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OPERADS AND �-HOMOLOGY OF COMMUTATIVE RINGSAlan Robinson and Sarah Whitehouse27 May 1998IntroductionIn this paper, we construct and investigate the natural homology theory forcoherently homotopy commutative dg-algebras, usually known as E1-algebras. Wecall the theory �-homology for historical reasons (see, for instance, [3]).Since discrete commutative rings are E1 rings, we obtain by specialization anew homology theory for commutative rings. This special case is far from trivial.It has the following application in stable homotopy theory, which was our originalmotivation and which will be treated in a sequel to this paper. The obstructions toan E1 multiplicative structure on a spectrum lie (under mild hypotheses) in the�-cohomology of the corresponding dual Steenrod algebra, just as the obstructionsto an A1-structure lie in the Hochschild cohomology of that algebra [15].The �-homology of a discrete commutative algebra B can be understood as are�nement of Harrison homology, which was originally de�ned as the homology ofthe quotient of the Hochschild complex by the subcomplex generated by nontrivialshu�e products. It is better de�ned as the homology of a related complex whichone obtains by tensoring each term B
n with a certain integral representation Vn ofthe symmetric group �n, and passing to �n-covariants. Harrison theory works verywell in characteristic zero, but not otherwise. A more satisfactory theory necessarilyinvolves the higher homology of the symmetric groups, not only the covariantsH0. Our �-homology theory is constructed to do just that. It is furthermorecompletely di�erent (except in characteristic zero) from Andr�e/Quillen homology,which is related to a completely di�erent class of problems. (Polynomial algebrasare acyclic for Andr�e/Quillen theory by its construction; but they are not generallyfree E1-algebras, and their �-homology is generally non-zero.)There are two further signi�cant generalizations. First, there is a cyclic variantof the �-homology of any E1 dg-algebra. This arises very naturally from ourconstruction in x3. The cyclic theory, like standard �-cohomology, is connected withan obstruction-theoretic problem. A full account will appear elsewhere. Second, thedomain of de�nition can be widened from the abelian situation of dg-algebras to thecase of spectra in stable homotopy theory, so that one can de�ne the �-homologyof an E1 ring spectrum. This is analogous to extending Hochschild homology totopological Hochschild homology (which includes Mac Lane homology as a specialThe second author was supported by a TMR grant from the European Union, held at theLaboratoire d'Analyse, G�eom�etrie et Applications (UMR 7539 au CNRS), Universit�e Paris-Nord.The �rst author was supported by the EU Homotopy Theory Network. Typeset by AMS-TEX1



2 ALAN ROBINSON AND SARAH WHITEHOUSEcase). The generalization to spectra is not di�cult, but we have postponed thedetails to another sequel.We mention that E1 homology was invented independently by the �rst authorand by Waldhausen during the 1980's, and outlined in various lectures, including aplenary lecture by the �rst author to the Adams Memorial meeting in 1990. Somedetails subsequently appeared in the second author's thesis [19] and a preprint[16]. Meanwhile Kriz [13] and later Basterra [4] were developing, by methods verydi�erent from ours, an E1 cohomology theory for ring spectra, which is extremelylikely to be equivalent to ours.The paper is organised as follows. Section 1 contains material on operads. InSection 2 we introduce complexes over operads and de�ne the realization of sucha complex (2.8). A cyclic variant of the construction is also given (2.9). Section3 covers the most important case of realization, namely the �-cotangent complexof an E1 algebra. This section also contains the de�nitions of �-homology (3.2)and cyclic �-homology (3.10), and a transitivity theorem (3.4). (The proof of a keyacyclicity lemma is deferred to Appendix A.) In Section 4 we further justify ourconstructions by showing that their A1 analogues lead to Hochschild and cyclichomology of associative algebras. Section 5 is devoted to the special case of �-homology of discrete commutative algebras. It is shown that for pairs of Q -algebras�-homology coincides with Andr�e/Quillen homology (5.6) and an example is givento show the theories are di�erent in general. The �nal section describes a productin �-cohomology of a discrete commutative algebra.1. Operads, cyclic operads and cofibrancyWe work in the category of chain complexes (dg-modules) over a commutativeground ring K. (We might equally well, of course, have chosen simplicial modules.)Our principal de�nitions use Getzler and Kapranov's theory [8] of cyclic operads,but we require Markl's non-unital version which is described in [9].1.1 Operads. Let S denote the category of �nite sets S and isomorphisms ofsets, S+ the subcategory of non-empty sets, and S1 the category of based �nitesets and isomorphisms. (To avoid foundational di�culties, we assume withoutfurther mention where necessary that these have been replaced by equivalent smallsubcategories. Our constructions do not depend upon the choice of subcategory.One can for instance take just one set f1; 2; : : : ; ng in S for each n � 0, and similarlyf0; 1; 2; : : : ; ng for each n � 0 in S1, so that both categories become disjoint unionsof symmetric groups.) An operad C has objects (chain complexes) CS indexed byall �nite sets S, isomorphisms '� : CS ! CT induced by isomorphisms ' : S ! Tof sets, and composition maps �t : CS 
 CT ! CSttTfor all �nite sets S and T , and all elements t 2 T , where S tt T is the deletedsum S t (T n ftg); these data must satisfy standard conditions of functoriality andassociativity of composition. The induced isomorphisms give a left action of thesymmetric group �S of automorphisms of S on CS . One thinks of CS as a parameterspace of operations (in the sense of universal algebra) with inputs labelled by S,and a single output; the induced isomorphisms correspond to permutation of inputs,and the composition �t to substitution of the output of CS for the input labelled t in



OPERADS AND �-HOMOLOGY OF COMMUTATIVE RINGS 3CT . The operad C is said to be E1 if, for each S 2 S, the complex CS is contractibleand �S-free. It is obviously su�cient to check this for S = f1; 2; : : : ; ng, for alln � 0.The standard example of an E1 operad is D, in which DS is the nerve of thecategory S=S of isomorphisms of �nite sets over S. Composition in D is inducedby the deleted sum functor in S.1.2 Cyclic operads. A cyclic operad can be de�ned as an operad with extrastructure (a �n+1-action on Cf1;2;::: ;ng) which makes composition symmetric byputting the `output' variable 0 on the same footing as the n `inputs': see [8].Then it is clearly desirable to change the notation, and denote by CSt0 what waspreviously denoted CS . Confusion can arise, so we stress that from now on we shalluse the `cyclic' convention, and include the output in the labelling set.It seems best to de�ne cyclic operads directly. A cyclic operad is a functor Efrom the category S+ of non-empty �nite sets to the category of chain complexes,together with composition operations�s;t : ES 
 ET ! ESts;tTfor all �nite sets S; T with at least two elements, and all choices of s 2 S, t 2 T .Here S ts;t T denotes the deleted sum (S n fsg) t (T n ftg), and �s;t is required tobe a natural transformation of functors from S1�S1 to chain complexes having theassociativity property �s;t(1
 �t0;u) = �t0;u(�s;t 
 1)for s 2 S, t; t0 2 T , t 6= t0, u 2 U , and the symmetry property�� � �s;t = �t;s � �
where �� : ESts;tT � ETtt;sS is induced by the isomorphism of sets and �
 : ES 
ET � ET 
 ES interchanges factors and introduces the usual sign.Some further notation will be needed. The composition�s;t : ES 
 ET ! EVis associated with a partition of V into two subsets S nfsg and T nftg. Conversely,let V = P t Q be any partition of V into two non-empty sets. We can de�ne theassociated composition by writing P 1 and Q2 for the disjoint unions P t f1g andQ t f2g, and taking �12 : EP 1 
 EQ2 ! EV :1.3 E1 cyclic operads. We call E an E1 cyclic operad if for all S 2 S+ thecomplex ES is contractible and �S-free. It su�ces to check this for S = f0; 1; : : : ; ngfor all n � 1. The operadD de�ned as in 1.1 is anE1 cyclic operad, the compositionagain being induced by the deleted sum functor.1.4 Co�brant operads. We adopt the notation introduced in 1.2 for adding newpoints to a set: S1, S2 and S12 are to denote S t f1g, S t f2g and S t f1; 2grespectively. For each partition V = S t T of V we have a composition map�21 : ES2 
 ET 1 ! EV . In a co�brant operad, provided S and T each have morethan one element, we want this map to be the inclusion of a face of EV , so werequire it to be an (equivariant) co�bration; and we require faces to intersect onlyin faces of faces. This leads to the following.



4 ALAN ROBINSON AND SARAH WHITEHOUSEDe�nition. Let @EV denote the coequalizer of the mapsMV=PtQtR EP 2 
 EQ12 
 ER1 �21
1�������!�������!1
�21 MV=StT ES2 
 ET 1where the sums are indexed by partitions of V into subsets of which S and T , andhence P and R, have at least two elements each. Associativity of composition im-plies that �21 induces a �V -equivariant map @EV ! EV , which we call the inclusionof the boundary . The cyclic operad E is co�brant if(1) for every V the inclusion of the boundary is a �V -equivariant co�bration;(2) there is a given augmentation " : EE ! K when E has exactly two elements,invariant with respect to induced maps '�, such that for every partition ofa set V =W t fwg into a set and a singleton, the mappingEW 1 
 Ef2;wg 1
"��! EW 1 
K =� EW 1  ��! EV ;where  is the evident isomorphism W 1 ! W t fwg = V , coincides withmapping given by the composition �1;2.Co�brant non-cyclic operads are de�ned in a completely analogous way.1.5 The E1 tree operad T . We now construct a co�brant E1 cyclic operad.The cyclic operad D will not do: the faces of DS intersect in unacceptably largesubcomplexes, so that @DS ! DS is not injective. On the other hand, we canform another cyclic operad by taking ES to be the space of trees [17] with endslabelled by the set S, and �s;t to be the operation of grafting the end labelled s tothe end labelled t to produce a new edge of length 1 . This operad has every EScontractible, and it is co�brant; but it is not an E1 operad because �n does notact freely on En. (In the realm of A1 operads, which are indexed by ordered �nitesets and have no �n action, there is a corresponding operad in which the objectsare the complexes of cyclically-labelled trees in the plane: it is the analogue of thetopological operad of Stashe� polyhedra { see [5].)By combining the two constructions we obtain a co�brant E1 cyclic operad, thetree operad T , as follows. We take TS to be the chain (bi)complex associated withthe bisimplicial set in which a (k; l)-bisimplex consists of a k-simplex of the nerveof the category S=S Sk 'k�! Sk�1 'k�1���! : : : '1�! S0#Stogether with an l-simplex of the space ~TSk of trees labelled by the set Sk; and thesimplicial operators are de�ned in the obvious way. The composition maps �s;t inT are de�ned by using the deleted sum functor in the category S and the graftingof trees, as above. The operad T inherits the E1 property of D. We show that italso has the co�brancy of the operad of trees. To show that the inclusion of theboundary @TV is an equivariant co�bration, we have to verify that it is inducedby an injective map of bisimplicial sets, and that the group of automorphisms ofV acts freely on its complement. The freeness follows from the freeness on DV .



