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OPERADS AND I'"HOMOLOGY OF COMMUTATIVE RINGS

ALAN ROBINSON AND SARAH WHITEHOUSE

27 May 1998

INTRODUCTION

In this paper, we construct and investigate the natural homology theory for
coherently homotopy commutative dg-algebras, usually known as E,-algebras. We
call the theory I'-homology for historical reasons (see, for instance, [3]).

Since discrete commutative rings are F,, rings, we obtain by specialization a
new homology theory for commutative rings. This special case is far from trivial.
It has the following application in stable homotopy theory, which was our original
motivation and which will be treated in a sequel to this paper. The obstructions to
an E., multiplicative structure on a spectrum lie (under mild hypotheses) in the
['-cohomology of the corresponding dual Steenrod algebra, just as the obstructions
to an A-structure lie in the Hochschild cohomology of that algebra [15].

The I'-homology of a discrete commutative algebra B can be understood as a
refinement of Harrison homology, which was originally defined as the homology of
the quotient of the Hochschild complex by the subcomplex generated by nontrivial
shuffle products. It is better defined as the homology of a related complex which
one obtains by tensoring each term B®™ with a certain integral representation V,, of
the symmetric group ¥,,, and passing to >I,,-covariants. Harrison theory works very
well in characteristic zero, but not otherwise. A more satisfactory theory necessarily
involves the higher homology of the symmetric groups, not only the covariants
Hy. Our I'-homology theory is constructed to do just that. It is furthermore
completely different (except in characteristic zero) from André/Quillen homology,
which is related to a completely different class of problems. (Polynomial algebras
are acyclic for André/Quillen theory by its construction; but they are not generally
free Eo-algebras, and their I'-homology is generally non-zero.)

There are two further significant generalizations. First, there is a cyclic variant
of the I'-homology of any E., dg-algebra. This arises very naturally from our
construction in §3. The cyclic theory, like standard I'-cohomology, is connected with
an obstruction-theoretic problem. A full account will appear elsewhere. Second, the
domain of definition can be widened from the abelian situation of dg-algebras to the
case of spectra in stable homotopy theory, so that one can define the I'-homology
of an E, ring spectrum. This is analogous to extending Hochschild homology to
topological Hochschild homology (which includes Mac Lane homology as a special
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2 ALAN ROBINSON AND SARAH WHITEHOUSE

case). The generalization to spectra is not difficult, but we have postponed the
details to another sequel.

We mention that F,, homology was invented independently by the first author
and by Waldhausen during the 1980’s, and outlined in various lectures, including a
plenary lecture by the first author to the Adams Memorial meeting in 1990. Some
details subsequently appeared in the second author’s thesis [19] and a preprint
[16]. Meanwhile Kriz [13] and later Basterra [4] were developing, by methods very
different from ours, an E., cohomology theory for ring spectra, which is extremely
likely to be equivalent to ours.

The paper is organised as follows. Section 1 contains material on operads. In
Section 2 we introduce complexes over operads and define the realization of such
a complex (2.8). A cyclic variant of the construction is also given (2.9). Section
3 covers the most important case of realization, namely the I'-cotangent complex
of an F, algebra. This section also contains the definitions of I'-homology (3.2)
and cyclic I-homology (3.10), and a transitivity theorem (3.4). (The proof of a key
acyclicity lemma is deferred to Appendix A.) In Section 4 we further justify our
constructions by showing that their A,, analogues lead to Hochschild and cyclic
homology of associative algebras. Section 5 is devoted to the special case of T'-
homology of discrete commutative algebras. It is shown that for pairs of Q-algebras
I-homology coincides with André/Quillen homology (5.6) and an example is given
to show the theories are different in general. The final section describes a product
in I'-cohomology of a discrete commutative algebra.

1. OPERADS, CYCLIC OPERADS AND COFIBRANCY

We work in the category of chain complexes (dg-modules) over a commutative
ground ring K. (We might equally well, of course, have chosen simplicial modules.)
Our principal definitions use Getzler and Kapranov’s theory [8] of cyclic operads,
but we require Markl’s non-unital version which is described in [9].

1.1 Operads. Let S denote the category of finite sets S and isomorphisms of
sets, S, the subcategory of non-empty sets, and S! the category of based finite
sets and isomorphisms. (To avoid foundational difficulties, we assume without
further mention where necessary that these have been replaced by equivalent small
subcategories. Our constructions do not depend upon the choice of subcategory.
One can for instance take just one set {1,2,...,n}in S for each n > 0, and similarly
{0,1,2,...,n} for each n > 0 in S, so that both categories become disjoint unions
of symmetric groups.) An operad C has objects (chain complexes) Cs indexed by
all finite sets S, isomorphisms ¢, : Cs — Cp induced by isomorphisms ¢ : S — T
of sets, and composition maps

Ot & CS ®CT — CSIJtT

for all finite sets S and 7', and all elements t € T, where S L; T' is the deleted
sum S U (T \ {t}); these data must satisfy standard conditions of functoriality and
associativity of composition. The induced isomorphisms give a left action of the
symmetric group g of automorphisms of S on Cg. One thinks of Cg as a parameter
space of operations (in the sense of universal algebra) with inputs labelled by S,
and a single output; the induced isomorphisms correspond to permutation of inputs,
and the composition o; to substitution of the output of Cg for the input labelled ¢ in
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Cr. The operad C is said to be F, if, for each S € S, the complex Cg is contractible
and Yg-free. It is obviously sufficient to check this for S = {1,2,...,n}, for all
n > 0.

The standard example of an E., operad is D, in which Dg is the nerve of the
category S/S of isomorphisms of finite sets over S. Composition in D is induced
by the deleted sum functor in S.

1.2 Cyclic operads. A cyclic operad can be defined as an operad with extra
structure (a ,qi-action on Cy5 . n3) which makes composition symmetric by
putting the ‘output’ variable 0 on the same footing as the n ‘inputs’: see [8].
Then it is clearly desirable to change the notation, and denote by Cg o what was
previously denoted Cg. Confusion can arise, so we stress that from now on we shall
use the ‘cyclic’ convention, and include the output in the labelling set.

It seems best to define cyclic operads directly. A cyclic operad is a functor £
from the category S of non-empty finite sets to the category of chain complexes,
together with composition operations

o5t :Es @Er — Esu, T

for all finite sets S,T" with at least two elements, and all choices of s € S, t € T.
Here S U, + T' denotes the deleted sum (S'\ {s}) U (T"\ {t}), and o4, is required to
be a natural transformation of functors from S* x S to chain complexes having the
associativity property

Os,t(1 X Ot’,u) - Ot’,'u,(os,t & 1)
forse S, t,t' € T, t#1t',ue U, and the symmetry property
Tx " Os,t - Ot,s " T®

where 7, : Esu, 7 & €7, 5 18 induced by the isomorphism of sets and 7g : €5 ®
Er ~ E7 ® Eg interchanges factors and introduces the usual sign.
Some further notation will be needed. The composition

Os,t . 55®5T —>5V

is associated with a partition of V into two subsets S\ {s} and T\ {¢t}. Conversely,
let V= P LU Q be any partition of V' into two non-empty sets. We can define the
associated composition by writing P! and Q? for the disjoint unions P U {1} and
Q) U {2}, and taking

019 :5131 ®5Q2 — 5V .

1.3 F cyclic operads. We call £ an E,, cyclic operad if for all S € S the
complex &g is contractible and Y g-free. It suffices to check this for S = {0,1,... ,n}
for allm > 1. The operad D defined as in 1.1 is an F, cyclic operad, the composition
again being induced by the deleted sum functor.

1.4 Cofibrant operads. We adopt the notation introduced in 1.2 for adding new
points to a set: S', S? and S'? are to denote S U {1}, SU {2} and S U {1,2}
respectively. For each partition V = S UT of V we have a composition map
091 : Eg2 ® Er1 — Ey. In a cofibrant operad, provided S and T each have more
than one element, we want this map to be the inclusion of a face of &y, so we
require it to be an (equivariant) cofibration; and we require faces to intersect only
in faces of faces. This leads to the following.
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Definition. Let 0fy denote the coequalizer of the maps

091 ®1
@ Ep2 ®5Q12 ® Epr e @ Eg2 @ Emm
V=PLUQUR 1®021 V=SuT

where the sums are indexed by partitions of V' into subsets of which S and T, and
hence P and R, have at least two elements each. Associativity of composition im-
plies that o9 induces a Yy -equivariant map 0€y — £y, which we call the inclusion
of the boundary . The cyclic operad & is cofibrant if

(1) for every V the inclusion of the boundary is a ¥y -equivariant cofibration;

(2) there is a given augmentation ¢ : £g — K when E has exactly two elements,
invariant with respect to induced maps ¢,, such that for every partition of
aset V =W U {w} into a set and a singleton, the mapping

Ewr ® Eay 25 Eyn @ K =~ Eyn 25 &y

where 1 is the evident isomorphism W1 — W U {w} = V, coincides with
mapping given by the composition oy ».

Cofibrant non-cyclic operads are defined in a completely analogous way.

1.5 The E., tree operad 7. We now construct a cofibrant E., cyclic operad.
The cyclic operad D will not do: the faces of Dg intersect in unacceptably large
subcomplexes, so that 0Dg — Dg is not injective. On the other hand, we can
form another cyclic operad by taking £s to be the space of trees [17] with ends
labelled by the set S, and o, ; to be the operation of grafting the end labelled s to
the end labelled ¢ to produce a new edge of length 1 . This operad has every £g
contractible, and it is cofibrant; but it is not an F,, operad because 33, does not
act freely on &,. (In the realm of A, operads, which are indexed by ordered finite
sets and have no ¥, action, there is a corresponding operad in which the objects
are the complexes of cyclically-labelled trees in the plane: it is the analogue of the
topological operad of Stasheff polyhedra see [5].)

