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1. Andy Senger, 09/21: Overview

The goal of this semester is to understand Behrens’ memoir on the EHP sequence and its
interaction with the Goodwillie tower.

The goal is to understand something about unstable homotopy groups of spheres; I’ll go
through some older approaches. The EHP sequence is a fiber sequence

Ω2S2n+1 P→ Sn
E→ ΩSn+1 H→ ΩS2n+1

(note this is only a fibration if this is localized at 2). The P map is related to the Whitehead
product. The E map is the adjoint to the identity map ΣSn ' Sn+1 → Sn+1. The James
splitting says

ΣΩΣ(Sn) ' Σ
∨
k≥0

(Sn)∧k

and the H map is Σ
∨
k≥0(Sn)∧k → ΣS2n ' S2n+1.

We have a sequence

S0 E→ ΩS1 E→ Ω2S2 → . . .
E→ ΩnSn

E→ Ωn+1Sn+1 → · · · → Ω∞Σ∞S0 ' QS0

and we can use the H maps to turn this into a sequence of principal fibrations

S0 E // ΩS1

H
��

E // Ω2S2 //

H
��

. . . ΩnSn
E //

H
��

E // Ωn+1Sn+1

H
��

// . . . // Ω∞Σ∞S0 ' QS0

ΩS3

P

aa

Ω2S5

P

cc

ΩnS2n+1 Ωn+1S2n+3

and so we get a spectral sequence

E1
m,t ' πt+m+1S

2m+1 =⇒ πst .

We can truncate the part where m ≥ n, and get something to πn+t(S
n). If you go in the right

order, the unstable stems you need to compute new unstable stems, are ones you already
know. So if you can compute differentials, then you can inductively compute all unstable
homotopy groups of spheres. But we can’t do this, because understanding the P map is hard.
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Toda used this to compute the first 20 unstable stems (starting counting at 0, so up to π19).
He used the product structure and Toda brackets. But we’re going to do something else.

Using the Snaith splitting of Σ∞ΩnΣn(S1), you get a map Ωn+1Sn+1 → QRPn which sends
the EHP filtration to the cellular filtration. We get a map of fiber sequences

ΩnSn
E //

��

Ωn+1Sn+1 //

��

Ωn+1S2n+1

��

QRPn−1 // QRPn // QSn

which implies you get a map of spectral sequences from the EHP spectral sequence to a
(slightly regraded) πs∗-Atiyah Hirzebruch spectral sequence (the usual E2 page of the AHSS
is now the E1 page). This is an isomorphism on E1 where the homotopy groups in E1 are
stable (because Ωn+1S2n+1 → QSn is just stabilization, so this map will be an isomorphism
when it’s already stable).

Call the groups you can compute with this range metastable. You can compute metastable
groups using the AHSS of RP∞, and this is actually computable. Mahowald, in his little red
book, computed quite a few of these.

But wait – there’s more! If I can compute a certain localization, I can get everything. Let j be

the fiber of the map bo
ψ→ bsp (a lift of the Adams operation) be the image of the J spectrum.

The πs∗-AHSS of RP∞ maps to the j∗-AHSS of RP∞. In further work, Mahowald computes
this completely. If all you care about is height 1, this is as good as the sphere spectrum. Using
this, and the fact that Ω2n+1S2n+1 → QR2n is an isomorphism on v1-periodic homotopy,
Mahowald computed unstable v1-local homotopy of odd spheres.

We’d like a more systematic version of this that works at higher heights; the Snaith map
kind of came out of nowhere. The plan for fitting this into a framework is to use Goodwillie
calculus.

Suppose I have a reasonable functor F : Top∗ → Top∗. Then Goodwillie calculus produces a
tower of principal fibrations

...

��

D2F // P2F

��

D1F // P1F

��

P0F

called the Goodwillie tower. In good cases, this will converge to F .

Why care? The layers Di of the tower have the following nice description:

DiF = Ω∞(∂i(F ) ∧X∧i)hΣi
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So F (which we want to know about) is unstable, and the Di’s are stable – it’s Ω∞ of some
spectrum. Here ∂i(F ) is a Σi-spectrum (in the näıve sense).

We’ll take F = 1 and write Pi(1)(X) =: PiX. So we have a tower

D2X // P2X

��

D1

'Ω∞Σ∞X

X // P1X

��

P0X ' ∗
So the tower starts with the stabilization of X and tries to build up the unstable X by adding
in some further stable things. But what we really care about is spheres, so let’s specialize
even further and take X = Sn. Now we have more results:

Theorem 1.1 (Arone-Mahowald).

• DiS
n ' ∗ unless i = 2k. (Recall we’ve localized at 2.)

So the tower converges must faster than you might expect.

• S2n+1 → P2kS
2n+1 is a vk-periodic equivalence.

So if you only care about height k, you only need to care about the first k parts of the
tower. We’ve seen this above at height 1, and this says that, at higher heights, there are
just finitely more steps you have to take.

• Computed homology of D2kS
n and understood the Steenrod algebra action.

Theorem 1.2 (Arone-Dwyer). D2kS
n ' Ω∞(Σ∧−kL(k)n) where L(k)n is the (stable) sum-

mand of Σ∞(B(Z/2)k)nρ (Thom space w.r.t. the n times the reduced real regular representa-
tion). This is the Thom space corresponding to the Steinberg idempotent in the group ring of
GLk(Z/2)?.

More concretely, L(1)n ' Σ∞RP∞/RPn.

Consider S1 → Ω2nS2n+1 (which induces a map of Goodwillie towers) and take the fibers –
this will have the same vn-periodic homotopy as Ω2nS2n+1 since S1 doesn’t have any.

1.1. Behrens’ memoir. Behrens wants to understand how the Goodwillie tower approach
interacts with the EHP approach, and it turns out that this interaction is really nontrivial
and allows you to compute basically everything through the Toda range.

The EHP sequence comes about through applying the following maps to spheres:

1
E→ ΩΣ

H→ ΩΣ(−)∧2
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where the second map comes from the James splitting. We always have a sequence of functors
like this, but it’s not always a fibration; it’s a fibration when applied to the 2-local sphere.
This induces maps of Goodwillie towers of these functors, which it turns out can be understood
relatively easily in terms of the Goodwillie of the identity. This gives rise to fiber sequences

P2m(Sn)→ ΩP2m(Sn+1)→ ΩPm(S2n+1)

P2m+1(Sn)→ ΩP 2m+1(Sn+1)→ ΩPm(S2n+1)

These induce maps on D layers, which in particular induce the following fiber sequences (“via
the 9-lemma”)

ΣnL(k − 1)2n+1 → L(k)n → L(k)n+1.

These are due to Kuhn and Takeyasu(sp?). These allow us to build L(k)n up inductively from
the smaller ones.

