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Abstract. We prove that the stable homotopy of any Γ-module F is the
homology of a bicomplex Ξ(F), in which the (q − 1)st row is the two-
sided bar construction B(Lie∗

q,Σq, F[q]). This gives a natural homotopical
cotangent bicomplex for graded commutative algebras, in a form suitable
for use in a new obstruction theory for classifying E∞ ring structures on
spectra. The E∞ structure on certain Lubin-Tate spectra is a corollary.

Introduction

Let F be any functor from finite based sets to spaces. The stable homotopy
groups of F, which we denote by π∗(F), are defined as the homotopy groups
of the spectrum ‖F‖ associated with F by the well known construction
introduced by G. Segal.

We consider the discrete abelian case, where F takes values in k-modules
for some commutative ring k. In Sect. 3 we give an explicit functorial bi-
complex Ξ(F) the homology of which is π∗(F). The proof is an application
of recent theory due to Pirashvili and Richter [10], [11].

In Sect. 4 we apply the Ξ-construction to the functor which takes
a based set S+ to the module B⊗S ⊗ M, where B is a given graded com-
mutative algebra and M a B-module. This gives a canonical, functorial
cotangent complex for graded commutative algebras. Its homology is the
Γ-homology HΓ∗(B|A; M), where A is the ground ring. Theorem 4.2
reconciles this construction with other definitions of Γ-homology, E∞-
homology and topological André-Quillen homology for commutative rings
as defined by Basterra, Kriz and others (see [2], [17]). The description of
Γ-homology as stable homotopy yields some calculations [14], [15].

Mathematics Subject Classification (1991): 55P43 (13D03, 18G60)
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Our interest in the Ξ-construction was inspired by a question in homo-
topy theory: when does a ring spectrum admit a multiplication satisfying the
E∞ homotopy associativity and commutativity conditions? In the language
of S-modules, what conditions are sufficient for enhancing a multiplica-
tion in the homotopy category of S-modules to a commutative S-algebra
structure? In Sect. 5 we answer this question by setting up an obstruction
theory based upon Γ-homology. The Ξ-complex arises there in a natu-
ral way. Other very different approaches to this problem have been given
by Basterra [1] and Kriz, and in unpublished work by Goerss and Hop-
kins.

The author expresses his thanks to Birgit Richter and to the referee.
Their valuable comments led to substantial improvements in this paper.

1. Γ-modules

Let Γ denote the category of finite based sets and basepoint-preserving maps.
A construction of G. Segal [18], refined by Bousfield and Friedlander [3],
assigns a spectrum ‖F‖ to each functor F from Γ to based simplicial sets.
By applying F to the set of simplices at each level in a simplicial model
of Sn, Bousfield and Friedlander obtain a bisimplicial set. The diagonal
simplicial set of this is the nth space in the spectrum ‖F‖. The homotopy
groups of the spectrum ‖F‖ are called the (stable) homotopy groups of F.
We denote them by π∗F.

We are concerned with the discrete abelian case. Let us fix a commutative
ring k with unit, to be our ground ring. A (left) Γ-module is a functor
Γ → k-mod. Since a k-module can be regarded as a discrete simplicial set,
this fits into the above context. If F is a Γ-module, then the spaces in the
spectrum ‖F‖ are simplicial k-modules. The theory of Γ-modules and their
homotopy has been substantially developed in recent work of Teimuraz
Pirashvili and Birgit Richter [10], [13].

The most fundamental Γ-module is the functor L which assigns to
each based set X the free k-module kX/k{0} generated by X, modulo the
submodule generated by the basepoint. On simplicial sets, L is the reduced
chain functor. Let us consider the case of a Γ-module which has the particular
form F = Ψ ◦ L , where Ψ : k-mod → k-mod is any functor. From the fact
that L(Sn) is a projective resolution of (k, n) in the sense of [4] it follows
that the stable homotopy groups π∗(Ψ ◦ L) are the stable derived functors
of Ψ in the sense of Dold and Puppe, evaluated on k.

The main result of [11] gives an explicit chain complex for calculating
the stable homotopy of any Γ-module. This complex is based upon the nerve
of the subcategory of all surjections in Γ. Consequently it is quite large,
even when Γ is replaced (as it usually is) by a minimal skeleton with one
set of each cardinality. In Sect. 2 we give a much smaller complex Ξ(F),
based upon the Lie operad, which has the same property.
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2. The modules Lien and the standard bicomplex

As we turn to the combinatorial details, we replace the category Γ by the
equivalent full subcategory in which the objects are the finite based sets
[n] = {0, 1, 2, . . . , n} for all n ≥ 0, where 0 ∈ [n] is the basepoint. We
shall denote this subcategory henceforth by Γ.

The group of automorphisms in Γ of the object [n] is the permutation
group Σn . The important subcategory of all surjections in Γ is generated by
these automorphisms together with the special surjections cij : [n] → [n−1]
which are defined for 0 ≤ i < j ≤ n by the formulae

cij(t) =





t for 0 ≤ t < j
i for t = j
t − 1 for j < t ≤ n.

(2.0)

Thus cij maps j to i and is strictly order-preserving on [n] \ { j}.

2.1. The Lie representations

Let Ln be the free Lie algebra over k on the set of generators {xi}1≤i≤n. We
denote by Lien the so-called multilinear part of Ln. This can be described
in many different ways. First, it is defined as the direct summand of Ln
spanned by all Lie monomials containing each of the n generators exactly
once. Second, it is the nth module in the Lie operad. Third, it is isomorphic
to the module of all natural transformations Φ⊗n → Φ, where Φ is the
forgetful functor from Lie algebras (over k) to k-modules.

