra” Λ = E∗E
is flat over R = π∗E. Also

E∗(E∧n) ∼= HomR(Λ⊗n, R).

Given an En−1-structure µ on E that can extend to an En-structure, a necessary and sufficient
obstruction to extend µ to an En+1-structure lives in HΓn,2−n(Λ|R;R).

If all of these vanish, uniqueness is related to HΓn,1−n.
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Because this is a special case of functor homology, you get a bunch of structural spectral
sequences. You can also realize this as the homotopy of some spectrum:

Fin∗
F //

_�

i
��

D(R)

Topfin
∗

i!F

;;

(Here D(R) is the derived category.) The spectrum is the first excisive approximation of the
Kan extension i!F .

9. April 19: Robin Elliott

Last time, we saw an introduction to HΓ∗ via the functor homology approach. We also saw
briefly at the end that we can relate this to π∗(‖F‖) where F is a Γ-module. The point was
that you can use this to do E∞-obstruction theory.

Next time, we will use this to get that there is a unique E∞-structure on KU . The goal of
this talk is to develop the properties of Γ-homology needed to show this result.

Peter alluded that Γ-homology is a shadow of something more general. Given a (sufficiently
nice) operad, you can associate a homology theory on algebras of the operad. The intermediate
step is you take an “operator category”, and you produce functor homology on some functor
associated to this. To show you that this is good for something, let’s do some examples:

Ass HH

Lie Lie algebra (co)homology

Comm Harrison homology (∼= AQ in characteristic 0)

A∞ operad something like HH?

E∞ operad HΓ

We’re working in chain complexes. HH has a cyclic cousin HC; Γ-homology also has a cyclic
cousin HΓcy.

There’s a cyclic/ non-cyclic duality which we’re going to explore for a lot of this talk. Robinson
thinks of a cyclic operad as like an operad, but where the output variable is on an equal
footing as the input one. So you get a Σr+1-action on C(r).

I think it’s possible to say all of this in the more general framework Peter introduced. There’s
also this issue that Robinson’s paper is filled with off-by-one errors. . .

Definition 9.1. A (nonunital) cyclic operad E is a functor Isom(Fin≥3)→ Ch(k-Mod) with
composition

◦s,t : ES ⊗ ET → ESts,tT
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satisfying associativity and symmetry (i.e. equivariance w.r.t. the Σ-actions). (Here S ts,t T
is a deleted sum, i.e. (S\s) t (T\t).)

Remark 9.2. As before, there is a theory of cofibrant E∞ cyclic operads.

Remark 9.3. We’ll work with a specific cofibrant E∞ cyclic operad T , the tree operad. (This
is the Borel construction on the contractible space of (unrooted) trees. Leaves are labeled by
finite sets, and composition is by grafting of trees.)

Definition 9.4. Let C be a cyclic operad. A cyclic C-complex is a functor

M : Isom(Fin≥1)op → Ch(k-Mod)

(written S 7→ MS) such that for each ◦s,t : CS ⊗ CT → CSts,tT we have a formal adjoint

◦∗s,t : CS ⊗MSts,tT →MT

satisfying naturality and associativity conditions.

Example 9.5. For an algebra A over C with structure maps µV : CV 0 ⊗ A⊗V → A (where
V 0 is V adjoined a basepoint), take MS = A⊗S and

◦∗s,t : CS ⊗A⊗Sts,tT ∼= CS ⊗A⊗S\s ⊗A⊗T\t → A⊗A⊗T\t ∼= A⊗T

that you should think of as partial multiplication.

Definition 9.6. A non-cyclic C-complex M is a functor

M : Isom(Fin∗)
op → Ch(k-Mod)

such that for each
◦0,1 : CS0 ⊗ CT 01 → C(StT )0

you have

◦∗0,1 : CS0 ⊗M(StT )0 →MT 0,1

◦∗1,0 : CT 01 ⊗M0
(StT ) →MS0

Example 9.7. If A is a k-algebra that is an algebra over the cyclic operad C, and M is an
A-module, we can do a similar construction as for the cyclic complex: let MS0 = A⊗S ⊗M
with ◦∗0,1 = µS ⊗ 1 (where µ is the algebra structure) and ◦∗1,0 = 1⊗ νT (where ν is the module

structure). Then CS0 is the Γ-cotangent complex, denoted K.