OPERADS AND �-HOMOLOGY OF COMMUTATIVE RINGS 5For injectivity, the essence is that a simplex lies in the face corresponding to adecomposition V = S t T if and only if it consists of trees in which there is aninternal edge, of maximal length, which separates the labels S from the labels T ;and therefore two faces meet only where two speci�ed edges have maximal length,which is a face of a face (or is empty, as appropriate).2. Algebras, modules and realization2.1 Algebras and modules over an operad. Let C be a cyclic operad, and Kthe ground ring, which is commutative with unit element.De�nition. An algebra over C is a chain complex (of K-modules) A together withstructural maps �S : CS0 
 A
S ! A for all (non-empty) sets S 2 S+ which arenatural in S and satisfy the usual condition�S1(1
 �T ) = �StT (�10 
 1)of equality of maps CS01 
 CT 0 
A
(StT ) ! A.By way of explanation we note that 0 has been adjoined to S and T as the`output variable' for the operad. The element 1 in S01 is a dummy label associatedwith the partition S t T , as introduced at the end of 1.2.When the smallest model is chosen for S+, which is the disjoint union of thesymmetric groups �n for n � 1, the naturality condition in the de�nition simplymeans that �n is equivariant and so de�nes a map Cn+1 
�n A
n ! A, where �nacts on Cn+1 on the left (�xing the output label) and on A
n on the right.De�nition. An A-module over C, when A is a C-algebra as above, is a chaincomplex M together with structural maps �S : CS01 
 A
S 
M ! M which arenatural in S and satisfy the usual module conditions�S(1
 �T ) = �StT (�10 
 1)as maps CS01 
 CT 01 
A
(StT ) 
M !M , and�S2(1
 �T ) = �StT (�20 
 1)as maps CS012 
 CT 0 
A
(StT ) 
M !M .The above algebras and modules are non-unital. This defect will be remedied inthe next section.2.2 Algebras and modules over an E1 operad.From now on it is a standing assumption (except where the reverse is stated)that all operads are cyclic and E1. An algebra A over such an operad C willbe called an E1 algebra. Since C is automatically augmented over the standardcommutative algebra operad, the ground ring K is an E1 algebra.For the purposes of this paper, it su�ces to de�ne subalgebras and submodules ina naive way as chain subcomplexes which are closed under the appropriate operadaction. If A is a subalgebra of B over C, there is an inclusion homomorphismA! B,and we call B an A-algebra over C. We shall usually work with K-algebras, whereK is the ground ring regarded as an algebra over C. The unit element of K thenserves as a unit for the algebra. When considering modules over a K-algebra A, werequire the induced K-module structure to be the standard, strict one.



6 ALAN ROBINSON AND SARAH WHITEHOUSE2.3 Cyclic and non-cyclic complexes over an operad.We now aim to construct the homotopical cotangent complex K(B=A;M) whenB is an E1 K-algebra, A a K-subalgebra, and M a B-module. (Although verydi�erent in appearance and in construction, this will play in our theory the rôleanalogous to that played in Andr�e-Quillen theory by the cotangent complex of [1],[14]).Our cotangent complex will be a �ltered object obtained by glueing together theobjects CV 0 
 B
V 
M , where V runs through the category S+. (There is alsoa cyclic version.) Conceptually it resembles the realization of a simplicial object,or the analogue described in [18]. Because the realization sometimes has to beapplied to species other than the standard B
V 
M , it is worthwhile to formulatea de�nition of the kind of general object which can be realized.2.4 De�nition. Let C be a cyclic operad. A cyclic C-complex is a cofunctor Mfrom the category S+ to the category of chain complexes, together with the followingfurther data which specify an action of C onM: for each composition�s;t : CS 
 CT ! CSts;tTin C there is given a formal adjoint��s;t : CS 
MSts;tT !MT(to be thought of as a cap product corresponding to the above cup product) whichsatis�es(1) the naturality condition � ��s0;t0 ('� 
 1) = ��s;t(1
 (' ts;t  )�)for all isomorphisms ' : (S; s) � (S0; s0),  : (T; t) � (T 0; t0) in S;(2) the associativity condition��34(1
 ��12) = ��34(�21 
 1) : CS32 
 CR1 
MRtStT !MT 4for all �nite sets R1, S23, T 4;(3) the associativity condition��43(1
 ��12) = ��12(1
 ��43)(� 
 1) : CT 4 
 CR1 
MRtStT !MS23for all �nite sets R1, S23, T 4, where � interchanges factors.There are two associativity conditions above for the same reason as in the de�nitionof non-cyclic operad: there are two types of iterated substitution to be considered.2.5 Example. Suppose A is an algebra over the operad C, with structural maps�V : CV 0 
 A
V ! A. Then we can takeMS = A
S , and de�ne ��s;t to beCS 
 A
(Sts;tT ) � CS 
 A
(Snfsg) 
A
(Tnftg) �Snfsg
1������! A
 A
(Tnftg) � A
Tgiving a cyclic C-complex.Now we need the non-cyclic version, which is slightly more complicated becausethe indexing sets have basepoints and there are, as in the de�nition of operads,correspondingly more cases to consider. (The basepoint may be in any subset of apartition.) We consistently write 0 for the basepoint, so that a typical based �niteset is S0, where S is an object of S.



OPERADS AND �-HOMOLOGY OF COMMUTATIVE RINGS 72.6 De�nition. Let C be a cyclic operad. A (non-cyclic) C-complex assigns toeach based �nite set S0 a chain complexMS0 depending cofunctorially upon S0,and to each composition �0;1 : CS0 
 CT 01 ! C(StT )0in C a pair of formal adjoints��0;1 : CS0 
M(StT )0 !MT 01and ��1;0 : CT 01 
M(StT )0 !MS0satisfying the analogues of the naturality and associativity conditions (1){(3) of 2.3.The asymmetry in this de�nition arises because the composition �0;1 correspondsto a partition of V 0 = (S t T )0 = S t T 0 into a subset which does not contain thebasepoint and one which does. The �rst of the two adjoints above evaluates over S,and takes values inMT 01 , where 1 is a dummy label from the partition; the secondevaluates over T 0, and takes values inMS0 , where 0 is a new dummy basepoint forS.2.7 Example. Just as the primary example of a cyclic C-complex arises froman algebra (2.5), so the primary example of a non-cyclic C-complex arises from amodule. In de�nition 2.6 above, letMS0 = A
S 
M where A is a K-algebra overC and M an A-module; let ��0;1 be �S 
 1, where � is the algebra structure, and��1;0 be 1
 �T , where � is the module structure.2.8 The realization of a C-complex.Let C be a co�brant cyclic operad, and M a C-complex. We construct therealization jMj by a process resembling that for realizing a simplicial set. We treatthe non-cyclic case in detail, because it is more important for us, then describe thedi�erences in the cyclic case, which is important in cyclic �-homology. There aretwo steps in the construction.First we construct a complex jMj0. We take a direct sum over all V 0 = V t f0gin S1 (our category of based sets) having three or more elementsMjV 0j�3 CV 0 
MV 0 :jMj0 is the quotient of this by the following identi�cations:(1) for each isomorphism ' : S0 � T 0 in S1, and all x 2 CS0 , all m 2 MT 0'�x
m � x
 '�m ;(2) for each partition V 0 = S t T 0 of a set into two subsets (the second con-taining the basepoint) having at least two elements each, we consider theassociated composition (as in 1.2)�0;1 : CS0 
 CT 01 ! C(StT )0 = CV 0and we de�ne@S;T : CS0 
 CT 01 
M(StT )0 �! CS0 
MS0 � CT 01 
MT 01



8 ALAN ROBINSON AND SARAH WHITEHOUSEby setting @S;T = (1
 ��10) � (1
 ��01)(� 
 1)where � interchanges the factors CS0 and CT 01 and introduces the usual sign.Then on the component of the boundary @CV 0
MV 0 corresponding to �0;1we make identi�cations by requiring�01(x
 y)
m � @S;T (x
 y 
m)for all x 2 CS0 , y 2 CT 01 , m 2 MV 0 .The complex jMj0 thus de�ned is a quotient ofMn�2 Cn+1 
�nMn+1where n + 1 denotes the (n + 1)-element based set f0; 1; : : : ; ng. This is becausethe identi�cations (1) imply that it su�ces to take one indexing set of each size,and pass to the quotient by the action of �n. We can de�ne the skeletal �ltrationof jMj0 by de�ning the k-skeleton to be the image of L2�n�k Cn+1 
Mn+1. Justas in the standard simplicial realization construction, the identi�cations (2) satisfycompatibility conditions which guarantee that the kth �ltration quotient of jMj0 isisomorphic to (Ck+1=@Ck+1)
�kMk+1.We now describe the second step in the construction, which incorporates thebottom �ltration stageM2. (Since C2 is contractible for an E1 operad, and �1 istrivial, M2 is quasi-isomorphic to the expected bottom �ltration stage C1+1 
�1M1+1.)Let V 0 be any based set in S1 having three or more elements. Take any v 2 V ,and write Tv for V nfvg. The partition V 0 = fvgtTv has an associated composition�0;1 : Cfv;0g 
 CT 01v ! CV 0and action ��1;0 : CT 01v 
MV 0 !Mfv;0g :The standard isomorphisms T 01v = V nfvgtf0; 1g � V 0 and fv; 0g � f0; 1g, takingv to 1 in each case, convert this action into a map"v : CV 0 
MV 0 !Mf0;1g =M2 :If instead of v 2 V we select 0 2 V 0, the other action map ��0;1 (de�ned in 2.6)yields in identical fashion a map"0 : CV 0 
MV 0 !Mf0;1g =M2 :Let " = "0�Pv2V "v. This de�nes, for each V 0 in S1 having three or more elements,a map CV 0 
MV 0 ! M2. One can check immediately that the naturality andassociativity conditions in the de�nition of a C-complex imply that these maps arecompatible with the identi�cations used in the construction of jMj0. Therefore wehave a well-de�ned map " : jMj0 !M2. The �nal realization jMj is de�ned to bethe co�bre of ". This completes the construction of the realization in the non-cycliccase.