The symmetric group Σn acts upon Lien by permuting the n generators.
The kΣn-module thus obtained is known as the Lie representation. It has
many applications in combinatorics, geometry and homotopy theory. Very
often it occurs twisted by the sign character, and this is the version we
require. We define the left action of Σn on the k-module Lien by setting

σ · f(x1, . . . , xn) = ε(σ) f(xσ(1), . . . , xσ(n))

for every multilinear Lie monomial f and every σ ∈ Σn , where ε(σ) is the
sign of σ . Let Lie∗

n be the dual k-module Hom(Lien, k), which is thus a right
Σn-module.

We shall require the following properties of Lien (see [20, 2.3]):

(1) the left regulated Lie brackets

σ · [x1, [x2, [x3, . . . , [xn−1, xn]..]]] for σ ∈ Σn−1

form a k-basis of Lien. Therefore
(2) the k-modules Lien and Lie∗

n are free of rank (n − 1)!, and
(3) the restricted Σn−1-modules ResΣn

Σn−1
Lien and ResΣn

Σn−1
Lie∗

n are respec-
tively isomorphic to the left and right regular representations.
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2.2. The homomorphisms γij : Lie∗
n → Lie∗

n−1

We now introduce certain linear maps γij : Lie∗
n → Lie∗

n−1. These are
induced by the standard surjections in Γ, but they do not make the duals of
the Lie representations into a Γ-module, as 2.4 below makes clear.

Since Lie∗
n is for each n a finitely-generated projective k-module, we

can define the γij completely by giving their duals γ ∗
ij : Lien−1 → Lien . For

0 ≤ i < j ≤ n we set

(
γ∗

ij f
)
(x1, . . . , xn) =

{
(−1) j+1[x j, f(x1, .., x̂ j , .., xn)] if i = 0
(−1) j+1 f(x1, .., xi−1, [xi, x j ], xi+1, .., x̂ j , .., xn) if i > 0

for each multilinear Lie monomial f(x1, . . . , xn−1), where the circumflex
accent ˆ means that the accented term is omitted.

2.3. The standard relations

It follows from the multilinearity of f and from the Jacobi identity that for
i < j < k

((
γ ∗

0 jγ
∗
0,k−1+γ ∗

0kγ
∗
0 j

)
f
)
(x1, . . . , xn)

= (−1) j+k+1[x j , [xk, f(x1, .., x̂ j , .., x̂k, .., xn)]]
+ (−1) j+k[xk, [x j , f(x1, .., x̂ j , .., x̂k, .., xn)]]

= (−1) j+k+1[[x j , xk], f(x1, .., x̂ j , .., x̂k, .., xn)]
= − (

γ ∗
jkγ

∗
0 j f

)
(x1, . . . , xn)

and that
(
γ ∗

ijγ
∗
i,k−1 + γ ∗

ikγ
∗
ij+γ ∗

jkγ
∗
ij

)
f(x1, . . . , xn)

= (−1) j+k+1 f(x1, . . . , [[xi , x j ], xk] − [[xi, xk], x j ]
− [xi , [x j , xk]], .., x̂ j , .., x̂k, .., xn)

= 0 .

Passing to the dual in the above gives all cases (i = 0 and i > 0) of the
first relation in the following lemma. The other relations are even more
straightforward to verify.

2.4 Lemma. When i < j < k < l

γijγ jk + γijγik + γi,k−1γij = 0
γijγkl + γk−1,l−1γij = 0

γikγ jl + γ j,l−1γik = 0
γi,l−1γ jk + γ jkγil = 0 . 
�
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2.5. The bicomplex Ξ(F)

Let F be any Γ-module. Then F[n] is a left Σn-module by restriction of
structure, which we can combine with the right Σn-module Lie∗

n in the two-
sided bar construction B(Lie∗

n, Σn, F[n]). We take this as the (n − 1)st
row in our standard bicomplex, so that we have

Ξp,q(F) = Lie∗
q+1 ⊗ k

[
Σ

p
q+1

] ⊗ F[q + 1] .

the horizontal differential ∂ ′ being the alternating sum
∑p

i=0(−1)i∂ ′
i of face

operators:

∂ ′(z ⊗ [σ1|σ2| . . . |σp] ⊗ y) = zσ1 ⊗ [σ2| . . . |σp] ⊗ y +

+
p−1∑

i=1

(−1)i(z ⊗ [σ1|σ2| . . . |σiσi+1| . . . |σp] ⊗ y) +

+ (−1)p(z ⊗ [σ1|σ2| . . . |σp−1] ⊗ σp y) .

We define a vertical differential ∂ ′′ : Ξp,q −→ Ξp,q−1, that is

Lie∗
q+1 ⊗ k

[
Σ

p
q+1

] ⊗ F[q + 1] −→ Lie∗
q ⊗ k

[
Σp

q

] ⊗ F[q]
in terms of the operators cij (see (2.0)) in the Γ-structure on F, and the
homomorphisms γij of 2.2, by setting

(−1)p ∂ ′′(z⊗[σ1|σ2| . . . |σp] ⊗ y)

=
∑

0≤s<t≤q+1

γst z ⊗ cst[σ1|σ2| . . . |σp] ⊗ c(σ1...σp)−1{s,t} y

where cst[σ1|σ2| . . . |σp] is the p-simplex of the nerve of Σq which forms
the bottom row of the commutative diagram

[q + 1] σp−→ [q + 1] σp−1−→ · · · σ2−→ [q + 1] σ1−→ [q + 1]
c(σ1...σp)−1{st} ↓ ↓ c(σ1...σp−1)

−1{st} ↓ cσ−1
1 {st} ↓ cst

[q] −→ [q] −→ · · · −→ [q] −→ [q]
arising as follows. Given an isomorphism σ1 in the category Γ and a sur-
jection cst as here, the right-hand square above can be uniquely completed
with a surjection cσ−1

1 {st} and an isomorphism cst[σ1] : [q] → [q]. Repeat-
ing this procedure p times constructs the whole diagram, and the simplex
cst[σ1|σ2| . . . |σp]. (The notation cst when s > t means cts, and cσ{st} is an
abbreviation for cσ(s),σ(t).)