Behrens uses the fact that the Taylor coefficients ∂i of the identity form an operad and
rephrases the Arone-Mahowald computation in terms of the fact of these operations. So you
can completely understand what’s going on with homology.

He defines some “transfinite spectral sequences” – you want to use one spectral sequence to
compute the E2 term of another, and so he combines these spectral sequences into a tower. If
you just input the results of one spectral sequence into the next, the extension problems just
keep getting worse.

He combines the spectral sequences from the L(k) fibrations into a “transfinite AHSS” for
πs∗L(k)n. He inputs this into the Goodwillie tower to get what he calls the “Transfinite
Goodwillie spectral sequence” which converges to π∗S

n.

Finally, he puts this into the EHP spectral sequence (the E1 term of the EHP spectral sequence
is just homotopy groups of spheres) to get the “transfinite EHP spectral sequence”. Part of
this is to get consistent naming – everything is coming from the transfinite AHSS (TASS) for
πs∗L(k)n. This allows him to understand what certain maps do, by understanding what they
do on the E1 page of some other spectral sequence.

This gives a method for computing the transfinite Goodwillie spectral sequence (TGSS) and
transfinite EHP spectral sequence (TEHPSS) simultaneously, playing them off each other.
This comes in several steps:

(1) Compute some amount of πs∗(L(k)) using the TAHSS, knowledge of the cell structure of
RP∞, and the Steenrod action on H∗(L(k)) to compute some of the stable attaching
maps. This is supposed to be the easy part.

(2) Compute TGSS for Sn inductively in n, starting with S1.
The differentials in the GSS essentially correspond to understanding the H map

(Hopf invariants). . . well, at least, knowledge of the H map gives GSS differentials. In
particular, in the metastable range this can be described completely in terms of the
stable homotopy AHSS for RP∞. All of the ones you can get from H maps for S1 come
this way. The rest of the GSS differentials can be gotten by knowledge of the output –
you already know about π∗S

1. Using E and P maps, which induce maps of TGSS, you
can push differentials up.
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(3) Simultaneously compute the TEHPSS by lifting differentials from TGSS. (But you
have to do this simultaneously because there might be more Hopf invariants you don’t
understand.)

Behrens uses this to get everything in the Toda range except one differential. You can get
more differentials using more ad hoc methods.

2. Peter Haine, 09/27: Overview of Goodwillie calculus

Plan:

(1) analogies from calculus and some ideas and motivation

(2) cubes and n-excisive functors

(3) the Taylor tower

2.1. Goodwilie’s motivation. Goodwillie wanted to study stable pseudo-isotopy theory
and Waldhausen A-theory. Pseudo-isotopy theory is very geometric, and A-theory is related
to parametrized h-cobordisms. He wasn’t, at first, thinking about stable homotopy theory,
and these ideas are pretty general.

Idea: in this geometric setting you probably don’t have a Postnikov tower, and we want to get
something analogous. We want to imitate the following from calculus: if f : R→ R is smooth,
then for n ≥ 0, Taylor’s theorem gives an expression f(x) = c0 + · · ·+ cnx

n + u(x)xn+1 where
u(x) ∈ C∞(x) is a smooth function and the nth Taylor polynomial pn := c0 + · · ·+ cnx

n is
uniquely characterized by the following two properties:

(1) deg(pn) ≤ n

(2) f − pn vanishes to order n at 0 ∈ R.

Suppose we have a functor defined between two homotopical categories, and we want to
approximate that using “polynomial functors”. We might be working in a setting that is too
general to have a Postnikov tower.

I’m going to be working completely homotopically; I’m going to say “∞-category” but if you
don’t like that you can substitute a model category. But these things are very general and
model-independent: this is in Higher algebra, basically just copied from Goodwillie.

Suppose we have F : Sp → Sp and we want to approximate F by “polynomials”. Here’s a
definition expressing what I mean by “polynomial”:

Definition 2.1. Write Polyn(Sp, Sp) for the smallest subcategory of Fun(Sp, Sp) that:

• contains (−)∧m for 0 ≤ m ≤ n
• is closed under colimits

• is closed under (de)suspensions (i.e. is homotopically well-behaved).
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Example 2.2. If you fix C0, . . . , Cn ∈ Sp then the functor

X 7→
n∨
i=0

Ci ∧X∧i

is in Polyn(Sp,Sp). Not everything looks like this but everything is generated by things that
look like this.

But there are some issues – it’s not super general. The functors (−)∧n preserves filtered
colimits, and hence so does everything in Polyn. You should think of this as a smoothness
(or finiteness) condition. You might not want this finiteness condition. Furthermore, this
definition depends on certain features of spectra. If you want this to be applicable to other
contexts, you may not have a monoidal product, or maybe the product and coproduct don’t
agree and it’s not clear what to replace

∨
with. Finally, there’s no obvious way to check if

a functor is in Polyn: you have to find some way to express it as some (de)suspension of a
colimit of things like in the example. It’s not even true that the expression is unique.

So Goodwillie realized we should do something different. In the case of spectra, Polyn will
be characterized by preserving filtered colimits, plus one more general condition. Here’s a
summary of the analogies:

Differential calculus Functor calculus

Smooth manifold M ∞-category C (nice enough)

smooth map functor preserving filtered colimits

x ∈M x ∈ C

R Sp

polynomial excisive functor

subtraction of polynomials fiber of a map of excisive functors

2.2. Excisive functors. Goodwillie’s insight is that degree 1 polynomials should correspond
to excisive functors – things that satisfy the usual excision axiom for cohomology theories. One
way of writing this is that homotopy pushouts are sent to homotopy pullbacks. Goodwillie
realized that this is something you can generalize to higher polynomials by replacing the
square in the pushout diagram with a cubical diagram.

Notation 2.3. For a finite set S ∈ Fin, write P (S) for the power set as a poset (this is a
(#S + 1)-dimensional cube). For example, if S = {a, b} this is

∅ �
�

//
� _

��

{a}� _

��

{b} �
�

// {a, b}

There’s an annoying indexing issue: this is called a 1-cube. Write P≤i(S) for the sub-poset of
sets of cardinality ≤ i, where i ≤ #S.
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Definition 2.4. Let C be an ∞-category and S ∈ Fin. Then an S-cube in C is a functor
P (S)→ C. An S-cube X is Cartesian if

X(∅)→ lim
∅6=S′⊂S

X(S′)

is an equivalence. (If S were a square this would be a pullback diagram. In general, you’re
looking at the limit diagram gotten from removing ∅ from the cube.)

Saying a cubical diagram is a pushout is asking for

X(∅)

{{

//

��

X(0)

zz

��

X(2) //

��

X(02)

X(1) //

{{

X(01)

X(12)

to be a pushout. But I can ask for a stronger property – I should be able to build the entire
cube by taking iterated pushouts of

X(∅)

{{

//

��

X(0)

X(2)

X(1)

Definition 2.5. An S-cube is strongly cocartesian if X is a left Kan-extension of X|P≤1(S).