OPERADS AND �-HOMOLOGY OF COMMUTATIVE RINGS 92.9 Realization in the cyclic case.Now letM be a cyclic C-complex, where C is a co�brant cyclic operad. We con-struct the cyclic realization jMjcy by modifying the construction of 2.8 as follows.We begin with a sum indexed by all V in our category S of unbased �nite setscontaining at least three elementsMjV j�3 CV 
MV :We alter the identi�cations to take account of the extra symmetry available in thatthere is now no basepoint: they now read(1) for each isomorphism ' : S � T in S, and all x 2 CS , all m 2 MT'�x
m � x
 '�m :(2) for each partition V = S t T of a set into two subsets having at least twoelements each, and we de�ne@S;T : CS2 
 CT 1 
M(StT ) �! CS2 
MS2 � CT 1 
MT 1by setting @S;T = (1
 ��12) � (1
 ��21)(� 
 1)where � interchanges the factors CS2 and CT 1 and introduces the usual sign.Then on the component of the boundary @CV 
MV corresponding to �2;1we make identi�cations by requiring�21(x
 y)
m � @S;T (x
 y 
m)for all x 2 CS2 , y 2 CT 1 , m 2 MV .We have now completed the description of the �rst stage, which we denote jMj0cy,of the cyclic realization.The identi�cations above mean in e�ect that jMj0 is a quotient ofMn�2 Cn+1 
�n+1Mn+1where �n+1 is the group of permutations of f0; 1; : : : ; ng.In analogy with 2.8 we now expect to de�ne a map" : jMj0cy �! C2 
�2M2the co�bre of which would be jMjcy. In actual fact a sign intervenes in the repre-sentation, and we have to replace C2 by a di�erent contractible free �2-complex.The nerve of the category of isomorphisms of two-element sets is a model for theclassifying space B�2, and the nerve of the category of isomorphisms of orderedtwo-element sets is its universal cover E�2. Let V be any set in S having three or



10 ALAN ROBINSON AND SARAH WHITEHOUSEmore elements. Take any v 2 V , and write Tv for V n fvg. As in 2.8 we have acomposition �0;1 : Cfv;0g 
 CT 1v ! CVand action ��1;0 : CT 1v 
MV !Mfv;0g :Using the isomorphism T 1v � V , we obtain from the adjoint ��1;0 a map which weshall denote ��v;0 : CV 
MV !Mfv;0g :As f0; vg is an ordered two-element set, we can regard it as a chain of E�2. Wede�ne ~" : CV 
MV ! E�2 
Mfv;0gby setting ~"(x) = Xv2V �f0; vg 
 ��v;0(x)� :This does not yet respect the identi�cations de�ning jMj0cy. But if we denote by~M2 the complexM2 with its �2-structure twisted by the sign representation, then~" composes with the quotient map to give a well-de�ned map" : jMj0cy ! E�2 
�2 ~M2 :We �nally de�ne the cyclic realization jMjcy to be the co�bre of this map.2.10 Remarks. (1) The sign in the last stage of the above construction is neededto ensure cancellation of the unwanted contributions from the two dummy labelsin a partition as in identi�cation 2.9(2) above.(2) There is a natural map jMj ! jMjcy induced by the levelwise quotientmaps Cn+1 
�nMn+1 ! Cn+1 
�n+1Mn+1, which are well-behaved withrespect to the identi�cations in the construction.2.11 Uniqueness of E1 realization.We now prove that the homotopy type of the realization jMj or jMjcy does notdepend upon the co�brant cyclic operad C used to construct it, provided that C isE1. The proof uses the standard idea of comparison of resolutions.Lemma. Let C and D be E1 cyclic operads, with C co�brant. Then there is a mapC ! D of cyclic operads, and it is unique up to homotopy.Proof. We construct �n+1-equivariant maps 'n+1 : Cn+1 ! Dn+1, commutingwith all composition maps, by using induction on n. We note �rst of all thatthe unit axiom (1.4(2)) for E1 operads means that 'n+1 will always commutewith compositions with C2 and D2, since the axiom reduces this to the naturalityproperty. Suppose by inductive hypothesis that we have equivariant 'k+1 for allk < n, commuting with compositions as far as this makes sense. We have to de�ne'n+1. The boundary @Cn+1 is by 1.4 a sum of copies of Ci+1 
 Cj+1 with 2 � i; jand i + j = n + 1, amalgamated along Ci+1 
 @Cj+1 [ @Ci+1 
 Cj+1. The maps'i+1 
 'j+1 therefore induce a map @Cn+1 ! Dn+1, equivariant with respect tothe induced action of �n+1. Since C is co�brant and Dn+1 is contractible, this mapextends to a �n+1-equivariant map Cn+1 ! Dn+1, which by construction retainsthe compatibility with compositions. Since the induction starts automatically withn = 1, where the boundary is empty, the inductive proof of existence is complete.The proof of homotopy uniqueness is similar. �



OPERADS AND �-HOMOLOGY OF COMMUTATIVE RINGS 112.12 Proposition. If M is a complex over one E1 cyclic operad, then it is acomplex over every co�brant cyclic E1 operad, and the homotopy type of the real-ization jMj (or jMjcy, in the cyclic case) is independent of the cyclic co�brant E1operad used to construct it.Proof. Let C and D be cyclic E1 operads, with C co�brant. By 2.11 there is a mapof operads, unique up to homotopy, from C to D. IfM is a D-complex, such a mapinduces the structure (unique up to homotopy) of a C-complex onM.Suppose now that ' : C ! D is a map of E1 operads. We show by induction on kthat 'k+1 is a homotopy equivalence of pairs (Ck+1; @Ck+1)! (Dk+1; @Dk+1). Thisis certainly true for k = 1; 2, where the spaces are contractible and the boundariesare empty. Suppose it is true for k < n. The assembly of @Cn+1 and @Dn+1 fromco�brations of lower spaces in the operads (as in the proof of 2.11) implies that'n+1 restricts to a homotopy equivalence @Cn+1 ! @Dn+1. But then Cn+1 andDn+1 are contractible, and the inclusions of the boundaries are co�brations, so'n+1 is a homotopy equivalence of pairs.WhenM has the C-structure induced by the map ', there is a skeleton-preservinginduced map j'j : jMjC ! jMjD between the realizations constructed using thetwo di�erent operads. On quotients of adjacent skeleta, j'j induces a map(Cn=@Cn)
�nMn 'n
1���! (Dn=@Dn)
�nMnwhich is a homotopy equivalence because 'n has been shown to be a homotopyequivalence of free �n-complexes. By induction and direct limit, j'j is a homotopyequivalence. Hence jMj is independent of the co�brant E1 operad used. A similarproof works in the cyclic case. �2.13 The homology of the realization.Proposition.(1) LetM be a C-complex, where C is an E1 operad. Then there is a homologyspectral sequenceE1p�1;q � Hq(E�p 
�p (Vp 
Mp+1)) =) Hp+q�1(jMj)where Vp is the representation of �p on the homology of the tree space Tp,and �p acts diagonally on Vp 
Mp+1.(2) When M is a cyclic C-complex there is a corresponding homology spectralsequence in the formE1p�1;q � Hq(E�p+1 
�p+1 (V 0p 
Mp+1)) =) Hp+q�1(jMjcy)where V 0p is the integral representation of �p+1 on the homology of Tp.Proof. The spectral sequence obtained from the skeletal �ltration of jMj or jMcyjis independent of the particular co�brant E1 operad used in the construction.Choosing the E1 tree operad of 1.5 leads to the E1 terms given above.The E1p�1;� term is in e�ect the hyperhomology of the group �p or �p+1 withcoe�cients in the complex Vp 
Mp+1 or V 0p 
Mp+1, and the di�erential d1p;� canbe expressed in terms of transfer in group hyperhomology and the boundary inM.



12 ALAN ROBINSON AND SARAH WHITEHOUSENaturally there are the hyperhomology spectral sequenceHs(�p;Vp 
Ht(Mp+1)) =) E1p�1;s+tand its analogue for the second case, available as subsidiary spectral sequences forcalculating the E1-terms.It is known that the representation Vp is isomorphic over Z to Hom(Liep;Z[�1]),where Liep is the Lie representation and Z[�1] the sign representation. The moduleV 0p is related to Vp and therefore to the Lie representations by a short exact sequence0! Vp+1 ! Ind�p+1�p Vp ! V 0p ! 0 :The complex character of V 0p is calculated in [17]. �3. The �-cotangent complex and the transitivity theorem3.1 Introduction. We now apply the general theory of x2 to the case we are reallyinterested in: the construction of the �-cotangent complex K(B=A ;M) when A isa subalgebra of the E1 di�erential graded algebra B, and M is any B-module.In the construction we shall use any co�brant E1 cyclic operad C, such as thetree operad T of 1.5: the result is independent, up to quasi-isomorphism, of thechoice. It is no real loss of generality to assume that A, B and M are at oreven projective over the ground ring K: the structure of algebra or module overa co�brant operad is homotopy invariant, so that one can replace these objects byprojective resolutions; and our realizations are homotopy invariant constructions,so the choice of projective resolution makes no di�erence to the result. Similarlywe may assume that A � B is a co�bration.We also prove a at base-change result, showing that K(B=A ;M) is essentiallyindependent of the ground ring.The notation of the above introduction will be used throughout the section.Let K be the following non-cyclic C-complex, which was mentioned in 2.7. Foreach based �nite set V 0 = V t f0g in S1 we putKV 0 = A
V 
M :For every partition V 0 = S t T 0 of V 0 into nonempty sets we de�ne��0;1 : CS0 
 K(StT )0 ! KT 10by using the algebra structure map ���0;1 = �S 
 1
 1 : CS0 
 A
S 
A
T 
M �! A
 A
T 
M ;and we de�ne ��1;0 : CT 10 
 K(StT )0 ! KS0by using the module structure map ���1;0 = 1
 �T : A
S 
 CT 10 
 A
T 
M �! A
S 
M :It follows from the algebra and module axioms that this is a C-complex. Its real-ization jKj we denote usually by KK(A ;M), in order to stress that it depends inan essential way upon the ground ring K.