2.6 Proposition. Ξ(F) is a bicomplex.
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Proof. The relation ∂ ′∂ ′ = 0 holds because the two-sided bar resolution (see
for instance [19, §2.3]), is a chain complex. On the other hand ∂ ′′∂ ′′ = 0
because ∂ ′′ is on the first tensor factor the Leibniz differential ([8, 10.6.2]) on
a generic Lie algebra. The vanishing of ∂ ′′∂ ′′ can also be explicitly verified
by a calculation using Lemma 2.4.

Finally, we must verify that ∂ ′∂ ′′ + ∂ ′′∂ ′ = 0. In fact, ∂ ′′ anticommutes
with each of the horizontal face operators ∂ ′

i . For all faces except ∂ ′
0 this

is an immediate consequence of the commutative diagram used above to
define cst[σ1|σ2| . . . |σp]. The face ∂ ′

0 however involves the action of σ1 on
Lieq+1. We first note that the signs of σ1 and of cσ1{st}(σ1) are related by
ε(cσ1{st}(σ1)) = (−1)t−σ1(t)ε(σ1). For any f ∈ Lieq we therefore have

σ1(γ
∗
0t f )(x1, . . . , xq+1)

= (−1)tε(σ1)[xσ1(t), f(xσ1(1), .., x̂σ1(t), .., xσ1(q+1))]
= (−1)tε(σ1)ε(cσ1{0t}σ1)[xσ1(t), (cσ1{0t}σ1)· f(x1, .., x̂t, .., xq+1)]
= γ ∗

0,σ1(t) (cσ1{0t}σ1) · f(x1, .., xq+1)

which proves that σ1γ
∗
0t = γ ∗

0,σ1(t)
(cσ1{0t}σ1). Since γ0t is defined as the

adjoint of γ ∗
0t, we have γ0t(zσ1) = γ0,σ1(t)(z) cσ1{0t}(σ1) for all z ∈ Lie∗

q.
We show in the same way that γst(zσ1) = γσ1(s,t)(z) cσ1{st}(σ1) when s > 0,
though here we have to separate the cases σ1(s) < σ1(t) and σ1(s) > σ1(t).
The relations just established are precisely those needed to prove that ∂ ′′
anticommutes with the remaining face operator ∂ ′

0. Thus ∂ ′∂ ′′ + ∂ ′′∂ ′ = 0,
and the lemma is proved. 
�

3. The complex Tot Ξ and stable homotopy

In this section we use the theory of [10] and [11] to prove that the homology
of the Ξ-complex is stable homotopy.

3.1 Definition. We denote by HΞ∗(F) the homology of the total complex
Tot Ξ(F).

Let L be the Γ-module (denoted t∗ in [10]) which assigns to [n] the
free k-module generated by [n] modulo the submodule generated by the
basepoint:

L[n] = k[n]/k[0] .

We recall that tensor products over k of Γ-modules are defined objectwise:

(F ⊗ G)[n] = F[n] ⊗ G[n] .

3.2 Lemma. For any Γ -module F

HΞi(F ⊗ L) ≈
{

F[0] for i = 0
0 for i �= 0 .
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Proof. We calculate the homology of the bicomplex Ξ(F ⊗ L) using the
spectral sequence which first calculates the homology of the rows. The
(n − 1)st row is the bar construction B(Lie∗

n,Σn, F[n] ⊗ L[n]), so the
horizontal homology E1

n−1,∗ is TorΣn∗ (Lie∗
n, F[n] ⊗ L[n]). Let us denote the

trivial representation of any group by η. From the observation that L[n] is
the induced Σn-module IndΣn

Σn−1
η, we have

F[n] ⊗ L[n] ≈ F[n] ⊗ IndΣn
Σn−1

η ≈ IndΣn
Σn−1

(
ResΣn

Σn−1
F[n] ⊗ η

)

≈ IndΣn
Σn−1

ResΣn
Σn−1

F[n] .

Using this and the result §2.1(3) that Lie∗
n restricts to the regular representa-

tion IndΣn−1
Σ1

η of Σn−1, we can reduce the groups E1
n−1,∗ in two stages: first

to the homology of Σn−1, and then to that of the trivial group Σ1:

E1
n−1,∗ ≈ TorΣn∗ (Lie∗

n, F[n] ⊗ L[n])
≈ TorΣn∗

(
Lie∗

n, IndΣn
Σn−1

ResΣn
Σn−1

F[n])

≈ TorΣn−1∗
(

ResΣn
Σn−1

Lie∗
n, ResΣn

Σn−1
F[n])

≈ TorΣn−1∗
(

IndΣn−1
Σ1

η, ResΣn
Σn−1

F[n])

≈ Tork
∗(k, F[n]) ,

which is F[n] in degree zero, and zero elsewhere. Therefore the E1-term
reduces to the vertical edge, with E1

0,n−1 ≈ F[n].
We must calculate d1

n,0 : F[n + 1] → F[n]. Rewritten as

d1
n,0 : Lie∗

n+1 ⊗Σn+1(F[n + 1] ⊗ L[n + 1]) → Lie∗
n ⊗Σn(F[n] ⊗ L[n])

this is induced by the differential ∂ ′′ = ∑
0≤s<t≤n+1(γst ⊗cst). We calculate

the operators γst ⊗ cst on Lie∗
n+1 ⊗L[n + 1] from their adjoints

c∗
st ⊗ γ ∗

st : L[n]∗ ⊗Σn Lien −→ L[n + 1]∗ ⊗Σn+1 Lien+1 .