Example 9.8. Given a Γ-module F , regard F (S0) as the trivial chain complex. Then
◦∗0,1 : F (S t T )0 → F (T 0) and ◦∗1,0 : F (S t T )0 → F (S0) are constant over C.

Realizations exist in the cyclic and noncyclic C-complex case, but we’ll just focus on the
noncyclic case. Let C be a cofibrant acyclic operad (think – the E∞ operad we had at the
start), and M a noncyclic C-complex (think K). The goal is to construct the realization |M|.
Then HΓ∗ = H∗(|M|). This is a two-step process.

30



Step 1: Define

|M|′ :=
⊕
|V 0|≥3

CV 0 ⊗MV 0/(ϕ∗x⊗m ∼ x⊗ ϕ∗m)

where ϕ ∈ Mor(Isom(Fin∗)), also quotiented by ◦01(x⊗ y)⊗m ∼ ∂S,T (x⊗ y ⊗m) where

∂S,T : CS0 ⊗ CT 0,1 ⊗M(StT )0 → CS0 ⊗MS0 ⊕ CT 01 ⊗MT 01

is given by (1⊗ ◦∗10)⊕ (1⊗ ◦∗01)(τ ⊗ 1) where τ swaps factors.

Remark 9.9. |M|′ has filtration given by
⊕

3≤|V 0|≤n. This gives rise to a spectral sequence.

Step 2: We have to fix things in low degrees “because of the stupid 3 thing”:

|M| = cofib(|M|′ ε→M2 =M{0,1})

where ε = ε0 −
∑

v∈V εv where εv is from ◦∗1,0 on the partition V 0 = {v} t (V − {v}) and ε0

comes from ◦∗0,1 on the partition V 0 = V t {0}.

You can do this for A∞ as well as for E∞.

Theorem 9.10. When you do this, the homology of the A∞-realization is the Hochschild
homology.

Theorem 9.11. The aforementioned filtration gives rise to a spectral sequence

E1
p−1,q

∼= Hq(EΣp ⊗Σp (Vp ⊗Mp+1)) =⇒ Hp+q−1(|M|)
where Vp is the representation of Σn on H∗(Tp) (where Tp is one of the spaces in the afore-
mentioned tree operad).

Setup: B is a strictly commutative algebra, flat over a commutative ring A., and M is a
B-module. Write K(A;M) for the realization of the cotangent complex we saw earlier –
KS0 = A⊗S ⊗M , and similarly for B. Define the cotangent complex

K(A|B;M) = K(B,M)/K(A,M).

Fact 9.12. In the strictly commutative case, the spectral sequence in the theorem simplifies to

E1
p−1,q

∼= Hq(Σp;Vp ⊗B⊗p ⊗M) =⇒ HΓp+q−1(B|A;M).

Theorem 9.13. We can identify E1
p−1,0 as the Harrison homology Harr∗(B|A;M), defined

below.

Definition 9.14 (Shuffle product). (ab)

∃

(xy) = abxy ± axby ± axyb± xayb± xyab

Definition 9.15. Take the complex that computes HH and quotient out by all nontrivial
shuffles. Then Harr∗ is the homology of this complex.
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Fact 9.16. Harr∗ agrees with AQ∗ in characteristic zero. Also, so does the higher homology
of Σp. Then in characteristic zero,

HΓp−1(B|A;M) ∼= AQ∗(B|A;M).

Theorem 9.17.

(1) If B ⊃ A are A-algebras such that B is flat over A, and M is a B ⊗A C-module, then

K(B ⊗A C|C;M) ∼= K(B|A;M)

is a quasi-isomorphism, and so you get an isomorphism in HΓ∗.

(2) If B and C are flat A-algebras and M is a B ⊗A C-module, then

K(B ⊗A C|A;M) ∼= K(B|A;M)⊕K(C|A;M)

is a quasi-isomorphism so you get an isomorphism in HΓ∗.

(3) If B is étale over A, then HΓ∗(B|A;M) ∼= 0 for all B-modules M .

10. May 3: Jeremy Hahn, Brauer group of Morava E-theory, Part 1

Fix a perfect field k of characteristic p and a formal group G0 of height n over k. Associated
to this data is:

• A universal deformation G defined over R ∼= W(k)[[u1, . . . , un−1]]

• A (Landweber-exact) cohomology theory E (Morava E-theory) with π∗E ∼= R[u±] and
Spf E0(CP∞) ∼= G.