By combining the two constructions we obtain a cofibrant E., cyclic operad, the
tree operad T, as follows. We take Tg to be the chain (bi)complex associated with
the bisimplicial set in which a (k,1)-bisimplex consists of a k-simplex of the nerve
of the category S/S

S, oS, L Py g,
1
S

together with an [-simplex of the space Tsk of trees labelled by the set Si; and the
simplicial operators are defined in the obvious way. The composition maps oy, in
T are defined by using the deleted sum functor in the category S and the grafting
of trees, as above. The operad 7 inherits the E., property of D. We show that it
also has the cofibrancy of the operad of trees. To show that the inclusion of the
boundary 07y is an equivariant cofibration, we have to verify that it is induced
by an injective map of bisimplicial sets, and that the group of automorphisms of
V acts freely on its complement. The freeness follows from the freeness on Dy, .
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For injectivity, the essence is that a simplex lies in the face corresponding to a
decomposition V' = S LT if and only if it consists of trees in which there is an
internal edge, of maximal length, which separates the labels S from the labels T
and therefore two faces meet only where two specified edges have maximal length,
which is a face of a face (or is empty, as appropriate).

2. ALGEBRAS, MODULES AND REALIZATION

2.1 Algebras and modules over an operad. Let C be a cyclic operad, and K
the ground ring, which is commutative with unit element.

Definition. An algebra over C is a chain complex (of K-modules) A together with
structural maps pugs : Cgo ® A®9 — A for all (non-empty) sets S € S, which are
natural in S and satisfy the usual condition

pst(1® pr) = psur(o1o ® 1)

of equality of maps Cgo1 ® Cpo @ A®GUT) 5 A,

By way of explanation we note that 0 has been adjoined to S and T as the
‘output variable’ for the operad. The element 1 in S°! is a dummy label associated
with the partition S LT, as introduced at the end of 1.2.

When the smallest model is chosen for S, which is the disjoint union of the
symmetric groups ¥,, for n > 1, the naturality condition in the definition simply
means that pu, is equivariant and so defines a map C,, 11 ®x, A®™ — A, where ¥,
acts on Cp41 on the left (fixing the output label) and on A®™ on the right.

Definition. An A-module over C, when A is a C-algebra as above, is a chain
complex M together with structural maps vg : Cgor @ A®S @ M — M which are
natural in S and satisfy the usual module conditions

VS(l X l/T) = VSI_IT(Ol() X 1)
as maps Cgor @ Cpon @ A®SUT) @ M — M, and
Vg2 (1 (29 ,U/T) = VSuT(Ozo () 1)

as maps Cgoiz ® Cro @ A®SUT) @ M — M.

The above algebras and modules are non-unital. This defect will be remedied in
the next section.

2.2 Algebras and modules over an F,, operad.

From now on it is a standing assumption (except where the reverse is stated)
that all operads are cyclic and E,,. An algebra A over such an operad C will
be called an E, algebra. Since C is automatically augmented over the standard
commutative algebra operad, the ground ring K is an F, algebra.

For the purposes of this paper, it suffices to define subalgebras and submodules in
a naive way as chain subcomplexes which are closed under the appropriate operad
action. If A is a subalgebra of B over C, there is an inclusion homomorphism A — B,
and we call B an A-algebra over C. We shall usually work with K-algebras, where
K is the ground ring regarded as an algebra over C. The unit element of K then
serves as a unit for the algebra. When considering modules over a K-algebra A, we
require the induced K-module structure to be the standard, strict one.



6 ALAN ROBINSON AND SARAH WHITEHOUSE

2.3 Cyclic and non-cyclic complexes over an operad.

We now aim to construct the homotopical cotangent complex K(B/A; M) when
B is an F,, K-algebra, A a K-subalgebra, and M a B-module. (Although very
different in appearance and in construction, this will play in our theory the role
analogous to that played in André-Quillen theory by the cotangent complex of [1],

[14]).

Our cotangent complex will be a filtered object obtained by glueing together the
objects Cyo ® B®Y ® M, where V runs through the category S,. (There is also
a cyclic version.) Conceptually it resembles the realization of a simplicial object,
or the analogue described in [18]. Because the realization sometimes has to be
applied to species other than the standard B®Y @ M, it is worthwhile to formulate
a definition of the kind of general object which can be realized.

2.4 Definition. Let C be a cyclic operad. A cyclic C-complex is a cofunctor M
from the category S to the category of chain complexes, together with the following
further data which specify an action of C on M: for each composition

05t : Cs ®Cr — Csu, T
in C there is given a formal adjoint
O:,t :Cs ® MSl_lS,tT — M

(to be thought of as a cap product corresponding to the above cup product) which
satisfies

(1) the naturality condition
P oGy (px @ 1) = 0 (1@ (¢ Us,r 9)")
for all isomorphisms ¢ : (S,s) =~ (S’,s"), ¢ : (T,t) = (T',t') in S;
(2) the associativity condition
034(1 ® 07,) = 034(021 ® 1) : Cg22 @ Cp1 ® Mpusur — Mra

for all finite sets R', §23, T*;
(3) the associativity condition

013(1®0fy) = 015(1®0j3)(T®1) : Cpa @ Crr ® Mpusur — Mg2s

for all finite sets R, S22, T*, where 7 interchanges factors.

There are two associativity conditions above for the same reason as in the definition
of non-cyclic operad: there are two types of iterated substitution to be considered.

2.5 Example. Suppose A is an algebra over the operad C, with structural maps
py : Cyo ® A%V — A. Then we can take Mg = A®?, and define o} , to be

Cs @ ABST) o 0o ADBMsD g BT\ PNDOL 4 o Ja(T\(t}) o, 48T

giving a cyclic C-complex.

Now we need the non-cyclic version, which is slightly more complicated because
the indexing sets have basepoints and there are, as in the definition of operads,
correspondingly more cases to consider. (The basepoint may be in any subset of a
partition.) We consistently write 0 for the basepoint, so that a typical based finite
set is SY, where S is an object of S.
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2.6 Definition. Let C be a cyclic operad. A (non-cyclic) C-complezx assigns to
each based finite set S° a chain complex Mgo depending cofunctorially upon S°,
and to each composition

00,1 : Cso ® Cpo1 — C(SuT)O
in C a pair of formal adjoints
0871 :Cs0 ® M(SHT)O — Mqpo

and
O’LO : Cro1 ® M(SuT)O — Mo

satisfying the analogues of the naturality and associativity conditions (1) (3) of 2.3.
The asymmetry in this definition arises because the composition og ; corresponds
to a partition of V0 = (SUT)? = S UT? into a subset which does not contain the
basepoint and one which does. The first of the two adjoints above evaluates over S,
and takes values in Mpo1, where 1 is a dummy label from the partition; the second
evaluates over TV, and takes values in Mgo, where 0 is a new dummy basepoint for

S.

2.7 Example. Just as the primary example of a cyclic C-complex arises from
an algebra (2.5), so the primary example of a non-cyclic C-complex arises from a
module. In definition 2.6 above, let Mgo = A®S ® M where A is a K-algebra over
C and M an A-module; let of; be us ® 1, where p is the algebra structure, and
ol be 1 ® vy, where v is the module structure.

2.8 The realization of a C-complex.

Let C be a cofibrant cyclic operad, and M a C-complex. We construct the
realization | M| by a process resembling that for realizing a simplicial set. We treat
the non-cyclic case in detail, because it is more important for us, then describe the
differences in the cyclic case, which is important in cyclic I'-homology. There are
two steps in the construction.

First we construct a complex |M|". We take a direct sum over all V0 =V 11 {0}
in S (our category of based sets) having three or more elements

@ CVo ® MVO

|Vo|=3

|M]|" is the quotient of this by the following identifications:
(1) for each isomorphism ¢ : S? ~ T? in S, and all 2 € Cgo, all m € Mo

Cr®m ~ TR@'m;

(2) for each partition V? = S U T? of a set into two subsets (the second con-
taining the basepoint) having at least two elements each, we consider the
associated composition (as in 1.2)

00,1 : Cso ® Cpo1 — C(SI_IT)O = Cyo
and we define

95T . Cg0 @ Cro1 ® M(SuT)O — Cs0®@Mgo @ Cpor @ Mqpor
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by setting
0T = (1®o}) @ (1®op)(T®1)

where 7 interchanges the factors Cgo and Cpo1 and introduces the usual sign.
Then on the component of the boundary 0Cyo ® My corresponding to og 1
we make identifications by requiring

on(z@y)om ~ IT(zr®@yem)

for all z € Cgo, y € Cpor, m € Myo.

The complex |M|" thus defined is a quotient of

@ Crnt1 ®x, Mpi1

n>2

where n + 1 denotes the (n + 1)-element based set {0,1,...,n}. This is because
the identifications (1) imply that it suffices to take one indexing set of each size,
and pass to the quotient by the action of ¥,,. We can define the skeletal filtration
of [M|’ by defining the k-skeleton to be the image of @, <1 Cnt1 ® My q1. Just
as in the standard simplicial realization construction, the identifications (2) satisfy
compatibility conditions which guarantee that the kth filtration quotient of | M|’ is
isomorphic to (Cxy1/0Ck+1) ®x, Mpt1.

We now describe the second step in the construction, which incorporates the
bottom filtration stage Ms. (Since Cs is contractible for an F, operad, and ¥ is
trivial, My is quasi-isomorphic to the expected bottom filtration stage C141 ®x,
Mit1.)

Let V9 be any based set in S! having three or more elements. Take any v € V,
and write T, for V'\{v}. The partition V? = {v}UT, has an associated composition

00,1 : C{U,O} &® CT{)H — Cyo

and action
Oio : CTSI ® Myo — M{v,o} .

The standard isomorphisms 70! = V\ {v}U{0,1} ~ V% and {v,0} ~ {0, 1}, taking
v to 1 in each case, convert this action into a map

Ey - CVO X Mvo — M{O,l} = M2 .

If instead of v € V we select 0 € VO, the other action map of 1 (defined in 2.6)
yields in identical fashion a map

€ : CVo X MVo — M{O,l} = M2 .

Let € = e9—)_,cy €v- This defines, for each V% in S* having three or more elements,
a map Cyo ® Myo — Ms. One can check immediately that the naturality and
associativity conditions in the definition of a C-complex imply that these maps are
compatible with the identifications used in the construction of | M|". Therefore we
have a well-defined map ¢ : [M|" — M. The final realization | M| is defined to be
the cofibre of €. This completes the construction of the realization in the non-cyclic
case.



OPERADS AND I'r-HOMOLOGY OF COMMUTATIVE RINGS 9

2.9 Realization in the cyclic case.

Now let M be a cyclic C-complex, where C is a cofibrant cyclic operad. We con-
struct the cyclic realization | M|, by modifying the construction of 2.8 as follows.
We begin with a sum indexed by all V' in our category S of unbased finite sets
containing at least three elements

@ Cv @ My .