Let Un denote the left regulated Lie bracket [x1, [x2, [x3, . . . , [xn−1, xn]..]]],
which we shall denote more briefly by [1, [2, [3, . . . , [n − 1, n]..]]]. The
elements σUn, for σ ∈ Σn−1, form a k-basis for Lien . The cosets e j =
( j n)Σn−1, for 1 ≤ j ≤ n, form a k-basis of L[n]∗ ≈ Σn/Σn−1, and the
single element en ⊗Un is a basis for the rank one k-module L[n]∗ ⊗Σn Lien .

We take first the case s = 0. The definitions of c0t and of γ ∗
0t in Sects. 1–2

show that for t < n + 1, the homomorphism c∗
0t ⊗ γ ∗

0t maps en ⊗ Un into

(−1)t+1en+1 ⊗ [t, [1, [2, . . . , [t − 1, [t + 1, . . . , [n, n + 1]..]]]]]
which equals en+1⊗Un+1 in L[n+1]∗⊗Σn+1 Lien+1 because the permutation
(t 1 2 . . . t − 1) needed to standardize the order of the basis elements in the
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Lie bracket has sign (−1)t+1. For t = n + 1, from c0,n+1(n) = n we obtain
(
c∗

0,n+1⊗γ ∗
0,n+1

)
(en ⊗ Un)

= (−1)nen ⊗ [n + 1, [1, [2, . . . , [n − 1, n]..]]]
= (−1)nen+1 ⊗ (n n + 1)[n + 1, [1, [2, . . . , [n − 1, n]..]]]
= (−1)n+1en+1 ⊗ [n, [1, [2, . . . , [n − 1, n + 1]..]]]
= en+1 ⊗ Un+1

since (n n + 1) has sign −1 and the n-cycle (1 2 3 . . . n) has sign (−1)n+1.
Therefore in all cases (c∗

0t ⊗ γ ∗
0t)(en ⊗ Un) = en+1 ⊗ Un+1. Similar

calculations show that (c∗
st ⊗γ ∗

st)(en ⊗Un) = (−)s2en+1 ⊗Un+1 for s > 0.
These calculations of adjoint homomorphisms establish that the differential
d1

n,0 : F[n + 1] → F[n] has the following expression in terms of the
Γ-operators on F:

d1
n,0 =

n+1∑

t=1

c0t + 2
∑

1≤s<t≤n+1

(−1)scst .

We define an augmentation E1
0,0 ≈ F[1] → F[0] by the same formula,

which since n = 1 reduces at this level to the single term c01.
Let κn : [n] → [n + 1] be the morphism of Γ defined by κn(i) = i, for

1 ≤ i ≤ n. The κn induce a sequence of morphisms in the Γ-module F
which we also denote by κ. In Γ there are identities as follows: cstκn = κncst
for 0 ≤ s < t ≤ n, but cs,n+1κn = 1 for 0 ≤ s ≤ n. From this and the above
formula for d1

n,0 it follows that κn−1d1
n−1,0 + d1

n,0κn = (−1)n−1. This means
that the morphisms (−1)nκn give a chain contraction of the augmented
vertical edge E1

∗,0 → F[0]. Therefore E2
p,q is F[0] when (p, q) = (0, 0),

and is zero when (p, q) �= (0, 0). The lemma is proved. 
�
3.3 Lemma. If F is a constant Γ -module, then Ξ(F) is acyclic. In fact, all
the columns of Ξ(F) are acyclic.

Proof. It is clearly enough to show that all the columns are acyclic when
F is the Γ-module with constant value k. Since all the modules Ξpq(k) =
Lie∗

q+1 ⊗ k[Σp
q+1] are finite and free, it suffices to show that the complexes

dual to the columns are acyclic.
The dual of the column Ξ0,∗(k) at the edge has modules Ξ∗

0,q (k) = Lieq+1

and differential ∂ ′′∗ = ∑
0≤s<t≤q+1 γ ∗

st . By 2.1(3) the set of left regulated Lie
brackets [α1, [α2, .., [αq, q + 1]..]] where α ∈ Σq forms a k-basis of Ξ∗

0,q.
We define linear maps ∆∗ : Ξ∗

0,q → Ξ∗
0,q−1 by the formula

∆∗[α1, [α2, .., [αq, q + 1]..]] =
{

0 if α1 �= 1
(β2, [β3, .., [βq, q]..]) if α1 = 1,



Γ-homology, Lie representations and E∞ multiplications 339

where β j = α j−1. From this definition it follows that ∆[1, g(2, . . . , q+ 1)]
= g(1, . . . , q) for every Lie polynomial g. (We are still using the abbre-
viated notation introduced in 3.2, whereby the basis element xi is denoted
by i.) Let us verify that ∆∗ is a contraction of the cochain complex Ξ∗

0,∗.
Suppose that ω = [α1, [α2, .., [αq, q +1]..]] is a basis element with α1 �= 1.
Then ∆∗ω = 0. On the other hand ∆∗γ ∗

stω = 0 for all (s, t) except for

∆∗γ ∗
01ω = ∆∗[1, [α1 + 1, [α2 + 1, .., [αq + 1, q + 2]..]]] = ω ,

and therefore (∆∗∂ ′′∗ + ∂ ′′∗∆∗) ω = ω. Next we must consider the second
type of basis element, namely those ω of the form [1, [α2, .., [αq, q + 1]..]].
For these we have still ∆∗γ ∗

01ω = ω and ∆∗γ ∗
0tω = 0 for t > 0; but now

∆∗γ ∗
st ω = − γ ∗

s−1,t−1∆
∗ω for 1 < s < t ≤ q + 2

∆∗γ ∗
1t ω = ∆∗[[1, t], [ε2, [. . . , [εq, εq+1]..]]]

where ε j = α j if α j < t, and ε j = α j + 1 if α j ≥ t; here αq+1 means q + 1;

= ∆∗[1, [t, [ε2, [. . . , [εq, εq+1]..]]]
= [t − 1, [ε2 − 1, [. . . , [εq − 1, εq+1 − 1]..]]]
= − γ ∗

0,t−1∆
∗ω for all 1 < t ≤ q + 2 .