Example 10.1. Suppose k = Fp and x +G0 y = x + y + xy. Then R ∼= W(Fp) = Zp,
x+G y = x+ y + xy, and E ∼= KU∧p .

Last semester, Danny gave a talk proving that the space of A∞ structures on E is connected.
Last lecture, Eva discussed that the space of E∞ structures on E is connected – there is a
essentially unique multiplicative structure. But to understand the full moduli space, you need
more technical work of Goerss and Hopkins.

From the universal pair (R,G), we can get a unique E∞ ring spectrum E. What about over
the original pair (k,G0)?

Definition 10.2. Morava K-theory K(n) is the E-module E/(p, u1, u2, . . . , un−1).

(Everything in the talk will be 2-periodic.)

This is just a module; in classical algebra, if you have a ring and you quotient by some
elements, you expect to get a ring structure back. But last semester, we essentially proved:

Theorem 10.3. There is no E∞-ring structure on K(n).
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Proof. Any E2-ring with p = 0 (like Morava K-theory if it were E∞) must be an HFp-algebra.
So as just a spectrum, it is a wedge of (shifted) copies of HFp. But HFp ∧K(n) ' 0 (because
they’re both field spectra so you can directly calculate it with a Postnikov tower). �

We still might hope to get an analogue of the theorem Danny discussed, but this is what
we’ve been talking about this semester, and it turns out that they’re not essentially unique:

Theorem 10.4 (Robinson). There are uncountably many A∞-structures on K(n) in the
category of E-modules.

This is the theorem Hood told us about. But we also have:

Theorem 10.5 (Angeltveit). There is a unique A∞-structure on K(n) in the category of
spectra.

Theorem 10.6 (Angeltveit). There exists an A∞ E-algebra structure on K(n) which has E
as its center.

Goal 10.7 (Hopkins, Lurie, Hahn). Understand the moduli of all of these Azumaya multipli-
cations on Morava K-theory. In particular, we’ll try to understand all Azumaya algebras, not
just the ones on K(n).

At odd primes you can have homotopy commutative multiplications, but they will never be
Azumaya.

10.1. Azumaya algebras. Let (C,⊗,1) be a symmetric monoidal ∞-category where ⊗
commutes with sifted colimits (in practice, it will commute with all colimits) (e.g. modules
over some ring that has ⊗ commuting with colimits). Our primary example is where C is
K(n)-local E-modules.

Definition 10.8. An A∞-algebra A in C is Azumaya if the functor X 7→ A⊗X induces an
equivalence of C with the category of A-bimodules in C.

(E.g. if C is just a 1-category, A∞ here just means associative.)

Proposition 10.9. If A is Azumaya, then the center of A is the unit 1.

Proof. By definition, Center(A) ∼= HomA-bimod(A,A) ∼= HomC(1,1) and this is just 1 with
its associative structure. �

Definition 10.10. Two A∞-algebras A1 and A2 in C are Morita equivalent if there is a
C-linear equivalence of categories

LModA1(C) ' LModA2(C).
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(Here LMod means left modules.)

In practice, C is closed, but Jacob Lurie works in more generality.

Example 10.11. If k is a field, and C is the category of k-vector spaces, then the matrix
algebra End(kn) is Morita-equivalent to k itself.

Proposition 10.12. Let A denote an A∞-algebra in C. Then the following are equivalent:

(1) A is Azumaya.

(2) There exists an A∞-algebra B such that A⊗B is Morita-equivalent to 1.

(3) All three of the following hold:
• A is dualizable (think of this as a finiteness condition)

• A is full (this means that −⊗A detects weak equivalences)

• the natural map A⊗Aop → End(A) is an equivalence.

The second condition in (3) is satisfied in K(n)-local E-modules for A = K(n) sort of by
definition, but is not true for E-modules.