V>3

We alter the identifications to take account of the extra symmetry available in that
there is now no basepoint: they now read

(1) for each isomorphism ¢ : S~ T in S, and all x € Cg, all m € My
Cx®Mm ~ TRp'm.

(2) for each partition V' = S UT of a set into two subsets having at least two
elements each, and we define

8S’T : CSQ QR Crm ® M(SI_IT) — CS2 X MS2 & Cr @ Mp

by setting
05" = (1@o}) @ (1) (rel)

where 7 interchanges the factors Cg2 and C71 and introduces the usual sign.
Then on the component of the boundary dCy ® My corresponding to o9 4
we make identifications by requiring

on(z@y)om ~ IT(x®yem)

for all x € Cg2, y € Cp1, m € My,

We have now completed the description of the first stage, which we denote |M|’Cy,
of the cyclic realization.

The identifications above mean in effect that |[M|’ is a quotient of

@ C’I’L+1 ®En+1 Mn+1

n>2

where Y, 11 is the group of permutations of {0,1,...,n}.
In analogy with 2.8 we now expect to define a map

€ |M|’cy — Cy X3, M,

the cofibre of which would be |[M]|.,. In actual fact a sign intervenes in the repre-
sentation, and we have to replace Cy by a different contractible free o-complex.
The nerve of the category of isomorphisms of two-element sets is a model for the
classifying space BY,, and the nerve of the category of isomorphisms of ordered
two-element sets is its universal cover E3y. Let V' be any set in S having three or
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more elements. Take any v € V, and write T, for V' \ {v}. As in 2.8 we have a
composition
00,1 : Cfv,0y ® Cr1 — Cy
and action
OT,O : CTvl My — M{'u,O} .

Using the isomorphism T)! ~ V, we obtain from the adjoint o}, a map which we
shall denote
O:‘)’O Cy My — M{U,O} .

As {0,v} is an ordered two-element set, we can regard it as a chain of E¥y. We
define

€ CV (29 MV — EYXs ® M{v,O}
by setting

2a) = Y ({0.0) ® 0} (a)) -

veV

This does not yet respect the identifications defining [M|,. But if we denote by

M, the complex My with its Yo-structure twisted by the sign representation, then
€ composes with the quotient map to give a well-defined map

€ ‘M‘,cy — Y, X3, ./\;12 .
We finally define the cyclic realization | M|y to be the cofibre of this map.

2.10 Remarks. (1) The sign in the last stage of the above construction is needed
to ensure cancellation of the unwanted contributions from the two dummy labels
in a partition as in identification 2.9(2) above.
(2) There is a natural map |M| — |[M|, induced by the levelwise quotient
maps Cpy1 ®s, Muy1 — Cni1 ®sx,,, Mpy1, which are well-behaved with
respect, to the identifications in the construction.

2.11 Uniqueness of E., realization.

We now prove that the homotopy type of the realization |[M| or | M|, does not
depend upon the cofibrant cyclic operad C used to construct it, provided that C is
FE. The proof uses the standard idea of comparison of resolutions.

Lemma. LetC and D be E cyclic operads, with C cofibrant. Then there is a map
C — D of cyclic operads, and it is unique up to homotopy.

Proof. We construct ¥, ;-equivariant maps ¢p41 @ Chy1 — Dpy1, commuting
with all composition maps, by using induction on n. We note first of all that
the unit axiom (1.4(2)) for E., operads means that ¢, 41 will always commute
with compositions with Cy and D5, since the axiom reduces this to the naturality
property. Suppose by inductive hypothesis that we have equivariant ¢g4q for all
k < n, commuting with compositions as far as this makes sense. We have to define
©n+1. The boundary 0C,, 41 is by 1.4 a sum of copies of ;i1 ® Cjy1 with 2 <4, 7
and 7 4+ j = n + 1, amalgamated along Cjy1 ® 0Cj41 U 0Ciy1 ® Cj+1. The maps
Yi+1 ® @j41 therefore induce a map 0Cp41 — Dy 41, equivariant with respect to
the induced action of ¥, ;1. Since C is cofibrant and D,,;; is contractible, this map
extends to a X,,41-equivariant map C,,41 — D,,+1, which by construction retains
the compatibility with compositions. Since the induction starts automatically with
n = 1, where the boundary is empty, the inductive proof of existence is complete.
The proof of homotopy uniqueness is similar. [
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2.12 Proposition. If M is a complexr over one FE., cyclic operad, then it is a
complex over every cofibrant cyclic Eo, operad, and the homotopy type of the real-
ization (M| (or | M|y, in the cyclic case) is independent of the cyclic cofibrant E
operad used to construct it.

Proof. Let C and D be cyclic E, operads, with C cofibrant. By 2.11 there is a map
of operads, unique up to homotopy, from C to D. If M is a D-complex, such a map
induces the structure (unique up to homotopy) of a C-complex on M.

Suppose now that ¢ : C — D is a map of F, operads. We show by induction on k
that pr41 is a homotopy equivalence of pairs (Cx41, 0Cr+1) = (Di41, 0Dg41). This
is certainly true for £k = 1, 2, where the spaces are contractible and the boundaries
are empty. Suppose it is true for £ < n. The assembly of 9C,,+1 and 0D,,;1 from
cofibrations of lower spaces in the operads (as in the proof of 2.11) implies that
¢n41 restricts to a homotopy equivalence 0C,,41 — 0D,41. But then C,41 and
D,,+1 are contractible, and the inclusions of the boundaries are cofibrations, so
©n+1 18 @ homotopy equivalence of pairs.

When M has the C-structure induced by the map ¢, there is a skeleton-preserving
induced map |g| : [M|c — |[M|p between the realizations constructed using the
two different operads. On quotients of adjacent skeleta, |p| induces a map

(Cn /OCn) @5, My 2225 (D, /0D, @5, M.,

which is a homotopy equivalence because ¢,, has been shown to be a homotopy
equivalence of free 3,,-complexes. By induction and direct limit, |¢| is a homotopy
equivalence. Hence | M| is independent of the cofibrant E., operad used. A similar
proof works in the cyclic case. [

2.13 The homology of the realization.

Proposition.

(1) Let M be a C-complex, where C is an FEy, operad. Then there is a homology
spectral sequence

El

p-1lg "~ H‘I(EZP %, (Vp ® Mp+1)) = Hp+q71(‘MD

where V), is the representation of X, on the homology of the tree space Ty,
and ¥, acts diagonally on V, ® Mp41.
(2) When M is a cyclic C-complex there is a corresponding homology spectral
sequence n the form
1
B,

1R H(EYp ®s,,, (V; ® Mpy1)) = Hprg-1(|M|cy)

where Vb’ is the integral representation of ¥,41 on the homology of T},.

Proof. The spectral sequence obtained from the skeletal filtration of |[M| or M.y |
is independent of the particular cofibrant E., operad used in the construction.
Choosing the E., tree operad of 1.5 leads to the E! terms given above.

The E;;—l,* term is in effect the hyperhomology of the group ¥, or ¥,,; with
coefficients in the complex V, ® My 1 or V) ® M1, and the differential dzl)y* can
be expressed in terms of transfer in group hyperhomology and the boundary in M.
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Naturally there are the hyperhomology spectral sequence
Hy (3 Vp ® Hy(Mpy1)) = Ep}—l,s-q-t

and its analogue for the second case, available as subsidiary spectral sequences for
calculating the E'-terms.

It is known that the representation Vj, is isomorphic over Z to Hom(Lie,, Z|—1]),
where Lie,, is the Lie representation and Z[—1] the sign representation. The module
Vp’ is related to V,, and therefore to the Lie representations by a short exact sequence

0—>Vp+1—>1nd§z“vp—>vp’—>0.
The complex character of V) is calculated in [17]. [

3. THE I'-COTANGENT COMPLEX AND THE TRANSITIVITY THEOREM

3.1 Introduction. We now apply the general theory of §2 to the case we are really
interested in: the construction of the I'-cotangent complex K(B/A; M) when A is
a subalgebra of the E, differential graded algebra B, and M is any B-module.
In the construction we shall use any cofibrant E., cyclic operad C, such as the
tree operad 7T of 1.5: the result is independent, up to quasi-isomorphism, of the
choice. It is no real loss of generality to assume that A, B and M are flat or
even projective over the ground ring K: the structure of algebra or module over
a cofibrant operad is homotopy invariant, so that one can replace these objects by
projective resolutions; and our realizations are homotopy invariant constructions,
so the choice of projective resolution makes no difference to the result. Similarly
we may assume that A C B is a cofibration.

We also prove a flat base-change result, showing that C(B/A; M) is essentially
independent of the ground ring.

The notation of the above introduction will be used throughout the section.

Let I be the following non-cyclic C-complex, which was mentioned in 2.7. For
each based finite set V? =V 11 {0} in S we put

Kyo =A%V @ M .
For every partition V? = S LU T? of V' into nonempty sets we define
08,1 1 Cs0 @ K(suryo — Ko
by using the algebra structure map p
op1=ps®1®1: Co@A®QATQM — A A®T @ M ,

and we define
Oio :Cpio ® IC(SuT)U — Kgo

by using the module structure map v
olop=1®vr: A*°@Cru@A®T @M — A® @ M .

It follows from the algebra and module axioms that this is a C-complex. Its real-
ization |KC| we denote usually by Kx(A; M), in order to stress that it depends in
an essential way upon the ground ring K.
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3.2 I'-cotangent complex and I'-homology groups. Let A be a subalgebra of
the F algebra B, asin 3.1, and M a B-module, all these being assumed flat over
K. We define the I'-cotangent complex of B relative to A, with coefficients M to
be the quotient

K(B/A;M) = Kx(B;M)/Kkx(A;M).

(Here we have assumed that A C B is a cofibration. In a more general situation
the quotient can be replaced by the cofibre.) The I'-homology of B over A is the
homology of this complex:

HI.(B/A;M)=H.(K(B/A;M)) ;
the I'-cohomology is correspondingly defined by
HI*(B/A;M) = H*(RHomg(K(B/A;B),M) .