Therefore (∆∗∂ ′′∗ + ∂ ′′∗∆∗) ω = ω for ω of the second type. This proves
that ∆∗ contracts Ξ∗

0,∗(k). Hence its dual ∆ is a chain contraction of the
column Ξ0,∗(k).

The p th column Ξp,∗(k) has Ξp,q = Lie∗
q+1 ⊗ k[Σp

q+1]. To contract this
column we define θ : k[Σp

q ] → k[Σp
q+1] by

θ [σ1|σ2| . . . |σp] = [σ̄1|σ̄2| . . . |σ̄p]
where σ̄ j is the shift of σ j having σ̄ j(1) = 1 and σ̄ j(t) = σ j(t − 1) + 1 for
t > 1. This θ has the following commutation relations with the Γ-operators
defined in 2.5: first, c01θ = 1 and c0tθ = θc0,t−1 for t > 1; and second,
cstθ = θ cs−1,t−1 for 0 < s < t. Combining these with the duals of the above
formulae for ∆∗c∗

st , we find that the homomorphisms

(∆ ⊗ θ) : Lie∗
q ⊗ k

[
Σp

q

] −→ Lie∗
q+1 ⊗ k

[
Σ

p
q+1

]

give a chain contraction of the p th column. We have now shown that Ξ(k)
is an acyclic bicomplex, because the homology of every column vanishes.


�
3.4 Proposition. The homology groups HΞi(L⊗r) of the Γ -modules L⊗r

are as follows.

HΞi(L) ≈
{

k for i = 0
0 for i > 0,

and HΞi(L⊗r) ≈ 0 for all i when r = 0 and when r > 1.
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Proof. In the case r ≥ 1, the result follows when we apply Lemma 3.2 to
calculate HΞi(L⊗(r−1) ⊗ L). The single non-zero value occurs when r = 1,
when L⊗(r−1) is the Γ-module with constant value k.

The case r = 0 follows from Lemma 3.3, because L⊗0 is the constant
Γ-module with value k. 
�
3.5 Theorem. There is a isomorphism HΞ∗(F) ≈ TorΓ∗ (L∗, F), functorial
in the left Γ -module F.

Proof. It is sufficient to establish a natural isomorphism HΞ0(F)≈ L∗⊗Γ F,
and to prove that HΞi(P) = 0 for i > 0 when P is projective.

The right Γ-module L∗ is identified with the functor t of ([10, 1.4]) in
which t[n] is the module of basepoint-preserving maps from [n] to the ring k
(where the basepoint of k is 0).

Let Γn be the free right Γ-module on one element situated at the
object [n]. Explicitly, Γn[m] is the free k-module on HomΓ([m], [n]), and
the Γ-module structure arises from composition. We compute L∗⊗Γ F from
the exact sequence of ([10, 1.4.1])

Γ2
α−→ Γ1

β−→ L∗ −→ 0

in which β maps the generator of Γ1 to the based map [1] → k taking 1 to 1,
and α maps the generator of Γ2 to p{12} − p{1} − p{2}, where pX : [2] → [1]
is defined by p−1

X {1} = X. Tensoring this sequence with F and using the
isomorphisms Γn ⊗Γ F ≈ F[n], we deduce that L∗ ⊗Γ F is the cokernel of

c12 − c01 − c02 : F[2] −→ F[1] .(3.5.1)

On the other hand, HΞ0(F) is by definition the cokernel of

∂ ′ + ∂ ′′ : (
Lie∗

1 ⊗ k[Σ1] ⊗ F[1]) ⊕ (
Lie∗

2 ⊗ F[2]) −→ Lie∗
1 ⊗ F[1] .

Since Lie∗
1 and Lie∗

2 are isomorphic to k, and ∂ ′ is zero in this bidegree
(from the bar construction on the trivial group Σ1), this formula for HΞ0(F)
reduces to (3.5.1). The isomorphism HΞ0(F) ≈ L∗ ⊗Γ F therefore holds.

We now need to show that HΞi(P) = 0 for i > 0 when P is projective.
Since the tensor powers L⊗r are projective generators of Γ-mod (by [10] or
[11]), and HΞ∗ commutes with sums, it is enough to prove this for the cases
P = L⊗r for r ≥ 0. This was done in 3.4, so the theorem is completely
proved. 
�
3.6 Corollary. The complex Ξ(kΓ) is a projective resolution of the right
Γ -module L∗.

Proof. The Γ-bimodule kΓ is projective both as a left Γ-module and as
a right Γ-module. We have

Ξp,q(kΓ) ≈ Lie∗
q+1 ⊗ k

[
Σ

p
q+1

] ⊗ Γq+1 .
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where Γq+1 is the free right Γ-module as in 3.5. Therefore each Ξp,q(kΓ) is
projective in mod-Γ, as both k[Σp

q+1] and Lieq+1 (by 2.1) are k-free. Thus
Ξ(kΓ) is a projective complex of right Γ-modules; it is augmented over L∗
by the following composite involving the map β of 3.5:

Ξ0,0(kΓ) = Lie∗
1 ⊗Γ1 ≈ Γ1

β−→ L∗ .