OPERADS AND �-HOMOLOGY OF COMMUTATIVE RINGS 133.2 �-cotangent complex and �-homology groups. Let A be a subalgebra ofthe E1 algebra B, as in 3.1, and M a B-module, all these being assumed at overK. We de�ne the �-cotangent complex of B relative to A, with coe�cients M tobe the quotient K(B=A ;M) = KK(B ;M)=KK(A ;M) :(Here we have assumed that A � B is a co�bration. In a more general situationthe quotient can be replaced by the co�bre.) The �-homology of B over A is thehomology of this complex:H��(B=A ;M) = H�(K(B=A ;M)) ;the �-cohomology is correspondingly de�ned byH� �(B=A ;M) = H�(RHomB(K(B=A ;B);M) :3.3 Remark. For theoretical and practical reasons we have chosen to de�ne thecotangent complex as a quotient. This avoids the need to handle derived tensorproducts over E1 algebras. It also has the pleasant consequence that the impor-tant transitivity theorem (3.4 below) becomes trivial to prove. This advantage isof course an illusion: the counterbalancing disadvantage is that in order for ourde�nitions to be useful, we have to work to prove that K(B=A ;M), and henceH��(B=A ;M), are essentially independent of the ground ring K. The proof of thisat base-change theorem occupies most of the rest of x3, and the Appendix.3.4 Transitivity theorem. Let A � B � C be inclusions of E1-algebras, and Man E1 C-module. Then there is a co�bration sequence of �-cotangent complexesK(B=A ;M) ! K(C=A ;M) ! K(C=B ;M) ! SK(B=A ;M)and therefore a long exact sequence of �-homology groups� � � ! H�n+1(C=B ;M)! H�n(B=A ;M)! H�n(C=A ;M)! H�n(C=B ;M)! � � �and similarly for cohomology.Proof. The de�nitions require A, B and C to be replaced by corresponding projec-tive resolutions. Then everything follows from the exact sequence connecting theco�bres of the three maps in the tripleKK(A ;M)! KK(B ;M)! KK(C ;M) : �We now begin on the de�nitions and lemmas which we shall need for the othermain result of this section, the at base-change theorem.3.5 A model for the derived tensor product.We propose that the derived tensor product of modules over an E1 algebrashould be de�ned by the following construction. In Proposition 3.6 below, we shalljustify it in the case of at modules over a strictly commutative algebra, which isthe only case we need in this paper.



14 ALAN ROBINSON AND SARAH WHITEHOUSELet C be a co�brant cyclic E1 operad. We are going to make a realization likethose in 2.8 and 2.9, but with S or S1 replaced by Sr, which is the category of�nite sets with r distinct basepoints 01; : : : ; 0r, and isomorphisms of sets whichpreserve the basepoints in order. There is formally no problem in extending thede�nition given in 2.8 to this case, except that when S t T is a partition of the setV = V̂ t f01; : : : ; 0rg in Sr, the structural map�pq : CSp 
MStT !MT qmust be zero when S contains more than one of the basepoints, as there is thenno natural way to structure T q as a space with r basepoints. (Here p and q aredummy labels.) When r � 2, the homology of the realization is much simplerthan the homologies for which we obtained spectral sequences in 2.13, because theanalogues of Vp are now free �p-modules. That is why the following constructionis valid.Let A be a C-algebra and letM1; : : : ;Mn be A-modules. Suppose that A and alltheMi are at over the commutative ground ring K. We construct a C-complexMon the category Sr by settingMV =M1
� � �
Mr
A
V̂ when V = V̂ tf01; : : : ; 0rgis a set with r basepoints, and, when V = S t T , taking�pq : CSp 
MStT !MT qto be �pq = 8><>: 1
 �S; if S contains no basepoint1
 �iS; if S contains 0i and no other0; if S contains more than one basepointwhere � is the structural map for the C-algebra A, and �i is that for the moduleMi.We de�ne the left derived tensor product M1 L
A M2 L
A � � � L
A Mr to be therealization jMj.The following proposition is su�cient justi�cation, for the purposes of this paper,of the above de�nition. The proof actually goes rather further, as most of it doesnot need R-atness.3.6 Proposition. Let R be a commutative algebra over the ground ring K, andlet M1; : : : ;Mr (where r � 2) be complexes of R-modules, in the sense of standardhomological algebra. Suppose that R is at over K, and all the Mi are at over R.Then there is a quasi-isomorphismM1 L
RM2 L
R � � � L
RMr ' M1 
RM2 
R � � � 
RMr :Proof. For transparency we treat �rst the case when r = 2. After 2.12, we mayassume that C is the tree operad of 1.5. We shall also need the correspondingA1 operad, in which the Cord; n+2 is the chain complex of trees which can beembedded in the plane with labels 01; 1; 2; : : : ; n; 02 in cyclic order. This operadhas no permutations. It is well known that Cord is a subdivision of the Stashe�operad of associahedra, and that the homology of the nth complex modulo its



OPERADS AND �-HOMOLOGY OF COMMUTATIVE RINGS 15boundary is a single copy of the ground ring. If we construct the realization jMjordof the complex M01;1;2;::: ;n;02 = M1 
 R
n 
M2with respect to Cord, then the E1-term of the skeletal spectral sequence is thebar resolution, and since everything is at over K we have E2p;� � TorRp;�(M1;M2).Examination of the attaching maps in the structure of jMjord shows that E2 = E1since R is strictly associative. Indeed we have assumed Mi is R-at, so this is quiteobvious, as E2p;� � 0 for p > 0, and the homology spectral sequence converges toM1 
RM2.To complete the case r = 2 it now su�ces to prove that the S2-realization jMj,which we de�ned in 3.5, is equivalent to the ordered realization jMjord. There iscertainly a natural map jMjord ! jMj, induced by inclusion of operads. This maprespects skeleta, so induces a map of homology spectral sequences. We have tocalculate the E1-term in the target spectral sequence. Now the homology moduloits boundary of the complex of trees with labels f01; 1; 2; : : : ; n; 02g is the treerepresentation, which restricts to the regular representation of �n [17]; and theinclusion of the ordered trees induces a map which takes the homology generator to agenerator of this regular module [19]. After taking �n-covariants as the constructionof jMj requires, we therefore have an isomorphism of E2-terms. Thus the spectralsequences are isomorphic, and so jMjord ! jMj is a quasi-isomorphism. Combiningthis with the �rst result of the proof shows that jMj is quasi-isomorphic to M1
RM2. The result is now proved for r = 2.The proof for r > 2 follows exactly the same lines. The only di�erence is theinclusion of a counting argument to match the numbers of generators in the freemodules involved in the two E2-terms, for these no longer have rank one. We omitthe details. �The following acyclicity lemma is central to the results of the present section.3.7 Lemma. Let K be a commutative ring, andM a K-module. Then the complexKK(K ;M) is acyclic.Contemplating con�guration spaces makes one think that 3.7 should be true,but the only proof we know is combinatorial and lengthy. This proof is givenin Appendix A. The �rst consequence of the Lemma is that one can calculate�-homology relative to the ground ring without normalizing by quotienting byKK(K ;M).3.8 Proposition. Let A be an E1 algebra over the ground ring K, and M anA-module. Then H��(A=K ;M) � H�(KK(A ;M)) :Proof. Since quotienting by the acyclic complex KK(K ;M) is a quasi-isomorphism,we have K(A=K ;M) ' KK(A ;M). �Naturally, one would like to be able to describe H� (B=A ;M) in an equallysimple way for any E1 pair of algebras A � B. The tensor powers of A would haveto be replaced by derived tensor powers of B over A. We have little doubt that thiscould be done, but the resulting elegant statement might not justify the technicalmischief with derived powers which would be needed to prove the result and, later,to apply it. The following theorem is a good substitute.



16 ALAN ROBINSON AND SARAH WHITEHOUSE3.9 Theorem (Flat base-change for K(B=A ;M)). Let K be a commutativering, and R a at commutative K-algebra. Then(1) For every E1 algebra A and every A-module M which are at over theground ring R, there is a quasi-isomorphismKR(A ;M) ' KK(A ;M)=KK(R ;M) :(2) If A is a subalgebra of the E1 algebra B and M is a B-module, all thesebeing R-at, then the quasi-isomorphism type of K(B=A ;M) is the same,whether the ground ring be taken to be K or R.Proof. (1) Suppose L is a commutative ring such that K � L � R. In the ap-plication, L will actually be either K or R. As in 3.1, no generality is lost byassuming that R is a (strictly commutative) subalgebra of the E1 algebra A. Wehave de�ned KL(A ;M) as the realization of a certain C-complex K. This meansthat jKj0 is de�ned �rst as a certain quotient of Ln�2 Cn+1 
�n A
n 
M , thenKL(A ;M) = jKj is constructed as the co�bre of a map jKj0 ! A 
M , all tensorproducts being over L.We construct a �ltration of jKj0 and A 
 M , and therefore of KL(A ;M), byde�ning the pth �ltration stage F pKL(A ;M) to be the image of the submodulein which at most p of the tensor factors from A lie outside R. This respects allnecessary identi�cations, and is thus a valid de�nition of a �ltration in whichKL(R ;M) = F 0 � F 1 � � � � � F p�1 � F p � � � � � F1 = KL(A ;M) :Let us consider the quotient F p=F p�1. Under the action of �n, every tensor a1 
� � � 
 an 
 m with p factors outside R is equivalent to an element in which onlya1; : : : ; ap are outside R; and modulo lower �ltrations this element is unique up tothe action of �p � �n�p. Provided that R is L-at, and p � 1, it follows from 3.8that F p=F p�1 is quasi-isomorphic to E�p 
�p (A=R)
R (A=R)
R � � � 
R (A=R),where there are p factors A=R. Now this is quite independent of L. So if we takethe natural �ltered map between the two �ltered complexesKK(A ;M) �! KR(A ;M)associated with the two choices L = K and L = M , we know that it inducesequivalences of �ltration quotients F p=F p�1 for all p � 1. Therefore the mapKK(A ;M)=F 0KK(A ;M) �! KR(A ;M)=F 0KR(A ;M)is a quasi-isomorphism. But F 0KK(A ;M) = KK(R ;M), and F 0KR(A ;M) =KR(R ;M) which is acyclic by 3.7, so this relation is precisely (1) of the statement.(2) When A is a subalgebra of the E1 algebra B andM is a B-module, all thesebeing R-at, we have a diagramKK(R ;M) ��! KK(R ;M)# #KK(A ;M) �! KK(B ;M) �! K1(B=A ;M)# # #KR(A ;M) �! KR(B ;M) �! K2(B=A ;M)in which two columns are co�brations by (1) above, and two rows are co�brationsby de�nition. The diagram implies that the vertical map on the right between thetwo models for K(B=A ;M) is a quasi-isomorphism. �



OPERADS AND �-HOMOLOGY OF COMMUTATIVE RINGS 173.10 Cyclic �-homology and cohomology. Let A be an algebra over the co�-brant cyclic E1 operad C, with K as ground ring. We then have the cyclic C-complex jMj described in 2.5, which hasMS = A
S , with structural maps inducedby the multiplication in A. We denote the cyclic realization of jMj by Kcy(A).The cyclic �-homology and cyclic �-cohomology are de�ned in terms of the cyclicrealization Kcy(A): H� cy� (A) = H�(Kcy(A))H� �cy(A) = H�(HomK(Kcy(A); K)) :4. The A1 analogue: Hochschild and cyclic homologyThe above theory is speci�cally for E1 structures, and is new. We now constructthe precise analogue for A1 (homotopy-associative) structures, and show that thisjust leads to a new description of the familiar Hochschild homology and cyclichomology of associative algebras.We replace S with the category Scy of cyclically-ordered �nite sets and order-preserving isomorphisms. The automorphism group of an object of Scy is a �nitecyclic group. If 0 is chosen as basepoint in an object S0 of S, its complement S istotally ordered, and the group of automorphisms preserving the basepoint is trivial.We rede�ne operads and cyclic operads for the new case, replacing the categoryS in 1.1 and 1.2 by Scy. The composition operations have the form�s;t : AS 
AT !ASts;tTwhere S ts;t T has the unique cyclic ordering obtained by concatenating the totalorderings on Snfsg and T nftg. We say a cyclic operad A is A1 if AS is contractiblefor each S, and the cyclic group CS acts freely on AS . Co�brancy is de�ned asbefore. Next we introduce algebras over a cyclic A1 operad A, and modules overthese algebras by analogy with 2.1. The simplest examples are associative rings andbimodules respectively. Similarly, cyclic and non-cyclic A-complexes are de�ned byprecise analogy with 2.4 and 2.6. The archetypes are MS = A
S in the cycliccase, andMS0 = A
S 
M in the non-cyclic case, where A is an associative or A1algebra and M an A-bimodule. The realizations jMj and jMjcy are de�ned just asin 2.8 and 2.9, the category S being replaced everywhere by Scy and the symmetricgroup �n+1 in 2.9 by the cyclic group Cn+1.Homology of the A1 realization.We have the following analogue of 2.13. It is very much simpler than the E1 ver-sion, because the represention Vp is replaced the homology of the space of cyclically-ordered p-trees, which is free of rank one.4.1 Proposition.(1) LetM be a A-complex, where A is an A1 operad. Then there is a homologyspectral sequenceE1p�1;q � Hq(Mp+1) =) Hp+q�1(jMj) :(2) WhenM is a cyclic A-complex the spectral sequence has the formE1p�1;q � Hq(ECp+1 
Cp+1 ~Mp+1) =) Hp+q�1(jMjcy)where ~Mp+1 indicates that the Cp+1-module structure of Mp+1 is twistedby the sign representation.



18 ALAN ROBINSON AND SARAH WHITEHOUSEProof. Just as in the E1 case of 2.12, the spectral sequence obtained from theskeletal �ltration of jMj or jMcyj is independent of the particular co�brant cyclicA1 operad used in the construction. We may therefore choose the A1 tree operadT cy, which is constructed just as in 1.5, but with the category S replaced by thecategory Scy of cyclically-ordered sets. This leads to the E1 terms given above. �4.2 Corollary.(1) Let M be the A-complex with MS0 = A
S 
M , where A is an associa-tive K-algebra and M an A-bimodule. Then the homology of jMj is theHochschild homology of A, with dimension shifted by one:Hr(jMj) � HHr+1(A;M) for r � 0:(2) Let N be the cyclic A-complex with NS = A
S. Then the homology of jN jcyis the cyclic homology of A, with a dimension shift:Hr(jN jcy) � HCr+1(A) for r � 0:Proof. (1) Since Mp is discrete, the E1 term of the spectral sequence of 4.1(1)collapses to the edge E1p�1;0 = A
p 
M . Analysis of the identi�cations in jMjshows that d1p�1;0 : A
p 
M ! A
(p�1) 
M is the Hochschild boundary. ThusE1�;0 is simply the standard Hochschild complex, shifted down and truncated.(2) Using a model where Scy has one set of each size, we haveT cyn � C�(Cn+1)
 C�( ~T cyn )where ~T cyn is the space of planar n-trees, and C�(Cn+1) is the bar construction onthe cyclic group which permutes the labels f0; 1; : : : ; ng of these trees. ThereforejN jcy is a bicomplex which has (m; k + 1)st groupMn Cm(Cn+1)
 Ck( ~T cyn ; T cyn )
 A
(n+1)where T cyn is the boundary of ~T cyn (the fully-grown trees). We �lter by n. Since thecomplex ~T cyn is a Stashe� (n� 2)-cell, C�( ~T cyn ; T cyn ) has only one homology group,generated by the homology class [cn] of the cycle denoted cn in [19]. Thus each�ltration quotient is a bicomplex for which the second standard spectral sequence(column homology �rst) collapses. We conclude that the spectral sequence associ-ated to our �ltration has E1n;m�1 � Hm(Cn+1;A
(n+1)), where the action of thecyclic group on the tensor product includes the usual sign.On the other hand, the cyclic homology of A is given by Tsygan's bicom-plex. This has A
(n+1) in the (m;n)th position, and the horizontal di�erentialsare alternately T and N , the morphisms in the standard perodic resolution ofthe cyclic group Cn+1. Filtration by n gives rise to a spectral sequence withE1n;m � Hm(Cn+1;A
(n+1)).There is an equivalence from the periodic resolution to the bar resolution whichtakes the generator to [N jT j : : : jT jN jT ] in even degrees, and to [T jN j : : : jT jN jT ]in odd degrees. We use it to construct a chain map � from Tsygan's bicomplex



OPERADS AND �-HOMOLOGY OF COMMUTATIVE RINGS 19(with the row n = 0 deleted) to the bicomplex representing jN jcy. Explicitly, wede�ne �m;n : A
n+1 �! Cm(Cn+1)
 Cn�2( ~T cyn ; T cyn )
A
n+1by setting �m;n(a) = � [N jT j : : : jN jT ]
 cn 
 a; for m even[T jN j : : : jN jT ]
 cn 
 a; for m odd:The map � commutes with horizontal di�erentials, since we began with a map ofCn+1-complexes. To prove that it commutes with vertical di�erentials, one needsa calculation like that which proves that Tsygan's diagram is a bicomplex, andthe fact that the vertical Hochschild di�erential (arising from the identi�cations injN jcy) carries cn to cn�1. Finally, � is a map of �ltered bicomplexes which has bide-gree (0;�1) and which induces an isomorphism on the E1 terms of the associatedspectral sequences. Hence � induces isomorphisms HCr+1(A) � Hr(jN jcy). �5. Explicit complexes in the strictly commutative caseLet B be a strictly commutative algebra which is at over a commutative ringA and let M be a B-module. By 3.8 and 3.9, we may take A as the ground ringin calculating K(B=A ;M) and H��(B=A ;M). Accordingly we denote 
A simplyby 
. The �-cotangent complex K(B=A ;M) is quasi-isomorphic to KA(B ;M) by3.9. When constructed using the tree operad T , this is a bicomplex(5.1) C�p;q(B=A ;M) = �Cq+2(S1)
S1 Cp�1( ~T�; T�)�
S1 (B
� 
M) :Here � denotes a generic object of S1, and � denotes the same object minus itsbasepoint. The vertical di�erential d00 of the bicomplex is the di�erential of thetwo-sided bar construction on the category S1. The horizontal di�erential d0 is thedi�erential in the chain complex C�( ~T�), except that chains in the boundary T� areidenti�ed with lower skeleta by relation 2.8(2). (When n = 1, the relative chaincomplex C�( ~Tn; Tn) has to be interpreted conventionally as A in degree �1.)We can make this smaller and more explicit by replacing S1 with the modelin which there is just one object f0; 1; : : : ; kg for each k � 1. Then one has tomake many choices about how to identify an arbitrary quotient set of f0; 1; : : : ; kgwith some f0; 1; : : : ; lg. (See, for example, the labelling convention described in theAppendix.) Any coherent system of choices gives a complexC�p;q(B=A ;M) =Mk�1�Cq+2(�k)
�k Cp�1( ~Tk; Tk)�
�k B
k 
Mwhich is quasi-isomorphic to (5.1), though the precise horizontal di�erential d0depends upon the choices. Once more, the vertical di�erential is that of the two-sided bar construction on the symmetric groups �k. There is a dual version forcohomology when B is projective.Since we are working in the discrete case, the subsidiary spectral sequence of2.13 collapses to an edge and we have the following spectral sequence.(5.2) E1p�1;q � Hq(�p ; Vp 
 B
p 
M) =) H�p+q�1(B=A ;M)where Vp is the �p-module given by the reduced homology of the tree-space Tp.When B is projective, there is a dual spectral sequence in cohomology(5.3) Ep�1;q1 � Hq(�p ; Vp 
 Hom(B
p;M)) =) H� p+q�1(B=A ;M) :