Proof. We’ll prove (1) ⇐⇒ (2). Let Catσ∞ denote the ∞-category of ∞-categories that have
sifted colimits, with sifted-colimit-preserving functors. This is symmetric monoidal under
the cartesian product of categories. Then C as above is a commutative algebra object in
Catσ∞, and define ModσC := ModC(Catσ∞). This is what I mean by the category of C-linear
categories. If A is an A∞-algebra in C, then the category of A-bimodules is equivalent to
LModA(C)⊗ LModAop(C). There is always a functor C → LModA(C)⊗ LModAop(C) given by
X 7→ A⊗X, and the question is whether this is an equivalence. Since C is the unit in the
category of modules over it, this presents LModA(C) as an invertible object, and by some
abstract nonsense involving (2), this is an equivalence. (In this case B = Aop.) �

Definition 10.13. The Brauer group of C has underlying set

{Azumaya algebras in C}
/

Morita equivalence.

The group structure comes from tensor products of algebras.

Using (2), this gives a well-defined group structure.

If I’m working with the Brauer group, all I’m going to get is the Morava K-theories modulo
Morita equivalence, not all the Morava K-theories. But it turns out to be OK, in the special
case of K(n):

Proposition 10.14. Suppose K(n)1 and K(n)2 are two [Azumaya] Morava K-theories. If
K(n)1 is Morita equivalent to K(n)2, then K(n)1 is actually equivalent as an A∞-algebra to
K(n)2.
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Proof. By assumption we have an equivalence of categories ModK(n)1(E-mod) ∼= ModK(n)2(E-modules).
Since K(n) is a field spectrum, every module splits. Also this is 2-periodic, so every object
in ModK(n)1(E-modules) is a wedge of K(n)1’s and ΣK(n)1’s. Coproducts go to coproducts
under this equivalence of categories. So K(n)1 goes either to K(n)2 or ΣK(n)2. But if I chose
the equivalence that does the latter, I can just compose with the desuspension, so without
loss of generality K(n)1 gets sent to K(n)2. Now the endomorphisms are the same. �

Aside: instead of modding out by Morita equivalence, you really want a Morita spectrum.
Let Catσ∞ be ∞-categories with sifted colimits under cartesian products. Consider C, a
commutative algebra object in Catσ∞. Let E ⊂ ModC(Catσ∞) be the full subcategories
equivalent to LModA(C) where A is an Azumaya algebra in C. Actually you can remove
the word “Azumaya”. Then let the “Brauer spectrum” Br(C) be the E∞-space of invertible
objects in E ; this is the Picard group of the category E , which is a connective spectrum. Then
π0Br(C) is the Brauer group of C.

If R is an E∞-ring in spectra, then τ≥0Σ−2Br(R-mod) ∼= gl1R. In particular, for Morava
E-theory this implies the existence of an interesting map Br(K(n)− local E-modules)→ E;
this is the Rezk logarithm. This has the same Bousfield-Kuhn functor and the same K(n)-
localization.

Example 10.15. Suppose k is a field and C is the category of k-vector spaces. A k-algebra
A is Azumaya if it is of the form Mn(D) where D is a central division algebra (i.e. the center
is just k) and Mn is a matrix algebra.

If you look at the Brauer group, you’re only looking at these up to Morita equivalence, and
that’s just D itself – it doesn’t see the different between D and matrix algebras over it.

Example 10.16. Let k be a field, and let C be the category of Z/2-graded vector spaces
(“super vector spaces”) – an object looks like V0 ⊕ V1 (even part ⊕ odd part), and the tensor
product has the Koszul sign rule that swaps these around. There are Azumaya algebras that
are not Azumaya when you forget about the grading. For example, suppose −1 is not a
square in k. Then k(

√
−1) ∼= k ⊕ k

√
−1 is Azumaya (but is not Azumaya after forgetting the

grading).

Let V be a vector space and q : V → k a nondegenerate quadratic form. Then the Clifford
algebra Clq is the free algebra on V modulo the relation x2 = q(x) for all x ∈ V . It is Z/2-
graded with each x ∈ V homogeneous of degree 1. Exercise: Check that this is a Z/2-graded
algebra which is Azumaya.

Definition 10.17. The Brauer-Wall group BW (k) is the Brauer group of the category of
Z/2-graded k-vector spaces. For example, BW (R) ∼= Z/8, generated by Clifford algebras. (A
generator is one for the vector space C.)

Back to the paper. . . we’re interested in the case where C is the category of K(n)-local
E-modules. We also have a functor from C to Z/2-graded vector spaces over k taking
X 7→ π∗(X ∧E K(n)).
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11. May 10: Jeremy Hahn, Brauer group of Morava E-theory, Part 2

Let (C,⊗1) be a symmetric monoidal category where geometric realizations are preserved by
⊗.