By Theorem 3.5, the homology of Ξ(kΓ) is TorΓ∗ (L∗, kΓ). This vanishes
in positive degrees, since kΓ is a free left module; and β induces an iso-
morphism of L∗ ⊗Γ kΓ with L∗ by the calculation in the proof of 3.5. Hence
the augmented total complex is exact, and Ξ(kΓ) is a projective resolution
of L∗. 
�

Using the cyclic property of the Lie operad one can construct analogues
of 3.5 and 3.6 for F -modules, where F is the category of non-empty finite
sets (without basepoint). This variant will be treated elsewhere.

3.7 Corollary. There is a functorial isomorphism π∗(F) ≈ HΞ∗(F) for
Γ -modules F.

Proof. This follows immediately from Theorem 3.5 and the natural iso-
morphism TorΓ∗ (L∗, F) ≈ π∗(F) of ([10, 2.2]). 
�

The bicomplex Ξ(F) is much smaller, and more transparent in its struc-
ture, than the Robinson-Whitehouse complex which served the same pur-
pose in [11]. The application which we give in Sect. 5 makes clear that
Ξ(F) has precise geometrical origins in the theory of E∞-structures and
infinite delooping.

4. The Γ-homology and Γ-cohomology of graded commutative
algebras

Let A = {An}n∈Z be an associative graded ring with unit which is commu-
tative in the usual graded sense: that is, yx = (−1)mnxy when x ∈ Am and
y ∈ An . Let B be an A-algebra, and G a B-module. (Here and henceforth
the qualification “graded” is usually suppressed, but is to be understood;
and unmarked tensor products are over the ground ring A.)

We denote by (B|A)⊗ the tensor algebra of B over A. Then (B|A)⊗ ⊗ G
has a natural Γ-module structure over the ring B: if ϕ : [n] → [m] is any
morphism in Γ, we set

ϕ∗(b1 ⊗ · · · ⊗ bn ⊗ g) = ε c1 ⊗ · · · ⊗ cm ⊗ h

in which

ci = bi1 . . . bir if ϕ−1(i) = {i1, . . . , ir} where i1 < i2 < · · · < ir

h = bj1 . . . bjs g if ϕ−1(0) = {0, j1, . . . , js} where j1 < j2 < · · · < js
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and in which ε is the sign of the permutation that rearranges {1, 2, . . . , n} in
the order in which b1,...,bn appear in the expansion of the product c1 . . . cm .
When ϕ happens to be a permutation σ (regarded as an isomorphism in Γ)
this means that ϕ∗ rearranges the factors and multiplies by the sign (compare
[10, p. 158]):

σ∗(b1 ⊗ · · · ⊗ bn ⊗ g) = ε(σ) bσ−11 ⊗ · · · ⊗ bσ−1n ⊗ g .

4.1 Definition. The Γ -cotangent complex of B over A is the bicomplex
of B-modules resulting from applying the Ξ-construction of Sect. 2 to the
above Γ-module:

K(B|A) = Ξ((B|A)⊗ ⊗ B) .

The Γ -homology and Γ -cohomology of B relative to A, with coefficients in
the B-module G, are defined as the homology and cohomology of K(B|A):

HΓ∗(B|A; G) = HΞ∗(K(B|A) ⊗B G) ≈ HΞ∗((B|A)⊗ ⊗A G)

HΓ ∗(B|A; G) = HΞ∗ HomB(K(B|A), G) ≈ HΞ∗ HomA((B|A)⊗, G)

where the bicomplexes on the right are given the differentials induced from
those in the centre column. Since the Γ-modules here are graded, all these
constructs have a further internal grading.

Conditions for the homotopy invariance of these definitions are given in
4.5 below.

4.2 Theorem. For any graded A-algebra B and B-module G

HΓ∗(B|A; G) ≈ π∗((B|A)⊗ ⊗ G) .

Proof. This is a special case of 3.7. 
�
4.3 Corollary. The above definition of Γ -homology is consistent with the
definitions given for ungraded commutative algebras in [11] and in [17].

Proof. In the ungraded case, the Γ-module K(B|A) ⊗ G is the Loday
functor of ([9, 3.2]). In [11] and [17] it is proved that the original definitions
of Γ-homology give groups isomorphic to the stable homotopy of this
functor. 
�

4.4. Homotopy invariance of the cotangent complex

In applications we often need a homotopy invariance property for the cotan-
gent complex and for Γ-cohomology. By this we mean that the levelwise
extensions of these functors to the category of simplicial graded commuta-
tive algebras should respect weak equivalences. This is true for the cotangent
complex and for Γ-homology provided that B is flat over A. It is true for Γ-
cohomology if B is a projective A-module, or if B is flat and Exts

A(B, G) = 0
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for all s > 0, where G is the coefficient module. When these conditions
do not hold, a homotopy invariant cotangent complex can be obtained by
replacing B by a simplicial projective resolution, then proceeding as above.

General properties of Γ-homology, such as the transitivity exact se-
quence, are proved in [17]. Some calculations are given in [14] and [15]. In
particular, the Γ-homology of a polynomial algebra in one variable is iso-
morphic to the topological homology of the Eilenberg-Mac Lane spectrum
HZ.

5. Application: obstruction theory for E∞ multiplications on ring
spectra

5.1. Multiplicative actions of E∞ operads on spectra

Let V be a commutative ring spectrum in the sense of classical homotopy
theory. Thus there are a given unit map η : S → V and a multiplication
µ : V ∧ V → V satisfying the homotopy associativity, homotopy commu-
tativity and homotopy unit axioms. We work in a category of spectra which
is symmetric monoidal with respect to smash product, such as the category
of S-modules [5].