20 ALAN ROBINSON AND SARAH WHITEHOUSE5.4 Theorem [19]. The edge q = 0 of the spectral sequence above is precisely thecomplex used in de�ning the Harrison (co)homology [12] Harr�(B=A ;M) of B (witha shift in degree). Therefore there are natural transformationsH�p�1(B=A ;M)! Harrp(B=A ;M) ; H� p�1(B=A ;M) Harrp(B=A ;M)when B is at (resp. projective), which are isomorphisms when B contains a �eldof characteristic zero.Proof. We give the details for homology. The edge of the spectral sequence (5.2)has terms: E1p�1;0 � H0(�p ;Vp 
 B
p 
M) � Vp 
�p B
p 
M :Now we describe the structure of the �p-module Vp = Hp�3(Tp); further detailscan be found in [17], [19]. The tree space Tp has the homotopy type of a wedgeof (p � 1)! spheres of dimension p � 3. A set of independent homology generatorsis given by f�cp j� 2 �p�1g, where cp is the cycle consisting of cyclically labelledtrees in the plane. Let si;p�i =P "���1, where "� is the sign of �, and the sum isover (i; p� i)-shu�es in �p. In [19] it is shown that si;p�icp = 0 for i = 1; : : : ; p� 1and that these relations completely determine the �p-module structure of Vp. Itfollows that Vp 
�p B
p is isomorphic to B
p modulo the submodule of shu�edecomposables.It remains to identify the di�erential d1 : E1p;0 ! E1p�1;0. It is straightforward tocheck that d1(cp
x1
� � �
xp
m) = cp�1
 b(x1
� � �
xp
m), where b denotesthe usual Hochschild boundary map. The edge E1�;0 is therefore the quotient ofthe Hochschild complex by the shu�e decomposables, which is precisely Harrison'scomplex. Hence, E2p�1;0 � Harrp(B=A ;M).The edge map of the spectral sequence gives a natural transformationH�p�1(B=A ;M)! Harrp(B=A ;M) :When B contains a �eld of characteristic zero, the higher homology of the symmetricgroups is zero, so the spectral sequence collapses to the edge and the above is anisomorphism. �5.5 Proposition.(1) H�0(B=A ;M) � 
B=A 
B M ; H� 0(B=A ;M) � DerA(B;M) ;(2) H� 1(B=A ;M) � ExalcomA(B;M) .(Here ExalcomA(B;M), the module of in�nitesimal A-algebra extensions of Bby M , is as de�ned in [11], 0IV x18.)Proof. (1) In the bicomplex (5.1), C�0;0=d00(C�0;1) � B 
M . The image ofthe horizontal di�erential d0 : C�1;0 ! C�0;0 is spanned by the usual relations fordi�erentials of products. It follows that H�0(B=A ;M) is the module of K�ahlerdi�erentials 
B=A 
B M . Similarly, the zeroth cohomology group is DerA(B;M).(2) Suppose �rst that B is A-projective. In the spectral sequence (5.3) we haveE0;12 � 0, E1;02 � Harr2(B=A;M) and so H� 1(B=A;M) � Harr2(B=A;M). Thisis the module of A-split in�nitesimal commutative A-algebra extensions of B by



OPERADS AND �-HOMOLOGY OF COMMUTATIVE RINGS 21M . Since B is projective this coincides with ExalcomA(B;M), the module of allin�nitesimal A-algebra extensions of B by M .In the general case when B is not A-projective we have to use a simplicialresolution and elementary properties of Andr�e/Quillen cohomology. It is elementarythat �-(co)homology extends to simplicial rings, with coe�cients in a simplicialmodule: the �-cotangent complex (3.2) of a simplicial ring is a simplicial dg-module,and one simply takes the associated total complex. The co�brancy of the operadensures that this is a homotopy invariant of the simplicial ring. This said, we mayreplace the algebra B by an Andr�e/Quillen resolution P� consisting of polynomialalgebras over A. Filtering the �-cotangent complex by the simplicial degree givesa spectral sequenceEp;q1 = H� q(Pp=A ;M) =) H� p+q(B=A ;M) :On the edge we have Ep;01 = H� 0(Pp=A ;M) = DerA(Pp;M) by (1), so by def-inition the Andr�e/Quillen cohomology Dp(B=A ;M) is just Ep;02 . In particular,E1;02 � ExalcomA(B;M). But Ep;11 = 0 by the �rst case, since Pp is projective andpolynomial. The spectral sequence now gives the result. �5.6 Corollary. When B contains a �eld of characteristic zero,H�p(B=A ;M) � Dp(B=A ;M) ; H� p(B=A ;M) � Dp(B=A ;M) ;where D� is Andr�e/Quillen homology.Proof. Again we give the details for homology. If B is at over A and contains a�eld of characteristic zero then Harrison homology coincides with Andr�e/Quillenhomology [14] so the result is given by 5.4. If B is not at, we replace it by asimplicial Andr�e resolution by polynomial algebras, P . (As in the proof of 5.5this is the preferred method for strictly commutative rings.) We again obtain aspectral sequence: E1p;q = H�q(Pp=A ;M) =) H�p+q(B=A;M). Since each Pi isat, 5.3 gives H�0(Pi=A;M) = 
Pi=A 
Pi M , and all higher homology groups arezero by 5.4. Thus the spectral sequence collapses to the edge, where E1�;0 is exactlyan Andr�e/Quillen resolution of B, giving the result. The case of cohomology issimilar, except that `at' is everywhere replaced by `projective'. �In general �-homology is di�erent from Andr�e/Quillen homology and from Har-rison homology. The following example shows this, and reveals a non-trivial di�er-ential in the spectral sequence of 5.2.5.7 Example. First take B = A = F2 . Then 1 
 1 
 1 
 1 is a non-boundingHarrison 4-cycle, by the calculation in ([2], x4). Thus Harr4(F2=F2 ; F2) 6� 0, andby 5.4 our element 1
1
1
1 exists in E23;0. Since 3.7 or the transitivity theorem3.4 implies that H�3(F2=F2 ; F2) � 0 (and similarly for Andr�e homology), this cyclemust map by the only available di�erential d2 to a non-zero element of E21;1. (Theonly such element is �
 1
 1, where � generates H1(�2; F2); for the module V2 istrivial). Thus H�3 6� Harr4.Now let us take B to be the polynomial algebra F2 [X], A = F2 , M = B=(X) �F2 . A brief calculation with shu�es shows that E23;0 � Harr4(F2 [X]=F2 ; F2) con-tains no non-zero element of degree two in X. Therefore � 
X 
X 2 E21;1 is anin�nite cycle which is not in the image of d2 and therefore is not a boundary. SoH�2(F2 [X]=F2 ; F2) 6� 0, and H�2 is not Andr�e's H2.



22 ALAN ROBINSON AND SARAH WHITEHOUSE5.8 Theorem.(1) Let B and C be A-algebras, with B at over A, and letM be a B
AC-module.Then the complex K(B 
A C=C ;M) is quasi-isomorphic to K(B=A ;M),so that H��(B 
A C=C ;M) � H��(B=A ;M) :(2) Let B and C be at A-modules, and M a B 
A C-module. Then there is aquasi-isomorphismK(B 
A C=A ;M) ' K(B=A ;M) � K(C=A ;M) ;and therefore H��(B 
A C=A ;M) � H��(B=A ;M)�H��(C=A ;M).(3) If B is an �etale A-algebra, then H��(B=A ;M) � H� �(B=A ;M) � 0 forevery B-module M .Proof. (1) Since B is at over the discrete commutative ring A, the cotangentcomplex K(B=A ;M) is equivalent to KA(B ;M). Also B 
A C is at over C, andK(B 
A C;M) may be replaced by KC(B 
A C ;M). But standard identities withthe tensor product show that KC(B 
A C ;M) � KA(B ;M), because these arerealizations of isomorphic complexes.(2) We have an exact triangle corresponding to the triple A! C ! B 
A CK(C=A ;M)! K(B 
A C=A ;M)! K(B 
A C=C ;M) :Using the quasi-isomorphism of (1), this can be split by the mapK(B=A ;M)! K(B 
A C=A ;M) :(3) The arguments of Andr�e ([1], x20), for the homology of a separable �eldextension generalize to show that this can be deduced from (1), (2) and the longexact sequence of a triple, as was observed by Quillen ([14], x5). �6. A productIn this section we prove the following theorem, giving a graded anti-commutativeproduct in the �-cohomology of a commutative algebra. This product is not asso-ciative. We believe it is a graded Lie product, but we have not yet veri�ed all thedetails of the Jacobi identity.6.1 Theorem. There is a graded anti-commutative product in �-cohomology[�;�] : H� l(B=A ;B)
H�m(B=A ;B)! H� l+m(B=A ;B) :We begin by explaining the idea of the construction, which mimics the Lie bracketin Hochschild cohomology [6]. We recall that this is de�ned as a graded commutatorof circle products, where the circle product f � g is an alternating sum over i of`substitution of g into f in the i-th place'. As in x5, realization using the tree operadgives rise to the following bicomplex for �-cohomology of a discrete commutativealgebra B, in which (as before) � denotes the complement of the basepoint in theset � of the category S1:C� p;q(B=A ;B) = Hom��Cq+2(S1)
S1 Cp�1( ~T�; T�)�
S1 B
�; B�� HomS1�Cq+2(S1)
S1 ~Cp�2(T�); Hom(B
�; B)� :