Notation 2.6. An n-cube is an {0, . . . , n}-cube. (This is sort of off by 1.)

Definition 2.7. Let C ∈ Cat∞ admit finite colimits, D ∈ Cat∞, and n be a non-negative
integer. A functor F : C → D is n-excisive if

F (strongly cocartesian n-cube) = cartesian n-cube.

Example 2.8.

• A 0-cube in C is a morphism in C. Every 0-cube is strongly cocartesian. However, not
every zero-cube is cartesian: that means that X(∅) is the limit of the diagram X(0). In
order for this to be cartesian, I need X(∅)→ X(0) to be an equivalence. In general, being
0-excisive is equivalent to factoring through D'.

• When n = 1, being strongly cocartesian is the same as being cocartesian. This agrees
with the usual terminology: being 1-excisive means that pushouts get sent to pullbacks.
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Warning: the identity functor 1C : C → C is generally not 1-excisive. This is weird:
1-excisive is supposed to be our analogue of being a linear functor.

Proposition 2.9. A functor F : Sp→ Sp is polynomial of degree n iff F is n-excisive and
preserves filtered colimits.

If a functor is n-excisive then it is m-excisive for m ≥ n.

Goal 2.10. To a (reasonable) functor F : C → D we want to associate a tower F → · · · →
PnF → · · · → P0F , where PnF is n-excisive. It will be different from a Postnikov tower in a
lot of ways – e.g. we won’t expect it to converge, just like we don’t expect Taylor series to
converge to the function unless the function is analytic.

It is easy to see the following: if we want a universally-defined excisive approximation to a
functor, that would be a left adjoint to the inclusion Excn(C,D) ↪→ Fun(C,D). For example,
P0(F ) is the constant at F (∗C), where ∗C is the final object in C. (You always have a natural
transformation F → P0F and this is universal.)

How might you construct P1 : Fun(C,D)→ Exc1(C,D)? I’ll give the construction and then
say what conditions were needed later. Even as a homotopy theorist, you might want to work
in various settings, e.g. spaces over a fixed space, etc. So I’m stating this in some generality.

If F : C → D is 1-excisive (and all the things I’m about to say are defined), then for all x ∈ C
I can take the pushout square defining the suspension

X //

��

∗

��

∗ // ΣCX

Then F (this) is supposed to be a pullback square:

F (X) //

��

F (∗)

��

F (∗) // F (ΣCX)

In the special case where F (∗) ' ∗, then F (X) = ΩDF (ΣCX). If you want to force F to be
1-excisive, you’ll have to force F (X) = ΩDF (ΣCX).

Define T1(F )(X) to be the pullback of

F (∗)

��

F (∗) // F (ΣC)

Even if the functor weren’t 1-excisive, you still get a natural transformation F → T1(F ) ' ΩFΣ.
Define

P1(F ) = colim(F → T1(F )→ T 2
1 (F )→ . . . ).
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In this special case (where F (∗) ' ∗), this is ' colimm ΩmFΣm. By thinking about the
Eilenberg-Steenrod axioms, it turns out that this is enough – this is the first excisive approxi-
mation.

Definition 2.11. A category D ∈ Cat∞ is called differentiable if:

(1) D has finite limits;

(2) D has colimits of sequences;

(3) these commute.

Examples: Sp, Spaces (and also for any stable category and for every topos).

We want the excisive approximation to preserve finite limits, but I won’t get into the
construction.

Theorem 2.12 (Goodwillie). Given C ∈ Cat∞ with finite colimits and a final object, D a
differentiable category and n ≥ 0,

(1) the inclusion Excn(C,D) ↪→ Fun(C,D) has a left adjoint Pn, and

(2) Pn preserves finite limits.

The main example we care about is the following.

Example 2.13. Let C = D = Spaces and F = 1. This certainly preserves ∗! Then
P1(1)(S0) = colimm ΩmΣmS0. We like this, because if you take its homotopy groups you get
homotopy groups of spheres. You get a tower of principal fibrations

· · · → P2(1)(S0)→ P1(1)(S0)→ P0(1)(S0)

that starts with stable homotopy theory and goes to something else. The “something else” is
of interest.

3. Sanath Devalaparkur, October 4: Examples of Goodwillie calculus

Don’t read this; read Sanath’s notes instead:
http://www.mit.edu/~sanathd/goodwillie.pdf

C will be an ∞-category with finite colimits and a terminal object, and D is a “differentiable
∞-category”, which means it has finite limits, sequential colimits, and these commute.

Last time, we saw the category of n-excisive functors Excn(C,D), and saw that there is a
left adjoint Pn to the inclusion Excn(C,D) ↪→ Fun(C,D). If a functor is (n− 1)-excisive, it is
n-excisive. By the definition, we get PnPn+k ' Pn for k ≥ 0. (Truncating a degree-(n+ k)
Taylor approximation gives a degree-n Taylor approximation.)

Let F : C → D be a functor. We have a tower · · · → PnF (X)→ · · · → P0F (X).
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In the analogy, if we have f : R→ R then pnf − pn−1f = f (n)(0)
n! xn. The analogous thing to

taking differences is taking fibers. So we’ll look at the fiber sequence

DnF (X) // PnF (X)

��

Pn−1F (X)

If C and D are things like Sp or Top, you can apply π∗ and get long exact sequences and an
exact couple. You get a spectral sequence

E1
p,q = πqDpF (X) =⇒ πp+qP∞F (X)

where P∞ is the limit of the tower. This won’t necessarily converge to F unless it is analytic.
Goodwillie has a definition of this, but all I’ll say is that F is “analytic” if F “agrees” with
PkF for k � 0. (But there are a bunch of technical conditions I didn’t state.)

It would be nice if DnF were homogeneous of degree n.

Lemma 3.1. PnDnF ' DnF and Pn−1DnF ' ∗

This is saying that DnF is n-excisive, and the second condition says that DnF is homogeneous
of degree n.

Proof. Pn is a left adjoint. Apply Pn to the cofiber sequence DnF → PnF → Pn−1F . Nothing
happens to the second and third terms, so PnDnF ' DnF . For the second statement,
apply Pn−1 to the fiber sequence. Then the second and third terms are equivalent, so
Pn−1DnF ' ∗. �

We want to get a closer analogue of the form f (n)(0)
n! .

Theorem 3.2. Suppose F : C → D is homogeneous of degree n, and suppose D is a stable
∞-category. Then there is a ⊗ n-linear functor LF : Cn → D and

LF (X, . . . ,X)hΣn ' F (X).