We investigate E∞ structures on V . An E∞ structure means an action
of an E∞ operad C on V . This is prescribed by maps

µm : Cm �Σm V (m) −→ V

where V (m) is the mth smash power. The µm are required to be compatible
with composition (that is, to form a morphism of non-unital operads from
C to the endomorphism operad End(V )); and µ2 must be the given multi-
plication µ. In the category of S-modules, such an E∞ structure guarantees
that V is equivalent to a commutative S-algebra: there are no obstructions
to higher coherence of the unit η.

We shall take C to be the E∞ operad T introduced in ([17, 1.5]). This
operad of cell complexes is the product of the Barratt-Eccles operad with
the tree operad. The Barratt-Eccles operad is E∞: it has mth space EΣm ,
and composition is induced by wreath product of permutations. The mth
space in the tree operad is the space T̃m of trees with root and leaves labelled
by the elements of [m] = {0, 1, . . . , m}, and composition is by grafting
trees. As we explained in [17], the reason for our choice is that the product
operad T , unlike the Barratt-Eccles operad, is a cofibrant E∞ operad in the
model category structure defined by Hinich [7].

It is useful to note that the operad T can also be written Tm ≈ ẼΣm×ΣmT̃m

where ẼΣm is the two-sided bar construction on the symmetric group Σm ,
and the action of Σm in the operad structure is the left action on ẼΣm .

We shall now explain how we propose to classify E∞ ring structures by
an inductive procedure.
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5.2. The boundary and the diagonal filtration in T

The bar filtration on EΣm induces a filtration on Tm . Let us denote the rth
space in the filtration of Tm by T r

m . Thus T 0
m = Σm × T̃m , and T r

m = ∅ when
r < 0.

We shall denote by ∂T̃m the subspace of decomposable or fully-grown
trees in T̃m . These are the trees in which at least one internal edge has
length 1. (This is the space denoted by Tm in [17].)

For each j-element subset of {1, 2, . . . , m}, the tree space T̃m has a face
homeomorphic to T̃i × T̃j , when i, j ≥ 2 and i + j = m + 1. It contains
just those trees in which an edge of length 1 separates the j leaves labelled
by the subset from the i − 1 other leaves and the root. The stabilizer of this
face is a conjugate of Σi−1 ×Σ j in Σm . The union of all the faces is ∂T̃m ,
and the intersection of two faces is either empty or is a common subface.

In the operad T , we define a face of Tm to be a subspace EΣm ×F, where
F is a face of the tree space T̃m . The boundary ∂Tm of Tm is EΣm × ∂T̃m ,
which is the same as the union of all the faces. In any action

µm : Tm �Σm V (m) −→ V

of T on a spectrum V , the restriction of µm to any face (EΣm × F)� V (m)

is determined, up to coherent homotopy, by the corresponding composite

µi × µ j : (Ti × T j)�Σi−1×Σ j V (m) −→ V .

This is true because EΣm has EΣi−1 × EΣ j as a (filtered) (Σi−1 ×Σ j)-
equivariant deformation retract. There is an explicit standard retraction
EΣm −→ EΣi−1 × EΣ j , defined using shuffles, which we always use to
extend the above composite µi × µ j over the whole face. These retractions
preserve filtration, and are coherent with respect to iterated face inclusions.
Hence the restriction of µm to T r

m ∩ ∂Tm is determined by the restrictions of
the µi × µ j to (T r

i × T r
j )� V (m), where i + j = m + 1. We now define the

diagonal filtration ∇ on T by setting ∇rTm = T r−m
m ; and we define ∂∇rTm

to be ∇rTm ∩ ∂Tm. It follows that µm restricted to ∂∇rT is determined by
the µi × µ j restricted to ∇r−1T × ∇r−1T , because face inclusions strictly
increase the lower index. This permits us to make inductive constructions.

5.3 Definition. An n-stage for an E∞ ring structure on V is a sequence of
maps

µm : ∇nTm �Σm V (m) −→ V

which on their restricted domain of definition satisfy the requirements for
a morphism of operads from T to End(V ).

A 2-stage for an E∞ ring structure is nothing but a map µ : V ∧V → V .
A 3-stage incorporates an associativity homotopy µ(1 ∧ µ) � µ(µ ∧ 1)
and a commutativity homotopy µ � τµ, where τ interchanges factors. This
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3-stage extends to a 4-stage if and only if these homotopies satisfy the well-
known pentagonal and hexagonal homotopy conditions and the condition
that the commutativity homotopy be homotopy commutative.

We denote by V∗(X) and V ∗(X) the V -homology and V -cohomology of
the spectrum or space X. The multiplication on V gives all the usual products
in these theories. We denote by R the graded coefficient ring V∗(S0), and by
Λ the dual Steenrod algebra V∗(V ), which is a graded Hopf R-algebroid.
We make the standing assumption that Λ is R-flat, and that there is a perfect
universal coefficient isomorphism for all n

V ∗(V (n)) ≈ HomR(Λ⊗n, R) .

The augmentation Λ → R makes R into a Λ-module, allowing us to de-
fine the complex HomΛ(K(Λ|R), R) and its cohomology HΓ ∗(Λ|R; R).
The grading on the rings gives a third grading on the bicomplex K(Λ|R).
The associated single complex Tot K(Λ|R) and the cohomology
HΓ ∗(Λ|R; R) are therefore bigraded.

5.4 Proposition. Let V be a ring spectrum satisfying the above universal
coefficient condition. Then the obstruction to extending an n-stage on V to an
(n+1)-stage is an (n, 2−n)-cocycle of the complex Tot HomΛ(K(Λ|R); R).
Given a fixed (n − 1)-stage, the obstruction cocycles to extending different
n-stages form a single cohomology class in this complex.