OPERADS AND �-HOMOLOGY OF COMMUTATIVE RINGS 23For cochains f 2 C� l, g 2 C�m, the bracket [f; g] is de�ned using a di�erencef � g � (�1)lmg � f where f � g 2 C� l+m is the sum over all possible ways of`inserting g into f '; as indicated schematically by the diagramf g @@�� ��@@However, it is necessary to use a diagonal approximation in the construction.Lack of strict commutativity complicates matters and forces us to add a correctionterm to our bracket.Now we give the details of the proof of Theorem 6.1. The �rst ingredient is thefollowing co-operad structure (which is closely related to a co-operad discussed byGinzburg and Kapranov ([10], x3.5)).6.2 Lemma. The chain complexes f eC�(TU0)[�2] ; U0 2 S1g form a co-operad.Proof. We de�ne �V;W : eC��2(TU0)! eC��2(TV 01)
 eC��2(TW 0), for U0 = V 0 tW .An internal edge in a U0-tree t divides the tree into two parts. If t has an internaledge such that one of these parts is labelled by V 0 and the other byW , then �V;W (t)is given by cutting t at this internal edge to produce a tree labelled by V 01 anda tree labelled by W 0. If t has no such internal edge we set �V;W (t) = 0. (Thenew labelling sets V 01, W 0 are best thought of as quotient sets of U0 obtained byidentifying all elements of W , V 0 respectively.) It is easy to see that the �V;W 's arechain maps, satisfying the required co-associativity condition. �Secondly we need a diagonal approximation on the chains on the category S1.Recall that such a diagonal approximation � exists and that for the bar resolutionit may be chosen to be strictly coassociative and cocommutative up to homotopy,� ' ��. The homotopy, H say, is itself commutative up to homotopy. Nowwe combine the diagonal approximation � with taking induced isomorphisms onquotient sets. For each partition U0 = V 0 t W we have a chain map ��V;W :C�(S1)! C�(S1)
 C�(S1),['1j : : : j'k] 7!Xi [ �'1j : : : j �'i] �'i+1 : : : �'k 
 '̂1 : : : '̂i['̂i+1j : : : j'̂k] ;where the ''s start at U0, the �''s at V 01 and the '̂'s at W 0. We denote by �Hsuch maps constructed with the homotopy H in place of � and so on.Finally, we have the structure maps of the endomorphism operad of B, s : Hom(B
S ; B)
Hom(B
T ; B)! Hom(B
StsT ; B) ;for each element s of S.Now the map � � � : C� l 
 C�m ! C� l+m is given byf � g = YU02S1 XU0=V 0tW  ~1(f 
 g)(1
 � 
 1)(��V;W 
 �V;W ) ;



24 ALAN ROBINSON AND SARAH WHITEHOUSEwhere � is a suitably signed switch of factors and ~1 is the image under �'1 : : : �'k of1 2 V 01.Now consider the graded commutatorhf; gi = f � g � (�1)lmg � f :We check how this behaves with respect to the di�erentials. Since the ��V;W 's arechain maps, we have d00(f � g) = (�1)md00f � g+ f �d00g, for the vertical di�erentiald00. The horizontal di�erential, d0, consists of the internal boundary in the treespaces � plus extra terms, d00 = � +D say. Again �(f � g) = (�1)m�f � g + f � �g,since the �V;W 's are chain maps. Analysis of the identi�cations in the cotangentcomplex shows that D can be expressed in terms of the circle product. SinceB is strictly commutative, we may consider the product cochain � 2 C� 1; thatis �(?S0)(
s2Sbs) = Qs2S bs, where ?S is the star tree labelled by S0. ThenDf = f � �� (�1)l� � f . A calculation showsDhf; gi = hDf; gi+ hf;Dgi+E(f; g) ;where E(f; g) 2 C� l+m+1 is an error term which results from the diagonal approx-imation not being strictly commutative. It can be described as follows.For U0 = X0 t Y t Z we de�ne �X;Y;Z : eCp(TU0) ! eC�1(TX012) 
 eCp0(TY 0) 
eCp�p0�1(TZ0), as follows. Suppose a U0-tree t has exactly two internal edges meet-ing at the root, the part above one being a subtree labelled by Y and the part abovethe other being a subtree labelled by Z. Then �X;Y;Z(t) is given by splitting thetree t in the evident manner at these internal edges into a star tree labelled X012and two subtrees labelled Y 0 and Z0. If the tree t cannot be split as indicated weset �X;Y;Z(t) = 0.We haveE(f; g) = YU02S1 XU0=X0tY tZ  2( 1 
 1)(�
 f 
 g)(1243)(�����Y;Z 
 �X;Y;Z) ;where the permutation (1243) is simply the necessary reordering of factors (withappropriate sign). Now de�ne f � g 2 C� l+m by the same formula as for E(f; g),but using the homotopy H to replace ����� by �H . Then, by construction, wehave d00(f � g) = (�1)md00f � g + f � d00g + E(f; g) and by considering the maps ��it is not hard to check that d0(f � g) = (�1)md0f � g + f � d0g.Finally, de�ne a bracket by [f; g] = hf; gi+ f � g :From the discussion above, this map is well-behaved with respect to the di�er-entials and so induces a map in cohomology.Using the fact that H is commutative up to a homotopy, H 0 say, we may con-struct a homotopy between [f; g] and �(�1)lm[g; f ]. So the bracket is gradedanti-commutative in cohomology. This completes the proof of Theorem 6.1. �Remarks. The bracket described above is compatible with the Lie product inHarrison cohomology ([7], x5.7). For 0-cocycles it is simply the usual bracket ofderivations.



OPERADS AND �-HOMOLOGY OF COMMUTATIVE RINGS 25If n is odd or the characteristic of B is 2, then the circle product g 7! g�g passesto cohomology giving an operation H�n(B=A;B)! H� 2n(B=A;B).If the same constructions are carried out in the A1 situation of x4, the errorterm E(f; g) is always zero and one recovers the Lie product of Gerstenhaber onHochschild cohomology ([6], x7).



26 ALAN ROBINSON AND SARAH WHITEHOUSEAppendix A: Acyclicity of KA(A;M)Contraction of a certain complex without permutationsWe construct, then contract, a certain chain complex related to KA(A;M). It isobtained by glueing together the chains on the various tree spaces ~Tn, for n � 2.For simplicity we may as well take M to be the ground ring A. The constructionof our complex K1 requires a labelling convention for trees, which is detailedbelow. The contraction requires an ordering convention for the edges of a tree.Both these conventions are somewhat arbitrary at this stage, but they have to becompatible with each other.Ordering convention. Let t 2 ~Tn be an n-tree. It therefore has a root labelled 0,and leaves labelled 1; 2; : : : ; n. Let �i be the arc (shortest path) in t from the leaf i tothe root. Then t = Sni=0 �i. We introduce a total ordering on the set of edges of t asfollows. If x; y are edges, then x precedes y (written x < y) if either x and y are insome common arc �i with y nearer the root, or minfi j x 2 �ig > minfj j y 2 �jg.This does de�ne a total ordering, in which an internal edge occurs at the �rstmoment after all edges above it have been counted. When no internal edge isavailable, the next leaf (in descending order) is taken. So the leaf n is, perversely,�rst. The root is last.The trees t=x and tnx. An internal edge x in an n-tree t divides the tree into two.The portion including the root (and the edge x itself) is a sub-tree called tnx. Theother part, containing some leaves and x itself but not the root, is called the sub-tree over x and is written t=x. It is much better to regard t=x as the identi�cationspace obtained by crushing the sub-tree tnx to a single edge, and tnx as obtainedby identifying t=x to an edge. (If x is a leaf or the root of t, the symbols t=x andtnx are interpreted as either the whole of t or the tree consisting of a single leaf, asappropriate.) Now we have to decide how to label these quotient trees.Labelling convention. A quotient tree such as t=x is naturally labelled by subsetsforming a partition of the set f0; 1; : : : ; ng, because a new leaf or root inherits allthe labels on the subtree it came from. We replace these subsets by 0; 1; : : : ; r,labelling the subsets in increasing order of their minimal elements.The point of the labelling convention is that the conventional ordering introducedabove is compatible with identifying a subtree to a single edge, provided one regardsa subtree as enumerated when all its edges have been enumerated. For instance, asubtree containing the root is always labelled 0, and comes last in the conventionalordering.Now we are ready to start de�ning our chain complex. To begin with we usereduced cubical chains, because ~Tn is naturally a cubical complex.De�nition. Let K 01 be S1n=2K 0n, where the complexes K 0n are de�ned inductivelyas follows:(1) K 02 is the chain complex C�( ~T2) of the one-point tree space ~T2(2) for n � 3, suppose that we have already de�ned the complex K 0n�1 as aquotient ofL2�i<n C�( ~Ti). Then the complex K 0n is obtained by attachingC�( ~Tn) to K 0n�1 along the subcomplex C�(Tn) of fully-grown trees. Theattaching map 'n�1 : C�(Tn) ! K 0n�1 takes the generator corresponding



OPERADS AND �-HOMOLOGY OF COMMUTATIVE RINGS 27to an n-tree t with fully-grown edge x to the class (�1)n�rt=x+(�1)r+1tnxin K 0n�1, where r is the number of leaves in t=x.The previous identi�cations in K 0n�1 ensure that the attaching map is well-de�nedand independent of the choice of the edge x, and evidently Kn is by constructiona quotient of L2�i�n C�( ~Ti). The cubes t=x and tnx are of course labelled by theconvention above, and oriented by the ordering convention. It should be noted thatwhenever t has more than one internal edge, at least one of the cubes t=x and tnxis a degenerate face.Subdividing K 01. We shall show that there is a natural, geometrically-inspiredcontraction of the complex K 01. It is not easy to describe in terms of the cubicalchains, because geometrically the image of ~Tn is deformed through ~T2n in a waywhich is not cellular, but diagonal, on the cubes.Therefore we replace each cubical complex ~Tn by its natural simplicial subdivi-sion, in which each r-cube is replaced by r! r-simplices. (An n-tree belongs to one orother of these, depending upon which internal edges are longer than which others.Diagonal simplices in ~Tn contain trees having certain edges of equal length.) Everycubical chain is a chain of the simplicial subdivision, so we have enlarged C�( ~Tn);and we make identi�cations among these exactly as before to obtain a chain com-plex K1, quasi-isomorphic to and containing K 01. But we continue to use cubesas blocks of simplices (sums of generators) in K1.Informal description of the contraction. The contraction of K1 closely fol-lows this geometrical idea. A labelled n-tree t passes through N stages t0; t1; : : : ; tNduring the homotopy, where t0 = t and N is the total number of edges of t. In thetree ti there are two identical copies of each of the �rst i edges in the conventionalorder, and one copy of the others. As identical edges must have the same length,ti represents a diagonal cube in some ~Tn+j having the same dimension as t. Thehomotopy connecting ti�1 and ti is represented by a tree �i like ti but with one newedge below the two copies of the ith edge, connecting the most recently-doublededge to the undoubled part. This is a cube of dimension one higher. Shrinkingone undoubled edge, or two identical edges, to a point is a cubical face operator:therefore �i has ti�1 and ti as faces. Finally, tN is the sum of two copies of t. Amore formal description follows.The double of a tree. Let t be an n-tree. The double Y (t) is the 2n-tree obtainedby taking two identical copies t0 and t00 of the tree t, and grafting them by the rootsonto the two leaves of the unique tree in ~T2. Pairs of identical edges have thesame length. We label the result as follows. The two leaves formerly labelled i aremarked i� 12 and i in t0 and t00 respectively. Then all labels are multiplied by twoto give integers.The construction �i. We actually de�ne �i(t) and ti by induction on i. We sett0 = t. If ti�1 has been de�ned, and xi is the ith edge of t in the conventionalordering, we de�ne �i(t) to be the result of grafting the double Y (t=xi) by its rootonto the leaf xi of ti�1nxi. We de�ne ti by shrinking the grafted internal edge(formerly the root of the double Y (t=xi)) of �i(t) to a point. It follows from theinductive de�nition that ti contains two copies of edges x1; : : : ; xi and one copy ofthe higher-numbered edges. We note that �i(t) and ti have been de�ned cube bycube, or a block of generators of Kn at a time.