3.3 Remark. For theoretical and practical reasons we have chosen to define the
cotangent complex as a quotient. This avoids the need to handle derived tensor
products over F, algebras. It also has the pleasant consequence that the impor-
tant transitivity theorem (3.4 below) becomes trivial to prove. This advantage is
of course an illusion: the counterbalancing disadvantage is that in order for our
definitions to be useful, we have to work to prove that K(B/A; M), and hence

HTI,(B/A; M), are essentially independent of the ground ring K. The proof of this
flat base-change theorem occupies most of the rest of §3, and the Appendix.

3.4 Transitivity theorem. Let A C B C C be inclusions of Ex-algebras, and M
an E C-module. Then there is a cofibration sequence of I'-cotangent complexes

K(B/A:M) — K(CJ/A:;M) — K(C/B:M) — SK(B/A;M)

and therefore a long exact sequence of I'-homology groups

e+ HIW1(C/B; M) — HI,(BJA; M) — HI,(C/A; M) — HI,(C/B; M) — - -

and similarly for cohomology.

Proof. The definitions require A, B and C' to be replaced by corresponding projec-
tive resolutions. Then everything follows from the exact sequence connecting the
cofibres of the three maps in the triple

We now begin on the definitions and lemmas which we shall need for the other
main result of this section, the flat base-change theorem.

3.5 A model for the derived tensor product.

We propose that the derived tensor product of modules over an E., algebra
should be defined by the following construction. In Proposition 3.6 below, we shall
justify it in the case of flat modules over a strictly commutative algebra, which is
the only case we need in this paper.
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Let C be a cofibrant cyclic F, operad. We are going to make a realization like
those in 2.8 and 2.9, but with S or S* replaced by S”, which is the category of
finite sets with r distinct basepoints 0y,...,0,, and isomorphisms of sets which
preserve the basepoints in order. There is formally no problem in extending the
definition given in 2.8 to this case, except that when S LT is a partition of the set
V=Vu {01,...,0,.} in S”, the structural map

Opgq ! Cs'p X MSuT — MTq

must be zero when S contains more than one of the basepoints, as there is then
no natural way to structure T'? as a space with r basepoints. (Here p and ¢ are
dummy labels.) When r > 2, the homology of the realization is much simpler
than the homologies for which we obtained spectral sequences in 2.13, because the
analogues of V), are now free ¥,-modules. That is why the following construction
is valid.

Let A be a C-algebra and let My, ..., M, be A-modules. Suppose that A and all
the M; are flat over the commutative ground ring K. We construct a C-complex M
on the category S” by setting My = M;®---QM,QA®Y when V = VI_I{Ol, oo, 0.}
is a set with r basepoints, and, when V = S U T, taking

Opgq - CSP ® MSI_IT — MT‘I

to be
1® pg, if S contains no basepoint
Opg = 1® v, if S contains 0; and no other
0, if S contains more than one basepoint

where 4 is the structural map for the C-algebra A, and v* is that for the module
M;.

We define the left derived tensor product M, (ELQA M, é}A é}A M, to be the
realization |M].

The following proposition is sufficient justification, for the purposes of this paper,
of the above definition. The proof actually goes rather further, as most of it does
not need R-flatness.

3.6 Proposition. Let R be a commutative algebra over the ground ring K, and
let My, ..., M, (wherer > 2) be complexes of R-modules, in the sense of standard
homological algebra. Suppose that R is flat over K, and all the M; are flat over R.
Then there is a quasi-isomorphism

L L L
M, ®r My @pr---Qr M, ~ M QrM;Qpr---Qr M, .

Proof. For transparency we treat first the case when r = 2. After 2.12, we may
assume that C is the tree operad of 1.5. We shall also need the corresponding
Ay operad, in which the Corq 5,42 is the chain complex of trees which can be
embedded in the plane with labels 0¢,1,2,...,n,02 in cyclic order. This operad
has no permutations. It is well known that C,.q is a subdivision of the Stasheff
operad of associahedra, and that the homology of the nth complex modulo its
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boundary is a single copy of the ground ring. If we construct the realization |M|oq
of the complex
Mo12, no, = M® R®™ ® M,

with respect to Corq, then the El-term of the skeletal spectral sequence is the
bar resolution, and since everything is flat over K we have Ez%,* ~ Torﬁ*(Ml, My).
Examination of the attaching maps in the structure of | M|yq shows that E? = E*>
since R is strictly associative. Indeed we have assumed M; is R-flat, so this is quite
obvious, as Ez%,* ~ 0 for p > 0, and the homology spectral sequence converges to
M, ®r M.

To complete the case r = 2 it now suffices to prove that the S%realization |[M]|,
which we defined in 3.5, is equivalent to the ordered realization |M|oq. There is
certainly a natural map |Moq — | M|, induced by inclusion of operads. This map
respects skeleta, so induces a map of homology spectral sequences. We have to
calculate the El-term in the target spectral sequence. Now the homology modulo
its boundary of the complex of trees with labels {01,1,2,...,n,02} is the tree
representation, which restricts to the regular representation of 3, [17]; and the
inclusion of the ordered trees induces a map which takes the homology generator to a
generator of this regular module [19]. After taking 3,,-covariants as the construction
of | M| requires, we therefore have an isomorphism of E2-terms. Thus the spectral
sequences are isomorphic, and so | M|oq — | M| is a quasi-isomorphism. Combining
this with the first result of the proof shows that | M| is quasi-isomorphic to M; ®g
M. The result is now proved for r = 2.

The proof for » > 2 follows exactly the same lines. The only difference is the
inclusion of a counting argument to match the numbers of generators in the free
modules involved in the two E2-terms, for these no longer have rank one. We omit
the details. [

The following acyclicity lemma is central to the results of the present section.

3.7 Lemma. Let K be a commutative ring, and M a K-module. Then the complex
Kk (K ;M) is acyclic.

Contemplating configuration spaces makes one think that 3.7 should be true,
but the only proof we know is combinatorial and lengthy. This proof is given
in Appendix A. The first consequence of the Lemma is that one can calculate
['-homology relative to the ground ring without normalizing by quotienting by

Kr(K;M).

3.8 Proposition. Let A be an E algebra over the ground ring K, and M an
A-module. Then
HI(A/JK; M)~ H,(Kx(A; M)) .

Proof. Since quotienting by the acyclic complex K (K ; M) is a quasi-isomorphism,
we have K(A/K; M)~ Kg(A;M). O

Naturally, one would like to be able to describe HI'(B/A; M) in an equally
simple way for any F, pair of algebras A C B. The tensor powers of A would have
to be replaced by derived tensor powers of B over A. We have little doubt that this
could be done, but the resulting elegant statement might not justify the technical
mischief with derived powers which would be needed to prove the result and, later,
to apply it. The following theorem is a good substitute.
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3.9 Theorem (Flat base-change for K(B/A;M)). Let K be a commutative
ring, and R a flat commutative K -algebra. Then

(1) For every Eo algebra A and every A-module M which are flat over the
ground ring R, there is a quasi-isomorphism

Kr(A;M) =~ Kg(A;M)/Kx(R;M) .

(2) If A is a subalgebra of the Eo algebra B and M is a B-module, all these
being R-flat, then the quasi-isomorphism type of IKK(B/A; M) is the same,
whether the ground ring be taken to be K or R.

Proof. (1) Suppose L is a commutative ring such that K C L C R. In the ap-
plication, L will actually be either K or R. As in 3.1, no generality is lost by
assuming that R is a (strictly commutative) subalgebra of the F., algebra A. We
have defined Kr(A; M) as the realization of a certain C-complex K. This means
that || is defined first as a certain quotient of @, <, Cry1 Qx, A®™ @ M, then
Kr(A; M) = |K| is constructed as the cofibre of a map |K|' = A ® M, all tensor
products being over L.

We construct a filtration of || and A ® M, and therefore of K (A; M), by
defining the pth filtration stage FPIC,(A; M) to be the image of the submodule
in which at most p of the tensor factors from A lie outside R. This respects all
necessary identifications, and is thus a valid definition of a filtration in which

Kp(R:M)=F'cFtc...cFPlCFPC.-.-CF*=Kr(A;M).

Let us consider the quotient F?/FP~1. Under the action of ¥,,, every tensor a; ®
- ® a, ® m with p factors outside R is equivalent to an element in which only
ai,...,ap, are outside R; and modulo lower filtrations this element is unique up to
the action of ¥, x ¥,,_,. Provided that R is L-flat, and p > 1, it follows from 3.8
that F?/FP~! is quasi-isomorphic to EX, ®s (A/R) ®r (A/R) Qg - ®r (A/R),
where there are p factors A/R. Now this is quite independent of L. So if we take
the natural filtered map between the two filtered complexes

Kr(A; M) — Kg(A; M)

associated with the two choices L = K and L = M, we know that it induces
equivalences of filtration quotients FP/FP~! for all p > 1. Therefore the map

Kr(A;M)/F'Kg(A; M) — Kr(A; M)/F°Kr(A; M)
is a quasi-isomorphism. But F'Kg(A;M) = Kg(R; M), and F'Kr(A; M) =

Kgr(R; M) which is acyclic by 3.7, so this relation is preciseiy (1) of the statement.
(2) When A is a subalgebra of the E, algebra B and M is a B-module, all these

being R-flat, we have a diagram

Krx(R;M) = Kg(R;M)

I !
Kx(A; M) — Kg(B;M) — Ki(B/A;M)
! \J \J

Kr(A;M) — Kgr(B;M) — Ko(B/A;M)

in which two columns are cofibrations by (1) above, and two rows are cofibrations
by definition. The diagram implies that the vertical map on the right between the
two models for K(B/A; M) is a quasi-isomorphism. [
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3.10 Cyclic I'-homology and cohomology. Let A be an algebra over the cofi-
brant cyclic E, operad C, with K as ground ring. We then have the cyclic C-
complex | M| described in 2.5, which has Mg = A®S  with structural maps induced
by the multiplication in A. We denote the cyclic realization of M| by KL% (A).
The cyclic I'-homology and cyclic I'-cohomology are defined in terms of the cyclic
realization % (A):
HI (4) = H.(K(A))

HT?,(A) = H* (Homy (K% (A), K)) .

4. THE A,, ANALOGUE: HOCHSCHILD AND CYCLIC HOMOLOGY

The above theory is specifically for E,, structures, and is new. We now construct
the precise analogue for A, (homotopy-associative) structures, and show that this
just leads to a new description of the familiar Hochschild homology and cyclic
homology of associative algebras.