Proof. In order to extend an n-stage {µm} to an (n + 1)-stage, we require
for each integer m in the range 2 ≤ m ≤ n + 1 an extension of µm :
∇nTm�Σm V (m) −→ V over ∇n+1Tm�Σm V (m). The extension is determined
on ∂∇n+1Tm �Σm V (m) already by the condition that {µm} should respect
compositions, as explained in 5.2. The obstruction to extending µm therefore
lies in the group

V 1
((∇n+1Tm/

(∇nTm ∪ ∂∇n+1Tm

)) ∧Σm V (m)
)

.

But we have

∇n+1Tm/
(∇nTm ∪ ∂∇n+1Tm

) ≈ (
EΣn−m+1

m /EΣn−m
m

) ∧ (T̃m/∂T̃m)

where ∂T̃m is the space of fully-grown (or decomposable) trees, and Σm
acts freely upon the factor EΣn−m+1

m /EΣn−m
m , which is a wedge of spheres

of dimension n − m + 1, indexed by Σn−m+2
m . It is known that T̃m/∂T̃m has

the homotopy type of a wedge of (m − 1)! spheres of dimension m − 2, and
that its homology is isomorphic as a Σm-module to Lie∗

m with the twisted
sign as in 2.1 (see for instance [20]). Thus the quotient ∇n+1Tm/(∇nTm ∪
∂∇n+1Tm) is a wedge of (n − 1)-dimensional spheres. From the perfect
universal coefficient formula V ∗(V (m)) ≈ HomR(Λ⊗m, R), we therefore
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have obstructions (to the existence of an n-stage) in all the groups

V 1
((∇n+1Tm/

(∇nTm ∪ ∂∇n+1Tm
)) ∧Σm V (m)

)

≈ Hom2−n
R

(
Lie∗

m ⊗R
[
Σn−m+1

m

] ⊗ Λ⊗m, R
)

≈ Homn−m+1, m−1, 2−n
Λ (K(Λ|R), R)

from the definition of K(Λ|R) in 4.1. This sequence of elements, for
m in the range 2 ≤ m ≤ n + 1, forms an (n, 2 − n)-cochain θ of
Tot HomΛ(K(Λ|R); R). (The second grading 2 − n is the internal grading
of the cohomology theory V ∗.)

A completely analogous argument shows that the various n-stages which
extend a given (n − 1)-stage are enumerated by difference (n − 1, 2 − n)-
cochains of Tot HomΛ(K(Λ|R); R).

We must now investigate how the obstruction cochain θ changes when
the n-stage is varied. This corresponds to analysing the attaching maps
connecting the quotients in the diagonal filtration: we show that these cor-
respond to the differentials in the Ξ-complex. Suppose the n-stage is al-
tered by a difference (n − 1, 2 − n)-cochain ρ. The obstruction component
θ n−m+1, m−1, 2−n is altered by

δ′ρn−m, m−1, 2−n + δ′′ρn−m+1, m−2, 2−n

where the two terms correspond to the two factors in the smash product
decomposition of ∇n+1Tm/(∇nTm ∪ ∂∇n+1Tm) displayed above. In the first
of these two terms, δ′ is the cohomology differential in the bar construction,
arising from the smash factor EΣn−m+1

m /EΣn−m
m . In the second term, δ′′ is

the cohomology dual of the vertical differential in the Ξ-construction (2.5),
arising from the formula for the contribution to the boundary from the smash
factor T̃m/∂T̃m . Here we use an explicit isomorphism between the homology
of the space T̃m/∂T̃m and the representation Lie∗

m , which was established in
[20]. The calculation of the boundary is given in the proof of 6.4 of [17],
and the evaluation of δ′′ then proceeds as in [16].

The above analysis of the coboundary shows that the indeterminacy in
θ obtained by altering the n-stage therefore equals the group of (n, 2 − n)-
coboundaries in Tot HomΛ(K(Λ|R); R). The same analysis shows in the
usual way that θ is a cocycle. This completes the proof of the proposition.


�
5.5 Theorem. Let V be a ring spectrum satisfying the universal coefficient
condition as in 5.4. Suppose given an (n − 1)-stage µ for V which can
be extended to an n-stage. Then there is a natural Γ-cohomology class
[θ] ∈ HΓ n,2−n(Λ|R; R), the vanishing of which is necessary and sufficient
for µ to be extendable to an (n + 1)-stage. 
�
5.6 Theorem. Let V be as in 5.5 above. Suppose V is homotopy commu-
tative and homotopy associative, and that HΓ n,2−n(Λ|R; R) = 0 for all
n ≥ 4. Then V has an E∞-structure. If further HΓ n,1−n(Λ|R; R) = 0 for
all n ≥ 3, then this E∞-structure is unique up to homotopy. 
�
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Goerss and Hopkins have proved a very similar theorem to 5.6 in the
course of extensive unpublished work based upon [6]. An important appli-
cation shows that the Lubin-Tate spectra of [12] have E∞ structures.

5.7 Corollary (Goerss-Hopkins). The Lubin-Tate spectrum En of a Honda
formal group law of height n has an E∞ multiplicative structure, and this
structure is unique up to homotopy.

Proof. We need the results of the elegant homological treatment of Λ =
V∗V , due to Hopkins and Miller, which is presented in Part 3 of [12]. These
arguments show that the perfect universal coefficient theorem holds for
V = En , and that the André-Quillen cohomology D∗(Λ|R; R) is all zero.
Further, they show that Exts

R(Λ, R) = 0 for s > 0, so that the conditions in
4.4 for the homotopy invariance of Γ-cohomology are met. Therefore the
dual in cohomology of Richter’s Atiyah-Hirzebruch spectral sequence [14]
can be applied to show that HΓ ∗(Λ|R; R) is zero. 
�

An alternative proof that the Γ-cohomology of the dual Steenrod algebra
for these spectra is zero is given in [15].
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