Proposition 11.1. Let A be an A∞-algebra in C. TFAE:

(1) There exists an A∞-algebra B such that A⊗B ∼ 1 (here ∼ means Morita equivalence).

(2) The construction X 7→ A⊗X yields a C-linear equivalence of C with BimodA(C).

(3) A is dualizable, full, and the natural map A⊗Aop → EndA is an isomorphism.

We call such an A Azumaya.

Proposition 11.2. If C is presented with all colimits commuting with ⊗ then the center of A
is the unit.

Note from last time: it is not known whether the Brauer group is all the invertible things.

Example 11.3. Let k denote a field and C the category of Z/2-graded k-vector spaces
(“super vector spaces”, i.e. with the Koszul sign rule). Then Br(C) = BW (k). If V is a
k-vector space and q : V → k is a non-degenerate quadratic form, then the Clifford algebra is
FreeAlg(V )/(x2 = q(x)). Then Clq is Azumaya. Moreover, BW (R) = Z/8 and you can get
everything in it by these Clifford algebra constructions.

We’re interested in the category of K(n)-local E-modules. Fix a perfect field k of odd
characteristic and a formal group G of height n. We get a Morava E-theory which is an
E∞-ring in a unique way, and an E-module K(n) with

π∗K(n) = π∗E/m = W(k)[[u1, u2, . . . , un−1]][u±]/(p, u1, . . . , un−1).

I’ll make one change from last time – at odd primes we can equip this with a homotopy
commutative multiplication (but it won’t be Azumaya). When I write K(n) I’ll be thinking
of it with this multiplication (this is why I need the prime to be odd).

Let C be the category of K(n)-local E-modules. The construction X 7→ π∗(K(n) ∧X) is a
functor from C to Z/2-graded k-vector spaces (the 2-fold periodicity on K(n) gives rise to the
grading). In order to make this functorial at the level of symmetric monoidal categories, you
really need the homotopy-commutative structure on K(n).

Whenever you have a functor of symmetric monoidal categories which sends full objects to
full objects, you get a map of Brauer groups. In our case, you get a map Br(C)→ BW (k).
(Recall the Brauer group Br is the group of Azumaya algebras under tensor product up to
Morita equivalence.)

We can do a little better than just landing in Z/2-graded k-vector spaces. X started life as
an E-module, and K(n) ∧ X really means K(n) ∧E X. That means there is an action of
EndE-mod(K(n)) on π∗(K(n) ∧X). This End is easy to calculate: it’s Λ[Q0, Q1, . . . , Qn−1]
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(exterior algebra) (the Qi’s kill the ui’s one by one). The notation is supposed to be reminiscent
of the Milnor operators that kill elements in Postnikov towers.

Definition 11.4. A module over Λ[Q0, Q1, . . . , Qn−1] is called a Milnor module.

There is a functor F : C → Milnor modules which takes X 7→ π∗(X ∧E K(n)). So we get a
map f : Br(C)→ Br(Milnor modules).

Theorem 11.5 (Hopkins-Lurie). The Brauer group of Milnor modules is BW (k) × the group
of quadratic forms on (m/m2)∨, where m is the maximal ideal in E-theory.

(This is a purely algebraic statement.)

Proposition 11.6. An algebra in Milnor modules is a Z/2-graded k-algebra A with a collection
of odd derivations {dv}v∈(m/m2)∨ . The fact that the algebra is exterior means that d2

v = 0 and
dv+w = dv + dw. (Each Qi is dual to a v.)

A is Azumaya if A is Azumaya in Z/2-graded algebras, and each derivation dv is of the form

dv(x) = avx+ (−1)|x|xav

for some scalar av ∈ k.

The association v 7→ av is a quadratic form on (m/m2)∨.

Theorem 11.7. f : Br(C)→ Br(Miln) is surjective (but not injective), and A is a Morava
K-theory if f(A) looks like (Clq, q).

X 7→ π∗(K(n) ∧E X) is the same data as π0(K(n) ∧E X) and π0(ΣK(n) ∧E X). One of
the key ideas is that π∗(K(n) ∧X) ∼= π∗HomK(n)-local

E-mod

(K(n), X). The point is that K(n) is

dualizable in the category of K(n)-local E-modules (it’s self-dual). This is a somewhat cleaner
perspective on what Goerss-Hopkins obstruction theory actually does.