We replace S with the category S of cyclically-ordered finite sets and order-
preserving isomorphisms. The automorphism group of an object of S% is a finite
cyclic group. If 0 is chosen as basepoint in an object SY of S, its complement S is
totally ordered, and the group of automorphisms preserving the basepoint is trivial.

We redefine operads and cyclic operads for the new case, replacing the category
S in 1.1 and 1.2 by S®. The composition operations have the form

ost As ® Ar — Asu, T

where S U, ; T has the unique cyclic ordering obtained by concatenating the total
orderings on S\ {s} and T\ {t}. We say a cyclic operad A is A, if Ag is contractible
for each S, and the cyclic group Cg acts freely on Ag. Cofibrancy is defined as
before. Next we introduce algebras over a cyclic Ay, operad A, and modules over
these algebras by analogy with 2.1. The simplest examples are associative rings and
bimodules respectively. Similarly, cyclic and non-cyclic A-complexes are defined by
precise analogy with 2.4 and 2.6. The archetypes are Mg = A®° in the cyclic
case, and Mgo = A®% ® M in the non-cyclic case, where A is an associative or Ao
algebra and M an A-bimodule. The realizations |[M| and | M|, are defined just as
in 2.8 and 2.9, the category S being replaced everywhere by S and the symmetric
group 2,41 in 2.9 by the cyclic group C, 1.

Homology of the A, realization.

We have the following analogue of 2.13. It is very much simpler than the F ., ver-
sion, because the represention V), is replaced the homology of the space of cyclically-
ordered p-trees, which is free of rank one.

4.1 Proposition.

(1) Let M be a A-complex, where A is an A operad. Then there is a homology
spectral sequence

1
Ep—l,q

~ Hq(Mp+1) = Hp+q71(‘MD .

(2) When M is a cyclic A-complex the spectral sequence has the form

E} Mypy1) = Hpyq 1(|Mcy)

p—1,q ~ HQ(ECP+1 Qc

p+1

where Mp+1 indicates that the Cpy1-module structure of My 1 is twisted
by the sign representation.
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Proof. Just as in the E., case of 2.12, the spectral sequence obtained from the
skeletal filtration of |[M| or | Mg,/ is independent of the particular cofibrant cyclic
A operad used in the construction. We may therefore choose the A, tree operad
T, which is constructed just as in 1.5, but with the category S replaced by the
category S of cyclically-ordered sets. This leads to the E! terms given above. [

4.2 Corollary.

(1) Let M be the A-complex with Mgo = A®S ® M, where A is an associa-
tive K-algebra and M an A-bimodule. Then the homology of | M| is the
Hochschild homology of A, with dimension shifted by one:

H.(|IM|)~ HH,,1(A; M) forr > 0.

(2) Let N be the cyclic A-complex with Ng = A®S. Then the homology of |N|cy
is the cyclic homology of A, with a dimension shift:

H,(|Ney) = HCy41(A) forr > 0.

Proof. (1) Since M, is discrete, the E' term of the spectral sequence of 4.1(1)
collapses to the edge £, |, = A®? @ M. Analysis of the identifications in [M]
shows that dl_, , : A®? @ M — A®®~1) @ M is the Hochschild boundary. Thus
E!, is simply the standard Hochschild complex, shifted down and truncated.

7(2) Using a model where S has one set of each size, we have

To¥ & Cu(Cut1) ® Cu(TY)

where T is the space of planar n-trees, and C,(C), 1) is the bar construction on
the cyclic group which permutes the labels {0,1,...,n} of these trees. Therefore
|V lcy is a bicomplex which has (m, k + 1)st group

@ Cm(Cry1) ® C'k(Tﬁ-‘/7 TY) ® A®(n+1)

where TV is the boundary of T (the fully-grown trees). We filter by n. Since the
complex T is a Stasheff (n — 2)-cell, C, (T, T<Y) has only one homology group,
generated by the homology class [c,] of the cycle denoted ¢, in [19]. Thus each
filtration quotient is a bicomplex for which the second standard spectral sequence
(column homology first) collapses. We conclude that the spectral sequence associ-
ated to our filtration has E, . | &~ Hp,(Cpgr; A2 D) where the action of the
cyclic group on the tensor product includes the usual sign.

On the other hand, the cyclic homology of A is given by Tsygan’s bicom-
plex. This has A®(™+1) in the (m,n)th position, and the horizontal differentials
are alternately T and N, the morphisms in the standard perodic resolution of
the cyclic group C, ;. Filtration by n gives rise to a spectral sequence with
E} o~ Hy(Crpq; AS(MHD),

There is an equivalence from the periodic resolution to the bar resolution which
takes the generator to [N|T|...|T|N|T] in even degrees, and to [T'|N|...|T|N|T]
in odd degrees. We use it to construct a chain map 6 from Tsygan’s bicomplex
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(with the row n = 0 deleted) to the bicomplex representing |[N|y. Explicitly, we
define .
O : A" O (Cr1) ® Cp o (T, TY) @ AP

by setting

9 [NIT|...INT|® ¢, ®a, form even

mon (@) = { [T|N|...INIT|® ¢, ® a, for m odd.

The map # commutes with horizontal differentials, since we began with a map of
C,,+1-complexes. To prove that it commutes with vertical differentials, one needs
a calculation like that which proves that Tsygan’s diagram is a bicomplex, and
the fact that the vertical Hochschild differential (arising from the identifications in
|V lcy) carries ¢, to ¢,—1. Finally, 6 is a map of filtered bicomplexes which has bide-
gree (0,—1) and which induces an isomorphism on the E' terms of the associated
spectral sequences. Hence 6 induces isomorphisms HC,41(A) = H, ([N |cy). O

5. EXPLICIT COMPLEXES IN THE STRICTLY COMMUTATIVE CASE

Let B be a strictly commutative algebra which is flat over a commutative ring
A and let M be a B-module. By 3.8 and 3.9, we may take A as the ground ring
in calculating K(B/A; M) and HI'\(B/A; M). Accordingly we denote ® 4 simply
by ®. The I'-cotangent complex K(B/A; M) is quasi-isomorphic to K4(B; M) by
3.9. When constructed using the tree operad 7, this is a bicomplex

(5.1) CTpo(B/A; M) = (Cyi2(SY) ®s1 Cp_1(Te, To)) @51 (B¥° @ M).

Here o denotes a generic object of S!, and o denotes the same object minus its
basepoint. The vertical differential d” of the bicomplex is the differential of the
two-sided bar construction on the category S'. The horizontal differential d’ is the
differential in the chain complex C\ (T.), except that chains in the boundary 7, are
identified with lower skeleta by relation 2.8(2). (When n = 1, the relative chain
complex C, (Tn, T,,) has to be interpreted conventionally as A in degree —1.)

We can make this smaller and more explicit by replacing S with the model
in which there is just one object {0,1,...,k} for each k¥ > 1. Then one has to
make many choices about how to identify an arbitrary quotient set of {0,1,... k}
with some {0,1,...,l}. (See, for example, the labelling convention described in the
Appendix.) Any coherent system of choices gives a complex

Clyq(B/A; M) = P (Cosa(Sk) @5, Cp1(Th, Tr)) @5, B @ M
k>1

which is quasi-isomorphic to (5.1), though the precise horizontal differential d’
depends upon the choices. Once more, the vertical differential is that of the two-
sided bar construction on the symmetric groups 3. There is a dual version for
cohomology when B is projective.

Since we are working in the discrete case, the subsidiary spectral sequence of

2.13 collapses to an edge and we have the following spectral sequence.

(5.2) E;;—l,q ~ Hy(Sp: V, ® B @ M) = HI g 1(B/A; M)

where V), is the Y,,-module given by the reduced homology of the tree-space T),.
When B is projective, there is a dual spectral sequence in cohomology

(5.3) EP Y ~ HY(S,; V, ® Hom(B®", M)) = HI"*9"Y(B/A; M) .
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5.4 Theorem [19]. The edge g = 0 of the spectral sequence above is precisely the
complex used in defining the Harrison (co)homology [12] Harr,(B/A; M) of B (with
a shift in degree). Therefore there are natural transformations

HI, ,(B/A;M)— Harr,(B/A; M), HIP""Y(B/A; M) < Harr?(B/A; M)

when B is flat (resp. projective), which are isomorphisms when B contains a field
of characteristic zero.

Proof. We give the details for homology. The edge of the spectral sequence (5.2)
has terms:

El 1o~ Hy(%,;V,@ B @ M) ~ V, ®s, B @ M .

Now we describe the structure of the ¥,-module V, = H,_3(T}); further details
can be found in [17], [19]. The tree space T, has the homotopy type of a wedge
of (p — 1)! spheres of dimension p — 3. A set of independent homology generators
is given by {mc, |m € ¥, 1}, where ¢, is the cycle consisting of cyclically labelled
trees in the plane. Let s, ,_; = > ex-m L, where €, is the sign of 7, and the sum is
over (i, p —i)-shuffles in ¥,,. In [19] it is shown that s; ,_;c, =0fori=1,...,p—1
and that these relations completely determine the ,-module structure of V,. It
follows that V, ®s, B®P is isomorphic to B® modulo the submodule of shuffle
decomposables.

It remains to identify the differential d' : E;,o — E;fl,o' It is straightforward to
check that d' (¢, @21 ® - Qx, @m) = ¢, 1 @b(x1 @ - - ®x, ®m), where b denotes
the usual Hochschild boundary map. The edge E,}’O is therefore the quotient of
the Hochschild complex by the shuffle decomposables, which is precisely Harrison’s
complex. Hence, E? | ; ~ Harr,(B/A; M).

The edge map of the spectral sequence gives a natural transformation

HI, (B/A;M)— Harr,(B/A;M) .

When B contains a field of characteristic zero, the higher homology of the symmetric
groups is zero, so the spectral sequence collapses to the edge and the above is an
isomorphism. [

5.5 Proposition.
(1) HILW(B/A; M)~ Qp/a®p M, HI'°(B/A; M)~ Ders(B,M) ;
(2) HI''(B/A; M) ~ Exalcoma (B, M) .

(Here Exalcom (B, M), the module of infinitesimal A-algebra extensions of B

3

by M, is as defined in [11], 0y §18.)