28 ALAN ROBINSON AND SARAH WHITEHOUSEWe have to label ti and �i(t). As for the doubling construction, we give the twocopies of the leaf formerly designated i the labels i � 12 and i, without changingthe labels on the undoubled leaves. Then we replace the labels in bijective order-preserving fashion with the integers 1; 2; : : : ; s for some s.Example. t �8(t)�� ��@@ @@�� ��@@ @@�� ��@@ @@0 01 12 23 34 456 78 !!@@�� aaa��@@ 68 1012 5 711913De�nition. If t is a cube corresponding to a tree-shape with a total of N edges,we de�ne �(t) =PNi=1(�1)i�i(t).We claim that this de�nes a contracting homotopy of K1 by specifying it onthe generating simplices, a cubical block at a time. To prove this, we must verifythat @�+�@ = 1� �, where � : K1 ! K1 factors through the chain complex ofa point. So we have to investigate how � commutes with respect to face relations.This includes verifying that � respects the identi�cations used to de�ne K1.As we are still working with cubical blocks inK1, even though some of them maybe diagonal cubes with certain coordinates equal, it is the cubical face operatorswe have to check. Let xi be the ith edge of a tree t corresponding to a certaincube, also denoted t, in K1. If xi is an internal edge, there is a face operator @icorresponding to shrinking the length of xi (and of all edges forced to have the samelength) to zero. When the length of xi stretches to 1, we have the opposite face "iof the cube, which by construction of K1 is identi�ed with t=xi + tnxi (which isthe zero chain when xi lies between two internal edges of t).By checking the geometrical details, we can now verify a whole slew of \cubicalidentities" such as (to give one instance)"i�j(t) = � t=xi � t=xi +�j�f+1(tnxi)when xi is an edge of t=xj (which implies i � j) and where f denotes the numberof edges of t=xi. The enumeration of faces is more complex here than in the caseof the usual simplicial or cubical identities, because of the branching of trees. Butsome of the formulae simply assert that a certain face is degenerate, and is thereforea zero chain. For instance, the above formula gives a non-zero right hand side onlyin two cases: �rst, when xj is the root of t and i = j; second, when xi has nothingbut leaves above it.In calculating these identities it is essential to remember that @i a�ects identicaledges simultaneously and not separately, and likewise for "i.



OPERADS AND �-HOMOLOGY OF COMMUTATIVE RINGS 29The cubical identities in full. Let xi and xj be edges of t and let f be thenumber of edges of t=xi. We denote the number of free edges (leaves plus root) ofa tree s by l(s). Then(1) If i � j and xi is an internal edge or the root of t=xj"i�j(t) = (�1)l(�j(t)nxi)t=xi + (�1)l(�j(t)nxi)t=xi +�j�f+1(tnxi) :(2) If i < j and xi is an internal edge of tnxj"i�j(t) = (�1)l(�j(t)nxi)tj�1=xi +�j�f+1(tnxi) :(3) If i � j, xi is an internal edge of t and xj is the qth edge of t=xi"i+1�j(t) = (�1)l(�j(t)=xi)tj�1nxi + (�1)l(�j(t)nxi)�q(t=xi) :(4) For all i such that xi is a leaf of t"i+1�i(t) = �ti�1 + (�1)l(ti�1)�1(t=xi)(5) If i > j, xi is an internal edge of t and xj is the pth edge of tnxi"i+1�j(t) = (�1)l(�j(t)nxi)tj�1=xi + (�1)l(�j(t)=xi)�p(tnxi) :(6) If i < j and xi is an internal edge of t@i�j(t) = �j�1(@it) :(7) For all i @i�i(t) = ti�1 = @i�i�1(t) :(8) If i > j and xi is an internal edge of t@i+1�j(t) = �j(@it) :(9) If i � j �i�j = �j+1�i :The �rst �ve identities, together with the labelling convention, imply that �is compatible with the identi�cations used in de�ning K1, and is therefore well-de�ned. The fourth identity gives, according to the dimension of the cube t,"2�1(t) = � �t if dim t > 0�t+ (�1)l(t)�2 if dim t = 0;where �2 is the unique 2-tree. The �rst identity gives, when xN is the last edge(root) of t "N�N (t) = � (�1)l(t)+12t if dim t > 0(�1)l(t)+12t+ �2 if dim t = 0:>From the cubical identities, it follows that � is a chain homotopy from 1 + �,where 1 is the identity map and � is a point map as above, to twice the identitymap. (There is additional checking to be done on 0-chains; � is given by �(�n) =(�1)n(n� 1)�2, where �n denotes the star tree with n leaves.) Therefore 1� � isnullhomotopic by the chain homotopy �, and K1 is contractible.



30 ALAN ROBINSON AND SARAH WHITEHOUSEAcyclicity of KA(A;M)The chain complex KA(A;M) is constructed as the co�bre of a map from apartial realization jMj0 to M . It very easily follows that KA(A;M) is acyclic ifjMj0 is contractible; so this contractibility is what we have to prove. It is su�cientto treat the case when the coe�cient module M is A.We describe jMj0. Just asK1 in the previous section was constructed by glueingtogether the tree spaces ~Tn according to certain labelling conventions, so jMj0 isobtained by glueing together the spaces Cn=�n of a co�brant cyclic E1 operad C,for which we shall use the tree operad. (In the new context, it can be seen that thesomewhat arbitrary labelling convention is actually quite immaterial: a di�erentchoice leads by conjugation in symmetric groups to homotopic glueing maps, andso to a quasi-isomorphic result. But a choice has to be made.)Thus jMj0 is an extended version of K1, incorporating the actions of the sym-metric groups. One tries to contract it by applying �brewise the contraction ofK1. This amounts to constructing a coherent system of higher homotopies amongthe contractions obtained by twisting the original contraction by all elements ofthe symmetric group. One expects to be able to do this since, if � and � are twocontractions of a complex, then �� is a homotopy of homotopies from � to �.Construction of jMj0. We construct jMj0 using the co�brant tree operad T of1.5. Since the symmetric group �n acts trivially on the nth tensor power of A overitself, the realization is built by glueing together the complexes Tn=�n. The freechain complex Tn=�n has generators[�1j�2j : : : j�k]
 tin dimension k + dim t, where k � 0, �1; : : : ; �k 2 �n, and t is a simplex (or cube)of the tree space ~Tn. The boundary is given by@([�1j�2j : : : j�k]
 t) = [�2j : : : j�k]
 t+ k�1Xj=1(�1)j [�1j : : : j�j�j+1j : : : j�k]
 t+ (�1)k[�1j : : : j�k�1]
 �kt+ (�1)k+1[�1j�2j : : : j�k]
 @twhere @t is the boundary in ~Tn, and �kt is de�ned using the permutation action of�n on the labels of ~Tn.The identi�cations which form jMj0 from the chain complexes Tn=�n mirrorthose used to form K1 from the ~Tn. In the latter case, we recall, when an internaledge xj of t has length 1, the chain t of K1 is identi�ed with t=xj+ tnxj , which aretrees labelled by our convention. This labelling convention is su�ciently functorialto allow us to identify, when xj has length 1, the chain [�1j : : : j�k]
 t with[�̂1j : : : j�̂k]
 t=xj + [��1j : : : j��k]
 tnxjwhere �̂i and ��i are the induced permutations of conventional labelling sets for t=xjand tnxj . For instance, if �̂k; : : : ; �̂i+1 have already been de�ned, then �̂i is uniquely



OPERADS AND �-HOMOLOGY OF COMMUTATIVE RINGS 31determined by the stipulation that �̂i�̂i+1 : : : �̂k(t=xj) be the conventional labellingof (�i�i+1 : : : �kt) = xj. By these means we can de�ne cubical face operators "j injMj0 just as in K1.In a totally analogous way we can extend the de�nition of the operators �j tojMj0, setting �j ([�1j : : : j�k]
 t) = [��1j : : : j��k]
�j(t)where [��1j : : : j��k] is the induced string of permutations of the conventional labellingset of �j(t). We de�ne � to be the alternating sum P(�1)j�j , but we can notexpect this to be a contraction, because of the form of the boundary operator injMj0. Nor is it true that ��i� = ��i, because the action of �n does not preservethe conventional ordering which is essentially used in the de�nition of �.In the following de�nition and all that follows, we use the notation �� to denoteany permutation induced by � on a set of tree labels derived by our conventions.The context always implies exactly what the trees in question are, so it is notnecessary to burden the notation with any heavy details.De�nition. We de�ne an operator ~� on the chains of jMj0 by setting~�([�1j : : : j�k]
 t) = kXj=0 �(�1)j [��1j : : : j��j ]
���j+1���j+2� : : :���k�(t)	 :Theorem. The chain complex KA(A;M) is acyclic.Proof. We have remarked above that it is su�cient to prove that jMj0 is con-tractible, and that we may take M to be A. We simply claim that the homotopy~�, de�ned above, is a contraction of jMj0.To see this, one repeatedly uses the relation @�+�@ = 1�� in K1 to calculatethat when t is a tree with at least one internal edge, the relation@(���j+1���j+2� : : :���k�(t)) = ��j+1���j+2� : : :���k�(t)+ k�j�1Xr=1 (�1)r���j+1� : : :���j+r��j+r+1� : : :���k�(t)+ (�1)k�j���j+1� : : :��kt+ (�1)k�j�1���j+1� : : :���k�(@t)holds in jMj0, and a minor variant when t is a star-tree. Then straightforwardcalculation with the formulae de�ning @ and ~� gives@ ~� + ~�@ = � 1 in dimension > 0,1� � in dimension 0,where � is a point map. The theorem is therefore proved. �
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