Assume C = Sp. Then show

LDnF (X, . . . ,X)hΣn = (LF (S, . . . , S) ∧X∧n)hΣn

and by the theorem the LHS is DnF (X). Think of this as the nth derivative; dividing by n!
is the analogue of homotopy orbits.

Let C be a pointed ∞-category with finite limits. Then

Sp(C) ' Exc1
∗(Topfin

∗ , C).
The idea is that an excisive functor F : Topfin

∗ → C corresponds to {F (Sn)}n≥0. This is the
perspective that Jacob Lurie takes in Higher algebra.
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Suppose we have a functor F : C → Sp(D). There is a functor Ω∞ : Sp(D)→ D and so the
composite is C → D. Under the above identification we have a commutative diagram

C F //

""

Sp(D)

Ω∞

��

' Exc1
∗(Topfin

∗ , C)

evS0

wwD
In general, Pn(evX ◦F ) ' evX ◦Pn(F ). So F is n-excisive iff evX ◦F is n-excisive for all X.

Homogn(C,Sp(D)) ' Sp(Homogn(C,D)).

The idea is that “homogeneity is essentially a stable phenomenon”.

As a consequence, for F : C → D there is D̃nF : C → Sp(D) such that DnF ' Ω∞ ◦ D̃nF .

I’ll show how to deduce most of the Snaith splitting theorem from this story.

Let X be a space. Then πs∗X ' π∗Ω∞Σ∞X. In general, ΩnΣnX is hard. It is a theorem of
James (related to the James splitting theorem) that

ΩΣX ' (
⊔
n≥0

Xn)/ ∼ .

In his work on delooping, May showed

ΩnΣnX '
(⊔
i≥0

C(n)(i)×Σi X
i
)/
∼

where C(n)(i) is the space of embeddings tiIn ↪→ In appearing in the little discs operad. You
can stop the disjoint union at some level and get a filtration of CnX := ΩnΣnX.

Theorem 3.3 (Snaith).

Σ∞ΩnΣnX '
∨
k≥1

Σ∞(C(n)(k)+ ∧X∧k)hΣk

If you let k →∞, C(k) = EΣk. As n→∞, you get

Σ∞Ω∞Σ∞X '
∨
k≥1

Σ∞X∧khΣk
.

We need to define a functor such that applying it to some nice space gets the LHS in the theorem.
Let K be a finite CW complex. Define a functor F : Top∗ → Sp via X 7→ Σ∞Top∗(K,X).

Theorem 3.4 (Goodwillie). F is analytic.

So after imposing connectivity conditions, the associated spectral sequence will strongly
converge.

Let E be the category of finite sets n = {1, . . . , n} and surjections. Inside this is the full
subcategory Ed ⊂ E consisting of n such that n ≤ d. If X is a space, define X∧ : Eop → Top∗
sending n 7→ X∧n.
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Fix K throughout; it will not appear in the notation.

Theorem 3.5 (Arone).

PdF (X) = MapFun(Eopd ,Sp)(Σ
∞K∧,Σ∞X∧)

The natural transformation F → PdF takes f : K → X to Σ∞ ◦ f∧ : Σ∞ ◦K∧ → Σ∞ ◦X∧.

If K = Sn and X = ΣnY for some Y , then the tower splits, so

Σ∞ΩnΣnY = F (ΣnY ) '
∨
d≥0

DdF (ΣnY ).

(The bottom cell of Y is larger than the radius of convergence of the functor, and Y here is X
in the theorem.) So the goal is to identify DdF (ΣnY ).

Arone’s theorem gives a homotopy pullback square

PdF (X) //

��

MapSp(Σ∞K∧d,Σ∞X∧d)hΣd

��

Pd−1F (X) // MapSp(Σ∞δdK,Σ
∞X∧d)hΣd

where δdK is the “fat diagonal” {(x1, . . . , xd) : ∃i 6= j with xi = xj}.

So

DdF (X) = MapsSp(Σ∞K∧d/δdK

=:K(d)

,Σ∞X∧d)hΣd

' (DΣ∞K(d) ∧ Σ∞X∧d)hΣd
Spanier-Whitehead

We want to understand this where K = Sn because that’s where the Snaith splitting comes
from.

Goal: understand DSn. An element c ∈ C(n)(d) is a map
⊔d In ↪→ In. Apply the Pontryagin-

Thom collapse map to get Sn →
∨d Sn. This begets C(n)(d)

α(n,d)→ Map∗(S
n,
∨d Sn). The

adjoint of α(n, 1) is δ(n, 1) : C(n)(1) ∧ Sn → Sn. Overall, we get δ(n, 1)∧d : C(n)(d)+ ∧
Snd ↪→ C(n) ∧ Snd. It turns out that this factors through the fat diagonal, i.e. we get
C(n)(d)+ ∧ Sn(d) → Snd.

So
DΣ∞Sn(d) = ΣndΣ∞+ C

(n)(d).

With K = Sn, this implies that

DdF (Σ−nX) ' Σ∞(DΣ∞Sn(d) ∧ Σ∞(Σ−nX)∧d)hΣd

which is what we wanted.

There’s a way to deduce something very similar to the Kan-Priddy splitting theorem this way.
Consider the functor F : Sp→ Sp sending X 7→ Σ∞Ω∞X. Let Xn denote the nth space of X.
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Then ΩnXn = Ω∞X, and colimn Σ−nΣ∞Xn → X is an equivalence. So

colimn Σ−nFS
n
(Xn)→ F (X)

is an equivalence. (I think these F ’s are different: the one on the left is some kind of loop
space.) The Goodwillie tower for F is

Σ∞Ω∞X // P2F (X)

��

P1F (X) = X

Now apply Ω∞ to get

Ω∞F (X) Ω∞Σ∞Ω∞X //

1

))

Ω∞P2F (X)

splits

��

Ω∞P1F (X) = Ω∞X

It turns out that when X = S−1, Ω∞P2F (S−1) = ΩQRP∞+ → ΩQS0 which splits. This is one
loop away from being the actual Kan-Priddy theorem.

4. Hood Chatham, 10/11: The Goodwillie Tower of the Identity Functor

Everything will be p-completed. The first paper about this is Brenda Johnson’s paper.

We’re interested in (Dn1)(X) =: Dn(X), intended as a spectrum, not a space (these have
different homologies). We know

DnX ' ∂n ∧Σn X
∧n.

One way to get at ∂n is by looking at the homogenization of the cross-effects functor χn:

∂n = ΩiρD1,...,j(χn1)(Si, . . . , Si)

(These are the spaces in the Ω-spectrum for ∂n.) We haven’t defined χn, but it’s pretty explicit
– it involves some pullback cube.