Proof. (1) In the bicomplex (5.1), CIpo/d"(CIv1) =~ B ® M. The image of
the horizontal differential d’ : CIh o — CI} is spanned by the usual relations for
differentials of products. It follows that HI\(B/A; M) is the module of Ké&hler
differentials 23,4 ®p M. Similarly, the zeroth cohomology group is Der4 (B, M).

(2) Suppose first that B is A-projective. In the spectral sequence (5.3) we have
EY' ~ 0, E;° ~ Harr®(B/A; M) and so HI''(B/A; M) ~ Harr?(B/A; M). This
is the module of A-split infinitesimal commutative A-algebra extensions of B by
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M. Since B is projective this coincides with Exalcomy4 (B, M), the module of all
infinitesimal A-algebra extensions of B by M.

In the general case when B is not A-projective we have to use a simplicial
resolution and elementary properties of André/Quillen cohomology. It is elementary
that T'-(co)homology extends to simplicial rings, with coefficients in a simplicial
module: the I'-cotangent complex (3.2) of a simplicial ring is a simplicial dg-module,
and one simply takes the associated total complex. The cofibrancy of the operad
ensures that this is a homotopy invariant of the simplicial ring. This said, we may
replace the algebra B by an André/Quillen resolution P, consisting of polynomial
algebras over A. Filtering the I'-cotangent complex by the simplicial degree gives
a spectral sequence

EPY = HI'(P,/A; M) = HI"*1(BJ/A; M) .

On the edge we have EV® = HI'°(P,/A; M) = Dera(P,, M) by (1), so by def-
inition the André/Quillen cohomology DP(B/A; M) is just Eg’o. In particular,
E21’0 ~ Exalcomu (B, M). But Ef’l = 0 by the first case, since P, is projective and
polynomial. The spectral sequence now gives the result. [

5.6 Corollary. When B contains a field of characteristic zero,

HI,(B/A; M)~ D,(B/A; M) HI?(B/A; M)~ DP(B/A; M)

b b

where D, is André/Quillen homology.

Proof. Again we give the details for homology. If B is flat over A and contains a
field of characteristic zero then Harrison homology coincides with André/Quillen
homology [14] so the result is given by 5.4. If B is not flat, we replace it by a
simplicial André resolution by polynomial algebras, P. (As in the proof of 5.5
this is the preferred method for strictly commutative rings.) We again obtain a
spectral sequence: E} = HI,(P,/A; M) == HI,,(B/A;M). Since each P; is
flat, 5.3 gives HIo(P;/A; M) = Qp, /4 ®p, M, and all higher homology groups are
zero by 5.4. Thus the spectral sequence collapses to the edge, where Ei,o is exactly
an André/Quillen resolution of B, giving the result. The case of cohomology is
similar, except that ‘flat’ is everywhere replaced by ‘projective’. [

In general I'-homology is different from André/Quillen homology and from Har-
rison homology. The following example shows this, and reveals a non-trivial differ-
ential in the spectral sequence of 5.2.

5.7 Example. First take B = A = F,. Then 1®1® 1 ® 1 is a non-bounding
Harrison 4-cycle, by the calculation in ([2], §4). Thus Harry(Fs /Fo;Fy) % 0, and
by 5.4 our element 1®1®1®1 exists in Eg,o- Since 3.7 or the transitivity theorem
3.4 implies that HI3(Fy/Fy;F2) ~ 0 (and similarly for André homology), this cycle
must map by the only available differential d? to a non-zero element of Eil. (The
only such element is « ® 1 ® 1, where « generates Hi(X2;Fy); for the module V5 is
trivial). Thus HI3 % Harry.

Now let us take B to be the polynomial algebra Fo[X], A =Fy, M = B/(X) =~
Fy. A brief calculation with shuffles shows that E3  ~ Harry(Fy[X]/F2;F) con-
tains no non-zero element of degree two in X. Therefore a ® X ® X € E7 | is an

infinite cycle which is not in the image of d? and therefore is not a boundary. So
HI5(Fo[X]/Fy;Fy) %0, and HI is not André’s Hs.
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5.8 Theorem.

(1) Let B and C be A-algebras, with B flat over A, and let M be a B® 4C-module.
Then the complex K(B @4 C/C; M) is quasi-isomorphic to K(B/A; M),
so that

HI.(B®a4C/C: M) ~ HIL.(BJA;M).

(2) Let B and C be flat A-modules, and M a B ® g4 C-module. Then there is a
quasi-isomorphism

K(BoaCJ/A: M) =~ K(BJ/A:M) @ K(C/A:M),

and therefore HI',(B®4 C/A; M)~ HI,(B/A;M)® HI',(C/A; M).
(3) If B is an étale A-algebra, then HI'w(B/A; M) ~ HI'™*(B/A; M) =~ 0 for
every B-module M.

Proof. (1) Since B is flat over the discrete commutative ring A, the cotangent
complex K(B/A; M) is equivalent to K4 (B;M). Also B®4 C is flat over C, and
K(B ®a C; M) may be replaced by Kc(B ®4 C; M). But standard identities with
the tensor product show that Ko(B ®4 C; M) ~ K4(B; M), because these are
realizations of isomorphic complexes.

(2) We have an exact triangle corresponding to the triple A - C — B®4 C

K(C/A: M) = K(B®aCJA: M) = K(B®4C/C; M) .
Using the quasi-isomorphism of (1), this can be split by the map
K(B/A;M) = K(B®asC/A; M) .

(3) The arguments of André ([1], §20), for the homology of a separable field
extension generalize to show that this can be deduced from (1), (2) and the long
exact sequence of a triple, as was observed by Quillen ([14], §5). O

6. A PRODUCT

In this section we prove the following theorem, giving a graded anti-commutative
product in the I'-cohomology of a commutative algebra. This product is not asso-
ciative. We believe it is a graded Lie product, but we have not yet verified all the
details of the Jacobi identity.

6.1 Theorem. There is a graded anti-commutative product in I'-cohomology
[—,—]: H'"(B/A;B)® HI'"™(B/A;B) — HI'""™(B/A; B) .

We begin by explaining the idea of the construction, which mimics the Lie bracket
in Hochschild cohomology [6]. We recall that this is defined as a graded commutator
of circle products, where the circle product f o g is an alternating sum over ¢ of
‘substitution of g into f in the i-th place’. Asin §5, realization using the tree operad
gives rise to the following bicomplex for I'-cohomology of a discrete commutative
algebra B, in which (as before) o denotes the complement of the basepoint in the
set  of the category S1:

CIP9(B/A; B) = Hom((C’q+2(Sl) ®c1 Cp 1(Ta, Ta)) @51 BE®, B)

~ Homg: (Cq+2(81) ®s1 Cp_s(Tu), Hom(BE°, B)) .
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For cochains f € CTI'', g € CI'™, the bracket [f, g] is defined using a difference

fog— (—1)lmg o f where fog € CI''t™ is the sum over all possible ways of
‘inserting ¢ into f’; as indicated schematically by the diagram

—

However, it is necessary to use a diagonal approximation in the construction.
Lack of strict commutativity complicates matters and forces us to add a correction
term to our bracket.

Now we give the details of the proof of Theorem 6.1. The first ingredient is the
following co-operad structure (which is closely related to a co-operad discussed by
Ginzburg and Kapranov ([10], §3.5)).

6.2 Lemma. The chain complezes {C,(Tyo)[—2]; U® € S'} form a co-operad.

Proof. We define 0y : Co—a(Tyo) = Cr_o(Tyor) @ Co_y(Tyyo), for U = VOLIW.
An internal edge in a U -tree t divides the tree into two parts. If ¢ has an internal
edge such that one of these parts is labelled by V? and the other by W, then 6y w ()
is given by cutting ¢ at this internal edge to produce a tree labelled by V%' and
a tree labelled by WP, If ¢ has no such internal edge we set Oy w(t) = 0. (The
new labelling sets VO, W? are best thought of as quotient sets of U" obtained by
identifying all elements of W, V' respectively.) It is easy to see that the Oy w's are
chain maps, satisfying the required co-associativity condition. [J

Secondly we need a diagonal approximation on the chains on the category S!.
Recall that such a diagonal approximation A exists and that for the bar resolution
it may be chosen to be strictly coassociative and cocommutative up to homotopy,
A ~ 7A. The homotopy, H say, is itself commutative up to homotopy. Now
we combine the diagonal approximation A with taking induced isomorphisms on
quotient sets. For each partition U° = V° LU W we have a chain map ¢‘A,’W :
Ci(SY) — C,(SY) ® C,(SY)

3

[o1]- - lou] = > (1] |@ildirs - Bk @ @1 BilGiga] - - [Br]
7

where the ¢’s start at U, the ¢’s at V! and the ¢’s at W°. We denote by ¢
such maps constructed with the homotopy H in place of A and so on.
Finally, we have the structure maps of the endomorphism operad of B,

¥ : Hom(B®°, B) @ Hom(B®T, B) — Hom(B®%“:T B),

for each element s of S.
Now the map —o — : CI'' @ CI'™ — CI''t™ is given by

fog= I D vi(fenerel)(épw @bvw),

Ulestud=vouw
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where 7 is a suitably signed switch of factors and 1 is the image under @, ... @y of
1e VoL
Now consider the graded commutator

(frg)=fog—(~1)"gof.

We check how this behaves with respect to the differentials. Since the ¢>‘A/’W’s are
chain maps, we have d”’(fog) = (—1)"d" fog+ fod"g, for the vertical differential
d”’. The horizontal differential, d’, consists of the internal boundary in the tree
spaces ¢ plus extra terms, d’ = § + D say. Again 6(fog) = (—1)"dfog+ fodyg,
since the fy w’s are chain maps. Analysis of the identifications in the cotangent
complex shows that D can be expressed in terms of the circle product. Since
B is strictly commutative, we may consider the product cochain p € CI''; that
is p(I50)(®sesbs) = [l,eqbs, where Is is the star tree labelled by S%. Then

Df=fop— (—1)lpo f. A calculation shows

D(f,g) =(Df,g)+ (f,Dg) + E(f.9),

where E(f,g) € CI''*™*! is an error term which results from the diagonal approx-
imation not being strictly commutative. It can be described as follows.

For U° = X' UY U Z we define gX,Y,Z : Cp(TUo) — 0_1(TX012) X Cpl (Tyo) (034
6p,p:,1(TZo), as follows. Suppose a U-tree t has exactly two internal edges meet-
ing at the root, the part above one being a subtree labelled by Y and the part above
the other being a subtree labelled by Z. Then gx’yyz(t) is given by splitting the
tree t in the evident manner at these internal edges into a star tree labelled X012
and two subtrees labelled Y? and Z°. If the tree t cannot be split as indicated we
set gxyy}z(t) =0.