Definition 11.8. The category MolE of molecular E-modules is the full subcategory of
E-modules with objects = finite wedges of K(n)’s and ΣK(n)’s.

Here is the key idea of Jacob:

Proposition 11.9. The category of Milnor modules is the category of functors MolopE → Set
that sends wedges to products.

You’re taking this category and freely adjoining all sifted colimits (if this were valued in
spaces, this is called the nonabelian derived category).

Given this observation, it’s natural to make the following definition:
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Definition 11.10. A synthetic E-module is a functor MolopE → Spaces sending wedges to
products.

There is a functor Sy : C → synthetic E-modules sending X 7→ Hom(−, X). This immediately
gives the following picture:

Synthetic E-modules

��

...

τ≤2(Synthetic E-modules)

��

τ≤1(Synthetic E-modules)

��

C

Sy(−)

>>

F // Milnor modules ' τ≤0(Synthetic E-modules)

The idea is that you can get Azumaya algebras in synthetic E-modules by lifting Azumaya
algebras through each of the smaller categories.

Proposition 11.11. Sy is fully faithful.

This is something to do with K(n) being full. The idea is that this is some kind of Yoneda
embedding. You don’t know too much about its essential image, but you do know the
following:

Proposition 11.12. Every dualizable object in the category of synthetic E-modules is in the
essential image.

Every dualizable object in synthetic E-modules is in the image of a dualizable object of C.
Since any Azumaya object is dualizable, the Brauer space of C is equivalent to the Brauer
space of synthetic E-modules.

What are the obstructions to lifting an Azumaya algebra (or A∞-algebra)? It has to do
with only the category of Milnor modules. If you stabilize synthetic E-modules, you get a
T -structure, and Milnor modules is the heart. The obstructions to lifting are HH groups.
They do this for every Azumaya algebra that happens to be a Morava K-theory and calculate
the preimage of f .

Theorem 11.13. The map Br(τ≤nSynthetic E-modules) → Br(τn−1Synthetic E-modules)
is surjective with kernel (mn+2/mn+3)∨.

So now they know the Brauer group up to extension problems. Apparently this is still work
in progress. There are two techniques: one is to use the Rezk logarithm; the other is an
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interesting way of actually constructing Azumaya K-theories. The computation shows that
that you get all the Azumaya K-theories.

I’ll discuss this construction. Consider S1 → BGL(E); we have π1BGL1(E) = π0GL1E =
(π0E)× and S1 → BGL1(E) is 1+ui where ui is one of the things in π∗E. Then Thom(1+ui) =
E/ui. If you want to build K-theory, take the map S1 × . . .× S1

n

→ BGL1(E) by any regular

sequence that kills the maximal ideal of E (e.g. (1 + p, 1 + u1, . . . , 1 + un−1)). Take the
Thom spectrum of the product (which smashes together all the individual Thom spectra),
and that’s Morava K-theory as an E-module. Say you wanted to build this as an Azumaya
A∞-algebra. ll you have to do is check this has the structure of a loop map. So you want
to build a map CP∞ × . . .× CP∞

n

→ B2GL1(E) such that when you loop this you get

S1 × . . . × S1 → BGL1(E). So the question is how many of these are there? We’re in the
situation where classical obstruction theory works, and this is easy. They have various ways
to check whether the result is Azumaya, homotopy-commutative, etc. It’s easy to compute
whether things have the right centers, because it’s easy to compute THH on these things.

12. May 17: Allan Yuan, E∞ rings from displays

Theorem 12.1 (Lawson). Let h ≥ 2. There is an E∞ ring spectrum E such that

(1) E∗ = (Z[u1, . . . , uh−1])(̂p,u1)[u
±]

(2) the formal group of E extends the Lubin Tate formal group.

In particular, there is a map from E to the Lubin Tate spectrum, and tensoring along that
map produces the Lubin Tate formal group.

Remark 12.2.
BP → BP 〈n〉 → E(n)→ En

The input is that En is E∞. The content of this theorem is that if you complete a little less,
it’s still E∞.

Our goal today is to sketch a proof of this, given the p-divisible groups theorem.