There’s a map χn1→ some easier multilinear Σn-functor. The LHS has the right asymptotic
connectivity to be an equivalence from the multilinearization of the LHS to the RHS. This
expresses

∂n ' DPn
where D means Spanier-Whitehead dual. Pn has a cover by contractible sets such that each
intersection is either empty or contractible (think Cech filtration). That means the homotopy
type of this is the nerve of some poset, where the poset is the thing that gives the combinatorics
of this cover. This is completely explicit.

What are the combinatorics of the cover? Given a set A, the partition complex Part(A) is the
poset of equivalence relations on A, partially ordered by refinement (putting two sub-bins
into one bin). This poset has a minimum and maximum element, and is contractible. You get

Pn :=
N(Part([n]))

N+ ∪N−

13



where N+
1 is the poset of partitions where you delete the bottom element. The i-simplices are

chains of length i + 1 that start at the bottom and end at the top. So the quotient is the
unreduced suspension of the union on the bottom, and so it’s the double suspension of the
intersection.

You can make a tree out of this.

Ching shows that the bar construction on an operad is given by certain trees with labeled
leaves, and internal nodes are labeled by elements of the operad. Our trees are unlabelled (i.e.
labels in a set of size one). So

Pn ' (B Comm)(n).

So ∂n ' DPn is Koszul dual to Comm, and so it’s a shifted Lie operad.

Also
∨
DnX is a free ∂∗-algebra on X, and H∗D1X = H∗Σ

∞X = H∗X.

So we expect H∗DnX to be generated by H∗D1X under ∂∗ homology operations. Thse were
identified (at least at 2?) by Behrens and Camarena. There is a Lie bracket of degree −1

HiDmX ⊗HjDnX → Hi+j−1Dm+nX.

At p > 2 (where the theorem doesn’t work anyway. . . ) there’s also

βεQ̃j : HiDmX → Hi+j−1−εDpmX,

Koszul dual to a Dyer-Lashof operation. There is an Adem relation on (βεQ̃j)(βε
′
Q̃j
′
) exactly

when (βεQj)(βε
′
Qj) is admissible (i.e. doesn’t have an Adem relation).

If you apply this to an odd sphere, the bracket vanishes because of graded anti-commutativity,
and

H∗DpkS
2d+1 ∼= Fp{βε1Q̃i1 . . . βε

k
Q̃iku}.

This generator is in degree (2d+ 1, 1).

If I have an even sphere S2d, H∗D∗S
2d is also freely generated under the βεQ̃j operations by

u and [u, u] (but all the other possible brackets are zero).

A theorem of Arone and Dwyer (which will be talked about next time) is that

Dn(S2i+1) ' Σ?L(n)

where L(n) will be defined later. This gives an alternate computation of H∗DnS
2d+1, via

Kuhn’s Whitehead conjecture. But we’ll talk about Arone-Mahowald’s computation of
H∗DnS

2d+1.

From the filtration of Pn (which comes from the fact it’s the nerve of this partition poset
Part(n)), we get a spectral sequence. In particular, we have

DnX ' ∂n ∧Σn ΣX∧n

' Map∗(Pn+,Σ
∞X∧n)hΣn

and this is what we’re going to filter to get a spectral sequence

Es,t1 = Hs(Map(ΣtPn(t),Σ∞X∧n)hΣn)

= Hs(Map(Pn(t),Σ∞X∧n)hΣn) =⇒ HsDnX

14



Here Pn(t) means the discrete set of t-simplices, and the suspension of this is the fiber of the
map where I pull back the skeleta. This collapses at E2.

i-simplices are chains of partitions, and there’s a Σ-action by permuting the things you’re
partitioning. You can break this up into orbits.

Map(Pn(i),Σ∞X∧n)hΣn '
∨
Λ

Σ∞X∧nhΣΛ

where Λ contains orbits?

The coboundary maps ∂0 and ∂i are zero. For the inner ∂j : the face maps forget one partition
in the chain. They give maps

X∧nhΣΛ
→ X∧nhΣΛ′

which are transfers. (Λ′ correspond to adding an extra thing to the partition?)

Definition 4.1. Λ is “pure” if ΣΛ
∼= Σpk0 o Σpk1 o . . . o Σpkn .

The point is that H∗(X
∧p
hΣp

) contains Qiu (where u is the fundamental class), and H∗(X
∧pk
hΣpk

)

contains Qi0Qi1 . . . Qiku, and wreath products play well with this. You can generate stuff
using multiplication and Dyer-Lashof operations, and the wreath products correspond to just
doing Dyer-Lashof operations.

Definition/ Claim 4.2. P • ⊂ C• is a subcomplex where P • just consists of pure elements.

We’re going to show that this is a quasi-isomorphism, but for odd spheres only.

“Dyer-Lashof operations are detected by elementary abelian groups.” Let Ak be Ckp . The

map H∗(BAk+ ∧ X) → H∗(X
∧pk
hΣ

pk
) (gotten by the diagonal on X and Ak → Σpk) sends

Q1 ⊗ . . .⊗Qik−1
⊗Qik ⊗ u 7→ Qi1 . . . Qiku. The point is that this is just hitting pure things,

not products of things.

We need to understand TrΣΛ
ΣΛ′

u where u is pure. If Λ′ is not a pure orbit, I claim this is zero.

Idea: u = ResΣΛ
Ak
v. Apply the double coset formula:

TrGK ResGH(u) =
∑
K×iH

ResH×i∩K TrH
×i

H×i∩K(u).

The transfer from any elementary abelian group to a proper subgroup is always zero. This
hits pure stuff, and so we’ve proven the theorem.

Let I• be the quotient of P • → C•.

Claim 4.3. I• ' ∗ for X = S2d+1

Corollary 4.4. E2
∼= H∗(P •)
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This is only valued in one column, so we just have to compute that and then the spectral
sequence collapses.

Corollary 4.5. DnS
2d+1 ' ∗ when n is not pk

Theorem 4.6. Let CU∗ (completely unadmissible) be

Fp{(βε1Qs1) o . . . o (βεkQsk) : sk > |u|, si > psi+1 − εi+1}.
Then

H∗P • ∼= CU∗ ∼= ΣkH∗DpkS
2d+1.

As before, u is the fundamental class.

The top dimension corresponds to the finest partitions (longest length), and this corresponds
to the isotropy being a wreath product Σp o Σp o . . . o Σp. As I go down the poset, I’m putting
more of these together, and this forces actual relations to hold. When I had isotropy with Σp2

in one of these sports, then relations would hold, and the only thing that could sit there is
admissible things. Differentials should take admissible things to admissible things, and kill
everything where you have two admissible things together.

5. Robert Burklund, 10/18: Layers in the Goodwillie tower of the identity

Everything is going to be p-local (this is different from how everything was 2-local, before
and after this, though this is easier when p = 2). Last time we had the partition complex Pn,
thought of as a poset (excluding the top and bottom element). Notation:

• Let P be the collection of subgroups Σi1 × . . .× Σik ↪→ Σn.