We have

Ef,)= I Y w10 )(pefog)(1243)(¢5,7 @ 0xy.2),

U%eStU=Xouyuz

where the permutation (1243) is simply the necessary reordering of factors (with
appropriate sign). Now define f @ g € CI''*™ by the same formula as for E(f, g),
but using the homotopy H to replace ¢2~72 by ¢f. Then, by construction, we
have d'’(f e g) = (—1)™d"f e g+ fed'g+ E(f,g) and by considering the maps 6
it is not hard to check that d'(feg) = (—1)"d'feg+ fedg.

Finally, define a bracket by

fogl=(f.9)+feyg.

From the discussion above, this map is well-behaved with respect to the differ-
entials and so induces a map in cohomology.

Using the fact that H is commutative up to a homotopy, H' say, we may con-
struct a homotopy between [f,g] and —(—1)"[g, f]. So the bracket is graded
anti-commutative in cohomology. This completes the proof of Theorem 6.1. [

Remarks. The bracket described above is compatible with the Lie product in
Harrison cohomology ([7], §5.7). For 0O-cocycles it is simply the usual bracket of
derivations.
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If n is odd or the characteristic of B is 2, then the circle product g — go g passes
to cohomology giving an operation HI'™(B/A, B) — HI'*"(B/A, B).
If the same constructions are carried out in the A, situation of §4, the error

term E(f,g) is always zero and one recovers the Lie product of Gerstenhaber on
Hochschild cohomology ([6], §7).
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APPENDIX A: ACYCLICITY OF K4(A; M)

CONTRACTION OF A CERTAIN COMPLEX WITHOUT PERMUTATIONS

We construct, then contract, a certain chain complex related to K4(A; M). Tt is
obtained by glueing together the chains on the various tree spaces T),, for n > 2.
For simplicity we may as well take M to be the ground ring A. The construction
of our complex K., requires a labelling convention for trees, which is detailed
below. The contraction requires an ordering convention for the edges of a tree.
Both these conventions are somewhat arbitrary at this stage, but they have to be
compatible with each other.

Ordering convention. Let ¢ € T, be an n-tree. It therefore has a root labelled 0,
and leaves labelled 1,2, ... ,n. Let (3; be the arc (shortest path) in ¢ from the leaf i to
the root. Then t = |J;_, ;. We introduce a total ordering on the set of edges of ¢ as
follows. If z, y are edges, then z precedes y (written z < y) if either x and y are in
some common arc (; with y nearer the root, or min{i | z € 8;} > min{j | y € 3;}.
This does define a total ordering, in which an internal edge occurs at the first
moment after all edges above it have been counted. When no internal edge is
available, the next leaf (in descending order) is taken. So the leaf n is, perversely,
first. The root is last.

The trees t/x and t\z. An internal edge x in an n-tree ¢ divides the tree into two.
The portion including the root (and the edge x itself) is a sub-tree called ¢t\z. The
other part, containing some leaves and z itself but not the root, is called the sub-
tree over x and is written ¢/z. It is much better to regard t/x as the identification
space obtained by crushing the sub-tree t\z to a single edge, and t\z as obtained
by identifying ¢/x to an edge. (If z is a leaf or the root of ¢, the symbols ¢/x and
t\x are interpreted as either the whole of ¢ or the tree consisting of a single leaf, as
appropriate.) Now we have to decide how to label these quotient trees.

Labelling convention. A quotient tree such as ¢/ is naturally labelled by subsets
forming a partition of the set {0,1,...,n}, because a new leaf or root inherits all
the labels on the subtree it came from. We replace these subsets by 0,1,...,7r,
labelling the subsets in increasing order of their minimal elements.

The point of the labelling convention is that the conventional ordering introduced
above is compatible with identifying a subtree to a single edge, provided one regards
a subtree as enumerated when all its edges have been enumerated. For instance, a
subtree containing the root is always labelled 0, and comes last in the conventional
ordering.

Now we are ready to start defining our chain complex. To begin with we use
reduced cubical chains, because Tn is naturally a cubical complex.

Definition. Let K/ be |, K/, where the complexes K], are defined inductively
as follows:

(1) K} is the chain complex C,(T3) of the one-point tree space Ty
(2)  for n > 3, suppose that we have already defined the complex K, _, as a

quotient of P,.;,, C«(T;). Then the complex K, is obtained by attaching

Cy(Ty) to K,,_; along the subcomplex C,(T},) of fully-grown trees. The
attaching map ¢, 1 : Cu(T,,) — K] , takes the generator corresponding
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to an n-tree t with fully-grown edge x to the class (—1)"~"t/z+ (—=1)"T1t\z

in K],_,, where r is the number of leaves in ¢/x.

The previous identifications in K|, ; ensure that the attaching map is well-defined
and independent of the choice of the edge =, and evidently K,, is by construction
a quotient of @,<,., Cx(T;). The cubes t/x and t\z are of course labelled by the
convention above, and oriented by the ordering convention. It should be noted that
whenever ¢ has more than one internal edge, at least one of the cubes ¢/x and t\z

is a degenerate face.

Subdividing K’ . We shall show that there is a natural, geometrically-inspired
contraction of the complex K’ . It is not easy to describe in terms of the cubical
chains, because geometrically the image of T,, is deformed through Ty, in a way
which is not cellular, but diagonal, on the cubes.

Therefore we replace each cubical complex fn by its natural simplicial subdivi-
sion, in which each r-cube is replaced by r! r-simplices. (An n-tree belongs to one or
other of these, depending upon which internal edges are longer than which others.
Diagonal simplices in T,, contain trees having certain edges of equal length.) Every
cubical chain is a chain of the simplicial subdivision, so we have enlarged C,(T},);
and we make identifications among these exactly as before to obtain a chain com-
plex K, quasi-isomorphic to and containing K’ . But we continue to use cubes
as blocks of simplices (sums of generators) in K.

Informal description of the contraction. The contraction of K., closely fol-
lows this geometrical idea. A labelled n-tree t passes through N stages tg,t1,... ,tn
during the homotopy, where to =t and N is the total number of edges of ¢. In the
tree t; there are two identical copies of each of the first 2 edges in the conventional
order, and one copy of the others. As identical edges must have the same length,
t; represents a diagonal cube in some Tn_,_j having the same dimension as ¢. The
homotopy connecting ¢;_1 and t; is represented by a tree A; like t; but with one new
edge below the two copies of the ith edge, connecting the most recently-doubled
edge to the undoubled part. This is a cube of dimension one higher. Shrinking
one undoubled edge, or two identical edges, to a point is a cubical face operator:
therefore A; has t;_1 and t; as faces. Finally, ¢ is the sum of two copies of t. A
more formal description follows.

The double of a tree. Let t be an n-tree. The double Y () is the 2n-tree obtained
by taking two identical copies ¢’ and t" of the tree ¢, and grafting them by the roots
onto the two leaves of the unique tree in Th. Pairs of identical edges have the
same length. We label the result as follows. The two leaves formerly labelled 7 are
marked ¢ — 1 and i in ¢’ and t” respectively. Then all labels are multiplied by two

2
to give integers.

The construction A;. We actually define A;(¢) and ¢; by induction on 7. We set
to = t. If t;_1 has been defined, and x; is the ith edge of ¢ in the conventional
ordering, we define A;(t) to be the result of grafting the double Y (¢/x;) by its root
onto the leaf x; of ¢; 1\z;. We define ¢; by shrinking the grafted internal edge
(formerly the root of the double Y (t/x;)) of A;(t) to a point. It follows from the
inductive definition that ¢; contains two copies of edges x1,...,z; and one copy of
the higher-numbered edges. We note that A;(¢) and ¢; have been defined cube by
cube, or a block of generators of K,, at a time.
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We have to label t; and A;(t). As for the doubling construction, we give the two
copies of the leaf formerly designated 7 the labels 7 — % and 4, without changing

the labels on the undoubled leaves. Then we replace the labels in bijective order-
preserving fashion with the integers 1,2,...,s for some s.

Example. 1 As(t)

i N7
o

0

)

Definition. If ¢ is a cube corresponding to a tree-shape with a total of N edges,
we define A(f) = SN (—1)FA(#).

We claim that this defines a contracting homotopy of K., by specifying it on
the generating simplices, a cubical block at a time. To prove this, we must verify
that 0A + Ad =1 — 7, where 7 : K, — K, factors through the chain complex of
a point. So we have to investigate how A commutes with respect to face relations.
This includes verifying that A respects the identifications used to define K.

As we are still working with cubical blocks in K., even though some of them may
be diagonal cubes with certain coordinates equal, it is the cubical face operators
we have to check. Let x; be the ith edge of a tree t corresponding to a certain
cube, also denoted t, in K,.. If x; is an internal edge, there is a face operator 0;
corresponding to shrinking the length of z; (and of all edges forced to have the same
length) to zero. When the length of z; stretches to 1, we have the opposite face ¢;
of the cube, which by construction of K, is identified with ¢/x; + t\z; (which is
the zero chain when z; lies between two internal edges of t).

By checking the geometrical details, we can now verify a whole slew of “cubical
identities” such as (to give one instance)

EZ'Aj(t) = =+ t/l’i + t/.’L‘Z’ + Aj_f+1(t\flli)

when z; is an edge of t/x; (which implies 7 < j) and where f denotes the number
of edges of t/x;. The enumeration of faces is more complex here than in the case
of the usual simplicial or cubical identities, because of the branching of trees. But
some of the formulae simply assert that a certain face is degenerate, and is therefore
a zero chain. For instance, the above formula gives a non-zero right hand side only
in two cases: first, when x; is the root of ¢ and ¢ = j; second, when z; has nothing
but leaves above it.