Theorem 12.3 (Lurie, not written up). Let N be a Deligne-Mumford stack which is formal
over Zp (p is nilpotent and stuff is complete). Suppose we are given G : N →Mp(h) (where
Mp(h) is the moduli of p-divisible groups of height h) that is formally étale. Then there exists
a sheaf E of E∞-rings on N such that:

(1) π0E = ON
(2) It’s weakly even periodic.

(3) The formal group of E is Gfor (the formal part).

Think of formally smooth as locally like k → k[[x1, x2, . . . ]], formally étale as like k[[x1, . . . , xt]]→
k[[y1, . . . , yt]] (just have to check this on tangent spaces).
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Remark 12.4. N doesn’t have to be affine, so instead of getting one E∞-ring you’re getting
a sheaf of them. The condition is local. Given a p-divisible group G, over an algebraically
closed field of positive characteristic there is a SES

0→ Gfor → G→ Gét → 0

If you believe Lubin-Tate theory you know about the deformation theory on Gfor: it looks like
W (k)[[u1, . . . , un−1]]. Also, Gét looks like (Qp/Zp)h−n. So you just have to put these things
together. (Here h is the height of G and n is the formal height.) The universal deformation
of G lives over W(k)[[u1, . . . , un−1, t1, . . . , th−n]].

So if you have something formally smooth, understanding the deformation theory reduces to
understanding it on tangent spaces.

The plan is to give a simple algebraic approximation MD to Mp(h) such that:

(1) MD ∼Mp(h) locally

(2) Spf R→MD should have computable deformation theory.

The first candidate for this is a Dieudonné module.

Definition 12.5. Let k be a field of characteristic p > 0. Let f, v denote the Frobenius and
Verschiebung, respectively, on W(k). Let the Dieudonné module be:

Dk = W(k)[F, V ]/
(
FV = V F = p, F (ax) = f(a)F (x), aV (x) = V (f(a)x)

)
.

Theorem 12.6. Let k be a perfect field. Then there is an equivalence

{p-divisible groups over k}op ∼→ {modules over Dk that are free and finite over W(k)} .

The issue is the restriction that k be perfect. Displays will be a generalization of Dieudonné
modules that works over non-perfect fields.

Remark 12.7.

• W(k)/pW(k) ' k. This is not true in general; in general, W(R)/VW(R) = R.

• The Dieudonné module also sees the tangent space: DM(G)/V DM(G) ' Lie(G).

• There are a lot of versions of this correspondence. It originally comes from a correspondence

{finite flat group schemes}op ∼← {finite W(k) length Dk-modules}
which comes from

{formal groups}op ←↩ {Dk-modules, V nilpotent}

• G(M) : A 7→ Ŵ (A)⊗W (k) M/(F, V actions)

Let R be a ring (or formal Zp-algebra).

Definition 12.8. A display over R is a tuple (P,Q, F, V −1) where

• P is a finitely generated locally free W (R)-module
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• IRP ⊂ Q ⊂ P (where Q is to be thought of as the image of V )

• F : P → P , V −1 : Q→ P which is frobenius semilinear

• 0→ Q/IRP → P/IRP → P/Q→ 0 splits (think of V as the splitting P/IRP → Q/IRP )

• P is generated over W (R) by imV −1

• V −1(v(x)y) = xF (y) for x ∈W (R)

Remark 12.9. P/IRP is locally free over R, and it follows that Q/IRP and P/Q are as well.

I’ll stop saying “locally free” and just use “free” instead.

Locally, we can get a basis e1, . . . , ed, ed+1, . . . , en of P/IRP . We have Q = IRP+〈ed+1, . . . , en〉.
So this is generated by the red things:

e1 e2 . . . ed ed+1 . . . en

pe1 pe2 ped+1

...
...

...

The key observation is that the display is packaged into a single matrix:

Fej =
∑
i

αijei =⇒ V −1(v(x)ej) =
∑

xαijei j = 1, . . . , d

V −1ej =
∑
i

αijei =⇒ Fej = V −1(v(1)ej) =
∑

(pαij)ei j = d+ 1, . . . , h

So all of this data is specified by just the αij ’s. You can write these in block form as B−1 =

(αij) =

[
u1 u2

Q

]
, B =

[
w1

w2.

]
. When you have (P, V P, F, V −1), F

[
x
y

]
=
[
u pu2

] [fx
fy

]
and

there’s a similar formula for V .