• Let E be the collection of nontrivial elementary p-abelian subgroups.

• Let E ′ be the collection of nontransitive nontrivial elementary p-abelian subgroups (G =
Σn).

• Let F be the collection of all nontransitive subgroups.

• Let F◦ = F\{e}.
• ` is odd.

• n = pk (for some fixed k)

• ∆ = Fkp
• Affk := GLk(Fp) o ∆ ⊂ Σn. This is the normalizer of ∆ in Σn.

Theorem 5.1. Dn(S`) ' Σ`−kL(k)`

I haven’t defined L(k)` yet – I’ll define it to be whatever we get in the last step. (Take `
copies of the reduced regular representation ρ and take homotopy orbits w.r.t. ∆, and take
the part of this associated to the Steinberg idempotent.)
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Proof. Let � denote unreduced suspension.

ΣkDn(S`) ' Σk Map∗(S
1 ∧ P �n ,Σ∞S`ρ)hΣn ' Σk−1(DP �n ∧ Σ∞S`ρ)hΣn

(1)
' Σk−1(DT �k ∧ Σ∞S`ρ)hAffk

' (EStk ∧ Σ∞S`ρ)h∆hGL

' (GL+ ∧ ΣS`ρh∆)hGL[εstk
−1

]

' Σ∞S`ρh∆ · ε
St
k

' Σ`(Σ∞S`ρh∆) (piece associated with Steinberg idempotent)

The Tits building is Tk := |E ′| w.r.t. subgroups of ∆, the Steinberg module EStk won’t be

defined, and εStk is the Steinberg idempotent. The first ' is from last time, the second is SW
duality, the third is one of the main steps. �

I won’t quite prove (1), but something like it without the duality.

Theorem 5.2. P �n ∧ S
`ρ
hΣn
' (T �k ∧ S`ρ)hAffk

Proof. It suffices to show HΣ
∗ (P �n ;F±p ) ∼= HAffk

∗ (T �k ;F±p ), because then you can use the Thom
isomorphism. Use the map Tk ↪→ Pn.

Look at the diagram

(5.1) Σ×Aff |E ′/∆| //

��

Σ×Aff |E/∆| //

��

T �k ×Aff Σ

'
��

|E ′|
q

//

��

|E| //

��

C := cofib q

��

|P| // ∗ // P �n

We want to show that C → P �n is an equivalence. Note that E ′/∆ isn’t a quotient – it’s an
overcategory, which you then take the nerve of (or you can think of it as a subcategory of
things contained in ∆). The claim is that the top left square is a homotopy pushout. We
want to show that the vertical maps are HΣ

∗ (−;F±p )-equivalences.

We’re using Shapiro’s lemma that says that “the cohomology of the transfer is the cohomology
of the thing”.

So far, we’ve been working in Hom(BGop, Spaces). We’ll want to go to a better model
for equivariant homotopy theory; in particular, we want to look at Hom(O(G)op, Spaces),
where O(G) is the category of transitive G-sets. This is equivalent to keeping track of the
set-theoretic fixed points.

If C is a collection of subgroups closed under conjugation, we can form O(C), the G-sets of
form G/K for K ∈ C.
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In particular, Hom(BGop, Spaces) = Psh(O({e})). But in general, we have

Psh(O(C))

i!
**

i∗

44
Psh(O(G))i∗oo

where the maps are given by left and right Kan extension (in an ∞-categorical sense). We’ll
denote XC := i!i

∗X, and there is a map XC → X.

For example, X{e} = X × EG and ∗{e} = EG so this is a smashing localization. (But it’s not
generally smashing – subconjugacy is nice, but conjugacy, which we need, is worse behaved in
general.)

Fact 5.3. Given f : X → Y you only need to check G-equivalence on Iso(X) ∪ Iso(Y ).

Every X we care about will be as good as G-cellular, and we know XC commutes with things
you want. So it suffices to reduce to looking at a single G-set.

(G/K)C ' G/K × (∗)C/K
Define EC := ∗C . The fixed points are not too hard to understand: from the definition of Kan
extension,

(EC)(K) ' hocolim((G/e)/O(C))op,K ∗ ' |(G/O(C))op,K |.
There’s a functor (G/O(C))op → C sending something to the stabilizer of an element? This is
an equivalence of categories. So in particular,

|(G/O(C))op,K | ' |K/C|
and

EC(e) ' |C|.
The whole reason we did all of this is to be able to plug these things back into the bottom
left square in (5.1)

|E ′| //

��

|E|

��
P // ∗

We want to understand
EE ′ //

!!

EE

��

!!

|E ′| //

��

|E|

��

EP

""

∗

!!
P // ∗
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It suffices to evaluate the diagram at e, but the diagram does exist at the level of G-spaces.
The missing maps are actually missing, and we need to look at another diagram.

EE ′ //

��

|E ′|

��

EF◦ // |F◦|

��

EP

OO

// |P|

OO

Claim the bottom left map is a Σ-equivalence, the rightward maps are homotopy equivalences,
and we want to show that the right downward composite is a homotopy equivalence. It suffices
to show that EP → EF◦ and EΣ′ → (EF ◦)Σ (below) are Σ-equivalences.

EE ′ //

��zz

|E ′|

��

(EF◦)Σ
//

��

EF◦ // |F◦|

��

(EP)Σ
// EP

OO

// |P|

OO

This implies that the left vertical map is a Σ-equivalence. The last thing you need is information
about (EP)Σ → EP is a homology isomorphism. For showing EF◦ → EP a Σ-equivalence,
it suffices for (EP)(H) ' ∗. |H\P ' ∗ for H ∈ F◦. Similarly for the other map: evaluate on
isotropy.

It suffices to know ∗E → ∗ is a HG(−;F±p )-equivalence, for G ⊂ Σn. This is true because the

action of G on F±p always contains something of order p; then look at transfers from a p-Sylow
subgroup. You want to know that |E| → ∗ is a homology isomorphism. �

6. Rasmus Johansen, 10/25: The chain rule and operations on layers of the
Goodwillie tower

Everything is 2-localized.

I’m going to stick to a 1-categorical framework, but you can do all of this with ∞-categories
as well.

Definition 6.1. A symmetric sequence in C is a functor Finbij
6=∅ → C.

Example 6.2. The derivative of a functor ∂∗F forms a symmetric sequence.