In calculating these identities it is essential to remember that 0; affects identical
edges simultaneously and not separately, and likewise for g;.
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The cubical identities in full. Let x; and z; be edges of ¢t and let f be the
number of edges of t/z;. We denote the number of free edges (leaves plus root) of
a tree s by I(s). Then

(1) If i < j and z; is an internal edge or the root of t/x;
A1) = (1 SO (SO A ().
(2) If i < j and z; is an internal edge of t\z;
eij(t) = (1) ON gy oy b Ay g (B\a)

(3) If i > j, x; is an internal edge of t and z; is the gth edge of t/x;

it (1) = (1) O\ () OA (1)
(4) For all i such that z; is a leaf of ¢

81+1Ai(t) = —tifl + (—1)l(ti71)A1(t/xi)

(56) If i > j, x; is an internal edge of ¢ and x; is the pth edge of t\x;

it y(0) = (1) O (1) O A ()
(6) If i < j and z; is an internal edge of ¢

8,-Aj(t) = Aj,l(az-t) .

(7) For all ¢
&LAz(t) =t, 1= &L'Ai,l(t) .

(8) If i > 7 and x; is an internal edge of ¢
8i+1Aj(t) = Aj(azt) .

(9) Iti < j
AiAj = Aj+1Ai .

The first five identities, together with the labelling convention, imply that A
is compatible with the identifications used in defining K., and is therefore well-
defined. The fourth identity gives, according to the dimension of the cube ¢,

—t if dimt¢ > 0

Aq(t) =
e2A1(1) { 7t+(f1)l(t)*2 if dim¢ =0,

where x5 is the unique 2-tree. The first identity gives, when xy is the last edge
(root) of ¢
An(t) { (—1)H®)+194 if dim¢ > 0
I =
NEN (1)1 4 %, if dim# = 0.

;From the cubical identities, it follows that A is a chain homotopy from 1 + 7,
where 1 is the identity map and 7 is a point map as above, to twice the identity
map. (There is additional checking to be done on 0-chains; 7 is given by 7(x,) =
(—1)"(n — 1)*9, where %, denotes the star tree with n leaves.) Therefore 1 — 7 is
nullhomotopic by the chain homotopy A, and K., is contractible.
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AcycriciTy OF K4(A; M)

The chain complex K4(A; M) is constructed as the cofibre of a map from a
partial realization (M|’ to M. It very easily follows that K4(A; M) is acyclic if
|M|" is contractible; so this contractibility is what we have to prove. It is sufficient
to treat the case when the coefficient module M is A.

We describe | M]". Just as K in the previous section was constructed by glueing
together the tree spaces T, according to certain labelling conventions, so M|’ is
obtained by glueing together the spaces C,,/3,, of a cofibrant cyclic E, operad C,
for which we shall use the tree operad. (In the new context, it can be seen that the
somewhat arbitrary labelling convention is actually quite immaterial: a different
choice leads by conjugation in symmetric groups to homotopic glueing maps, and
so to a quasi-isomorphic result. But a choice has to be made.)

Thus |M|" is an extended version of K, incorporating the actions of the sym-
metric groups. One tries to contract it by applying fibrewise the contraction of
K. This amounts to constructing a coherent system of higher homotopies among
the contractions obtained by twisting the original contraction by all elements of
the symmetric group. One expects to be able to do this since, if A and = are two
contractions of a complex, then ZA is a homotopy of homotopies from A to =.

Construction of |M|. We construct |M|" using the cofibrant tree operad T of
1.5. Since the symmetric group ¥,, acts trivially on the nth tensor power of A over
itself, the realization is built by glueing together the complexes 7, /3,. The free
chain complex 7, /3, has generators

[o1]og| ... lok]| @t

in dimension k + dim¢, where k > 0, 01,... ,0% € X, and ¢ is a simplex (or cube)
of the tree space T),,. The boundary is given by

I[o1loa]. ..okl ®@t) = |o2f...|ok] @t
k—1 ‘
-+ (—=1)[o1]...|lojoj41] .. o] @1

J
+ (—l)k[o'l‘...|0'k,1]®0'kt
+ (71)k+1[01|0-2‘___|0-k]®0t

where 9t is the boundary in T},, and ot is defined using the permutation action of
¥, on the labels of T},.

The identifications which form |M|" from the chain complexes 7, /3, mirror
those used to form K., from the T,,. In the latter case, we recall, when an internal
edge x; of t has length 1, the chain ¢t of K, is identified with ¢/z; +¢\z;, which are
trees labelled by our convention. This labelling convention is sufficiently functorial
to allow us to identify, when z; has length 1, the chain [o1]...|o%] ® ¢t with

6] .. ok ®@t/z; +  [51]... |5k @ t\a;

where ¢; and &; are the induced permutations of conventional labelling sets for ¢/z;
and t\z;. For instance, if 6, ... , 6,41 have already been defined, then &; is uniquely
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determined by the stipulation that 6;6;41 ...6%(t/x;) be the conventional labelling
of (050441 ...0xt) /xj. By these means we can define cubical face operators €; in
|IM|" just as in Ko

In a totally analogous way we can extend the definition of the operators A; to
|IM]’, setting

where [g1]...|0k] is the induced string of permutations of the conventional labelling
set of A;(t). We define A to be the alternating sum Y (—1)7A;, but we can not
expect this to be a contraction, because of the form of the boundary operator in
|IM|". Nor is it true that 0;A = Ao;, because the action of ¥,, does not preserve
the conventional ordering which is essentially used in the definition of A.

In the following definition and all that follows, we use the notation o to denote
any permutation induced by o on a set of tree labels derived by our conventions.
The context always implies exactly what the trees in question are, so it is not
necessary to burden the notation with any heavy details.

Definition. We define an operator A on the chains of |[M| by setting

Aor] .. Jox]@t) = D _{(=1)[e1]...10;] ® AGj 110654020 ... AgpA(t)} .

7=0

Theorem. The chain complex Ka(A; M) is acyclic.

Proof. We have remarked above that it is sufficient to prove that |M]" is con-
tractible, and that we may take M to be A. We simply claim that the homotopy
A, defined above, is a contraction of M|’

To see this, one repeatedly uses the relation A+ Ad = 1—7 in K, to calculate
that when ¢ is a tree with at least one internal edge, the relation

O(AGj 110042 .. AdpA(t)) = 04100020 ... AdpA(t)
k—j—1
+ ) (1)AG A AG O A AGA()

<

1
+  (=1D)*TAG A L Aoyt
+ (- 1D)FITIAG A L AGRA(O)

holds in |[M|’, and a minor variant when ¢ is a star-tree. Then straightforward
calculation with the formulae defining 0 and A gives
- - 1 in dimension > 0,
0A + A0 = .
-

in dimension 0,

where 7 is a point map. The theorem is therefore proved. [



32

ALAN ROBINSON AND SARAH WHITEHOUSE

REFERENCES

M. André, Méthode simpliciale en algebre homologique et algébre commutative,
Lect. Notes in Math. 32, Springer-Verlag, New York-Heidelberg-Berlin, 1967.

M. Barr, Harrison homology, Hochschild homology and triples, J. Algebra 8
(1963), 314-323.

M.G. Barrett and P.J. Eccles, I'" -structures — I: A free group functor for stable
homotopy theory, Topology 13 (1974), 25-45.

M. Basterra, André-Quillen cohomology of commutative S-algebras, preprint
1997.

J.M. Boardman and R.M. Vogt, Homotopy invariant algebraic structures on
topological spaces, Lect. Notes in Math. 347, Springer-Verlag, New York-
Heidelberg-Berlin, 1973.

M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of
Math. 78 (1963), 267-288.

M. Gerstenhaber and S.D. Schack, A Hodge-type decomposition for commuta-
tive algebra cohomology, J. Pure Appl. Algebra 48 (1987), 229-247.

E. Getzler and M.M. Kapranov, Cyclic operads and cyclic homology, MSRI
preprint 030-94.

E. Getzler and M.M. Kapranov, Modular operads, Max Planck Institut preprint
94-78, 1994.

V. Ginzburg and M. Kapranov, Koszul duality for operads, Duke Math. Jour-
nal 76 (1994), 203-272.

A. Grothendieck, Eléments de géométrie algébrique, Inst. Hautes Etudes Sci.
Publ. Math. (1960-1967).

D.K. Harrison, Commutative algebras and cohomology, Trans. Amer. Math.
Soc. 104 (1962), 191-204.

I. Kriz, Towers of Eo-ring spectra with an application to BP, preprint.

D.G. Quillen, On the (co-)homology of commutative rings, in Proceedings of
Symposia in Pure Mathematics 17, Alex Heller, ed., American Mathematical
Society, Providence, RI, 1970, 65-87.

Alan Robinson, Obstruction theory and the strict associativity of Morava K -
theories, Advances in homotopy theory, London Math. Soc. Lecture Notes
139 (1989), 143-152.

Alan Robinson and Sarah Whitehouse, ['-homology of commutative rings and
of Ew-ring spectra, Warwick preprint 76,/1995.

Alan Robinson and Sarah Whitehouse, The tree representation of ¥,41, J.
Pure Appl. Algebra 111 (1996), 245-253.

Graeme Segal, Categories and cohomology theories, Topology 13 (1974), 293-
312.



OPERADS AND I'r-HOMOLOGY OF COMMUTATIVE RINGS 33

[19] S.A. Whitehouse, I'-(Co)homology of commutative algebras and some related
representations of the symmetric group, Ph.D. thesis, University of Warwick,
1994.

MATHEMATICS INSTITUTE, UNIVERSITY OF WARWICK, COVENTRY, ENGLAND CV4 TAL

INsTITUT GALILEE, UNIVERSITE PARIS-NORD, 93430 VILLETANEUSE, FRANCE
E-mail address: car@maths.warwick.ac.uk sarah@math.univ-paris13.fr


https://www.researchgate.net/publication/50193783_Gamma_cohomology_of_commutative_algebras_and_some_related_representations_of_the_symmetric_group?el=1_x_8&enrichId=rgreq-dcd530a1a3ec5c8550b93f4ea5518075-XXX&enrichSource=Y292ZXJQYWdlOzI3NDU1Njg7QVM6MTI0NTc4ODgxODcxODcyQDE0MDY3MTMzMjgwNDA=
https://www.researchgate.net/publication/50193783_Gamma_cohomology_of_commutative_algebras_and_some_related_representations_of_the_symmetric_group?el=1_x_8&enrichId=rgreq-dcd530a1a3ec5c8550b93f4ea5518075-XXX&enrichSource=Y292ZXJQYWdlOzI3NDU1Njg7QVM6MTI0NTc4ODgxODcxODcyQDE0MDY3MTMzMjgwNDA=
https://www.researchgate.net/publication/2745568