A map ϕ : (P,Q, F, V −1)→ (P ′, Q′, F ′, (V ′)−1) is a W (R)-linear map P → P ′ preserving the

structure. This implies that ϕ has the form

[
a vb
c d

]
. If ϕ is an isomorphism, F ′ = ϕFϕ−1,

(V ′)−1 = ϕV −1ϕ−1, and

B′ =

[
fa b
pfc d

]
B

[
a vb
c d

]−1

.

Definition 12.10. Let B|Q be the lower right-hand block in B. Define B to be the reduction
mod p, IR.

The display is nilpotent if fnB · · · · · fB ·B is 0 for some n.

Theorem 12.11. Let R be a formal Zp-algebra. Then there is a correspondence

{formal p-divisible groups over R} ←→ {nilpotent displays over R}
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By Cartier duality, you get:

Corollary 12.12.{
p-divisible groups over R of dimension 1,

height h, formal height ≥ 2

}
∼←↩
{

nilpotent displays over R

of height h, dimension (h− 1)

}
Call the first thing Mp(h)≥2 and the second thing Disph,h−1

R .

Let Wt = Z[a0, . . . ] be the Witt ring. Let A corepresent displays; this is like Wt⊗h
2
[det−1].

Let Γ corepresent isomorphisms ϕ =

[
a vb
c d

]
where c has length h−1 and d has length 1. You

get a Hopf algebroid (A,Γ), and to impose the condition that the displays are nilpotent, you

have to complete it (I won’t say what we’re completing w.r.t.): (A,Γ)→ (Â, Γ̂) 'Mp(h)≥2.

Roughly, Spf R→Mdispl 'Mp(h)≥2. You want to understand the tangent space. This is a
really concrete question.

Let k be a field of characteristic p > 0.

{Displays B + εS} / Isok[ε]/ε2 restricting to 1 over k →
{

Displays B̃/k[ε]/ε2
}
/ Isok[ε]/ε2

→ {Displays B/k} / Isok

Say B =

[
α β
γ vδ

]
∈ Math(W (εk)).

B + εS ∼ (I +

[
fa b
pfc fd

]
)(B + εS)(I +

[
a vb
c d

]
)−1 = B + εs−B

[
a vb
c d

]
+

[
0 b
0 0B

]
This is

−B
[
a 0
c 0

]
−B

[
0 vb
0 d

]
+

[
bγ bvδ
0 0

]
You can convince yourself that from the first piece, you get all the first h− 1 columns, from

the second piece you get all the last columns ≡ d
[
β
vδ

]
(mod IR) (and the last piece doesn’t

do anything).

SpecA
last column mod IR //

��

Ph−1

Spf Â//Spf Γ̂ =Mp(h)≥2

66

For all purposes we can pretend that there’s a lift that is an isomorphism on tangent spaces.
Suppose we have Spf(R)→ SpecA. When is Spf(R)→Mp(h)≥2 formally étale? Iff SpecR is
formally smooth over Zp and it’s an isomorphism on tangent spaces. But via our isomorphism

on tangent spaces, this is equivalent to Spf R being formally smooth and Φ : Spf R→ Ph−2

being an isomorphism on tangent spaces. This is the same as Φ being formally étale.

To summarize:
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Theorem 12.13. Let R be a formal Zp-algebra and B is a nilpotent display of height h and

dimension h− 1. Suppose Φ : Spf R→ SpecA→ Ph−1 is formally étale. Then there exists an
even periodic E∞-ring E such that

(1) E0 = R, E2 = Q/IRP

(2) Spf ECP∞
0 = Gfor

Here’s an application. Let h ≥ 2. Consider R = (Z[u1, . . . , uh−1])(̂p,u1) and consider the

display:


0 . . . 0 1

[uh−1]
...

1 [u2]
[u1]

. Consider Φ : Spf R→ Ph−1 given by [1 : uh−1 : · · · : u1]; this is

the completion of an affine coordinate on Ph−1, so it is clearly formally étale. So you get E
such that E∗ = R[u±].

If you take into account some Galois actions, you get an E∞-ring Ẽ such that Ẽ '
LK(2)∨···∨K(n)E(n) and Ẽ∗ = Z[v1, . . . , vn−1, v

±
n ]̂(p,u1) where vi = up

i−1ui. This improves

on the fact that Morava E-theory is an E∞-ring.
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