Definition 6.3. Let Φ be an operad in Top∗ (a monoid in symmetric sequences). An element
of B(Φ)(A) consists of:

(1) a rooted tree T
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(2) a bijection α : A→ leaves of T

(3) for every vertex v, xv ∈ Φ(incoming edgesv)

(4) metric ` on edges such that
• the distance from the root to a leaf is 1

• internal vertices have ≥ 2 incoming edges and exactly one outgoing edges

subject to the following equivalence relations:

• trees with xv ' ∗ for some v are ∼ ∗;
• if an external edge (i.e. one touching a leaf) e has `(e) = 0, T ∼ ∗;
• if an internal edge e has `(e) = 0, then T ∼ the tree where that edge is removed.

(E.g. draw a binary tree with the root at the top and edges pointing upwards.)

I want to think about simplices here in the general sense of ∆n → B(Φ)(i) (here i means any
set of cardinality i).

Example 6.4. If we have T ∈ B(Φ)(i) but forget its height, and it has n+ 2 levels (number
of distances from the root at which a vertex occurs), then we can define ∆n → B(Φ)(i).

Definition 6.5. B(Φ) ' |B•(Φ)|

Proposition 6.6. skn |B•(Φ)(i)| includes all trees from B(Φ)(i) with ≤ n+ 2 levels.

Definition 6.7 (cooperad structure). Let A = {a, b, c} and B = {x, y}. Then a cooperad
structure map looks like

B(Φ)(A ∪b B)→ B(Φ)(A) ∧B(Φ)(B)

where A ∪b B = (A ∪B)\{b}.

(Here we’re thinking of B(Φ)(A) as spaces.) For example,

.

.

. .

a c x y
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is an element of B(Φ)(A ∪b B), and this gets sent to the smash product of

.

.

.

a c b

and
.

.

x y

Theorem 6.8. ∂i ' Σ∞B(Comm)(i)∨

Example 6.9. I claim that ∂2 ' S−1. The only nontrivial tree with 2 leaves is

.

t

.
1−t 1−t

. .

Thinking about what happens when t→ 1, the space of these is S1. So B(Comm)(2) ' S1

(and Comm(i) = S0). So ∂2 ' S−1.

Since B(Comm)(∗) has a co-operad structure, its dual has an operad structure.

Corollary 6.10. ∂∗ is an operad.

Theorem 6.11. If F is reduced and preserves filtered colimits, then ∂∗F is a bimodule over
∂∗1. If G satisfies the same, then

∂∗F ◦∂∗1 ∂∗G ' ∂∗(FG).

Here the product ◦ is in a derived sense.

I want to construct operations

Q
j

: Hd(Di(F )(X))→ Hd+j−1(D2i(F )(X)).
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The way to do this is via constructing operations

ξi : Σ−1Di(F )(X)∧2
hΣ2
' (∂2 ∧ ∂i(F )∧2 ∧X∧i)hΣ2oΣi

→ D2i(X).

We just computed above that ∂2 ' Σ−1 (and corresponds to the desuspension on the LHS). We
have the composition product ∂∗1 ◦ ∂∗F → ∂∗F . This is a bunch of terms involving partitions,
and restricting to the partition where you split {1, . . . , 2n} as {1, . . . , n} t {n + 1, . . . , 2n},
this gives rise to a map

∂21 ∧ ∂nF ∧ ∂nF → ∂2nF

which is Σ2 o Σn-equivariant.

So our ξ operation is

ξi : Σ−1Di(F )(X)∧2
hΣ2
' (∂2 ∧ ∂i(F )∧2 ∧X∧i)hΣ2oΣi

→ (∂2iF ∧X∧2i)hΣ2i
' D2i(X).

Now to define Q
i
’s, draw the diagram

Hd(Di(F )(X))

Qj

��

Q
j

// Hd+j−1(D2i(F )(X))

Hd+j(Di(F )(X)∧2
hΣi

)
σ−1

'
// Hd+j−1(Σ−1Di(F )(X)∧2

hΣ2
)

(ξi)∗

OO

Here σ−1 is a desuspension and the dotted arrow is defined by going around the other arrows.

Definition 6.12. Define Rn to be the free F2-algebra generated by Q
j

for j ≥ 0 modulo

(1) Q
j1Q

j2 . . . Q
jk = 0 for j1 < j2 + · · ·+ jk + n

(2) Q
r
Q
s

=
∑r−s−1

`=0

(
2s−r+1+2`

`

)
Q

2s+1+`
Q
r−s−1−`

if s < r < 2s.

The proof has something to do with chasing Q
j1Q

j2 . . . Q
jk through the following diagram:

Σ−1D2k(Sn)∧2
hΣ2

��

Σ−1 Map∗(skk |B(Φ)(2k)|, Sn2k

)∧2
hΣ2oΣ2k

Σ−1(Σ−k(Sn)∧2k

hΣok2
)∧2
hΣ2

OO

Theorem 6.13. As a module over Rn we have⊕
k≥0

H∗(D2k(Sn)) = Rn{ιn}

where ιn ∈ Hn(D1S
n) = H̃n(Sn) is the fundamental class and operations behave as in Rn.

The idea is that we’re doing a similar thing as Arone-Mahowald, but we need the operad
stuff to get the algebra structure as opposed to Arone-Mahowald which was just getting the
module structure.
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7. Morgan Opie, 11/01: The Goodwillie tower of the EHP Sequence

This is based on Behrens’ memoir, sections 2.1-2.4 and part of A.1-A.3.

There are three main ingredients:

(1) The EHP sequence comes from the sequence of functors 1→ ΩΣ→ ΩΣSq which, when
applied to a 2-local sphere, gives a fiber sequence and hence a spectral sequence

E1
m,t
∼= πt+m+1(S2m+1) =⇒ πst .

Truncating at m ≥ n, you get a spectral sequence E1
m,t =⇒ πt+n(Sn) computing

unstable homotopy.

(2) There is a fiber sequence

ΣnL(k − 1)2n+1 → L(k)n → L(k)n+1

where the L(k)’s came from D2k(Sn) = Σ±(n−k)L(k)n. We’ll construct an Atiyah-
Hirzebruch spectral sequence for the L(k)n’s.

(3) The Goodwillie spectral sequence lets us compute π∗(S
n) in terms of π∗(L(k)n).

Outline:

(1) fiber sequence of L(k)n’s

(2) homology of L(k)n’s

(3) sequences of spectral sequences (“transfinite” AHSS and GSS)

7.1. Fiber sequences of L(k)n’s. We have a sequence of functors 1→ ΩΣ→ ΩΣSq, which
when applied to the 2-local sphere, gives a fiber sequence. I want to say that Pi(this) also
gives a fiber sequence when applied to the 2-local sphere.

Proposition 7.1. There are fiber sequences

Pi(1)Sn → Pi(ΩΣ)(Sn)→ Pi(ΩΣSq)

Di(1)Sn → Di(ΩΣ)(Sn)→ Di(ΩΣSq)

The proof uses orthogonal calculus (Weiss calculus). It’s not a fiber sequence of functors (i.e.
it’s not a fiber sequence when applied to any space) so you can’t get this from general results,
but it’s a fiber sequence on things you care about, like spheres.

Proof. Let F : Top∗ → Top∗ be a topologically enriched functor. Then consider the functor

F̃X : Vect→ Top∗ given by V 7→ ΩV FΣV (X). Weiss proves that

P orth
i (F̃X)(V ) ' ΩV Pi+1ΣVX

and the same for Di. If X = Sn, then 1̃ → Ω̃Σ → Ω̃ΣSq is a fiber sequence of functors
Vect→ Top∗. General facts about Weiss calculus then gives that you get a fiber sequence on
Pi etc. Now take V to be the zero vector space. �
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Lemma 7.2. Let F : Top∗ → Top∗ be a reduced finitary homotopy functor, stably i-excisive
for all i. Then

Pi(FSq) ' Pb i
2c(F )Sq

Di(FSq) ∼=

{
D i

2
(F )Sq i even

∗ else.

Proof. The second statement follows from the first because of how the Di’s are defined. It
suffices to show:

(1) Pb i
2c(F )Sq is i-excisive.

(2) FSq agrees with Pb i
2c(F )Sq to order i.

Recall F,G agree to order i if there exists a map F → G and constants c,K such
that for all X, connX ≥ k and FX → GX is (−c+ (i+ 1) conn(X))-connected. (The
map is highly connected for sufficiently highly connected things.)

If F,G are stably i-excisive for all i, then: F and G agree to order n iff PnF ' PnG.

(1) is straightforward, so we’ll do (2). F and Pb i
2cF agree to order

⌊
i
2

⌋
, so there exists c such

that for Y highly connected, FY → Pb i
2c(F )(Y ) is (−c+ (

⌊
i
2

⌋
+ 1) connY )-connected. If Y =

X∧X and X is highly connected, then FX∧X → Pb i
2c(F )(X∧X) is (−c+2(

⌊
i
2

⌋
+1) connX)-

connected, and so it’s (−c+ (i+ 1) connX)-connected. �

Corollary 7.3. The fiber sequences of the previous proposition are equivalent to

P2m(Sn)
E→ ΩP2m(Sn+1)

H→ ΩPm(S2n+1)

P2m+1(Sn)
E→ ΩP2m+1(Sn+1)

H→ ΩPm(S2n+1)

and similarly for Di.

Proof.

Pi(ΩF )
w' ΩPi(F )

Pi(FΣ)
susp
' Pi(F )(Σ)

Di(ΩF ) ' Σ−1Di(F )

�

Corollary 7.4. There are fiber sequences

ΣnL(k − 1)
P→ L(k)n

E→ L(k)n+1(7.1)

Proof. I will show D2k(Sn) = Σn−kL(k)n. To do this, apply Σ−(n−k)+1 to the Di version of
the fiber sequence in the corollary. �
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7.2. Homology of L(k)n’s. For a sequence J = (j1, . . . , jk) define

[j1, . . . , jk] := σk−nQ
ji . . . Q

jkιn ∈ H∗(L(k)n).

Previously we proved:

H∗(L(K)n) ∼= F2{[j1, . . . , jk] : J = (j1, . . . , jk) is completely inadmissible, |J | = K, e(J) ≤ n}
where e denotes excess.

Proposition 7.5.

P∗([j1, . . . , jk−1]) = [j1, . . . , jk−1, n]

E∗([j1, . . . , jk]) =

{
0 if jk = n

[j1, . . . , jk] otherwise.

and the fiber sequence (7.1) induces a SES on homology.

The key lemma is as follows:

Lemma 7.6.

susp∗(Q
j
x) = (Q

j
susp∗)(x)

w∗(Q
j
x) = (Q

j
w∗)(x)

sqrt∗(Q
j
x) = (Q

j
sqrt∗)(x)

where sqrt : D2n(FSq)→ Dn(F )(Sq).

Proof. susp∗ gives ∂∗(FG) ' B(∂∗F, ∂∗1, ∂∗G) where S∗ is the symmetric sequence that
assigns n 7→ Sn. Using the chain rule,

∂∗(FΣ) ' B(∂∗F, ∂∗1, ∂∗Σ) ' ∂∗F ∧ S∗

So you get a commutative diagram

∂2(1) ∧hΣ2 Di(FΣ)(X)∧2 //

'
��

D2i(FΣ)(X)

'
��

∂2(1) ∧hΣ2 Di(F )(ΣX)∧2 // D2i(F )(ΣX)

�

Next, we’ll construct an Atiyah-Hirzebruch-type spectral sequence for the L(K)n’s. We define

L(K)mn := fib(L(K)n
Em−n+1

→ L(K)m+1).

For example, L(1)mn are truncated projective spaces Pmn .

Proposition 7.7.

H∗(L(K)mn ) = F2{[J ] : J c.u., |J | = K,n ≤ e(J) ≤ m}
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There is an equivalence

colim(· · · → L(K)mn → L(K)m+1
n → L(K)m+2

n → . . . )
'→ L(K)n

where the filtration quotients are given by

L(K)m−1
n

Ep

→ L(K)mn → ΣmL(k − 1)2m+1.

This gives rise to a spectral sequence

E1
∗,t =

⊕
m≥n

πt(Σ
mL(k − 1)2m+1) =⇒ πt(L(K)n).

If you iterate this, you get a sequence of spectral sequences for the different K’s, and if you
put them all together you get⊕

(j1,...,jk) c.u.
jk≥n

πt(S
j1+···+jk) =⇒

⊕
(j2,...,jk) c.u.

jk≥n

πt(Σ
j2+···+jkL(1)2j2+1) =⇒ · · · =⇒ πt(L(K)n).

This is kind of unwieldy; Behrens deals with this using “transfinite spectral sequences.” The
idea is that there are two directions, one of which is indexed by N and the other is larger:

Eαt,β

where α, β are in a Grothendieck group of ordinals and t ∈ N. (You might only need the full
generality for the Goodwillie spectral sequence.)

The transfinite AHSS (TAHSS) is:

(7.2) E1
t,µ(L(K)n) =

{
πt(S

‖J‖) µ corresponds to a c.u. sequence

0 else.
=⇒ πt(L(K)n)

(By “corresponds to”, I mean µ = j0 + j1ω + · · · + jkω
k−1 and (j1, . . . , jk) is completely

unadmissible.) (Idea: this is a refinement of the AHSS where instead of building up L(K) by
cells (spheres), you build it up by L(K − 1)-cells.)

The transfinite Goodwillie spectral sequence (TGSS)⊕
k≥0

⊕
(j1,...,jk) c.u.

k≥n

πt(S
j1+···+jk) =⇒ · · · =⇒

⊕
k≥0

πt(L(K)n) =⇒ πt+n−k(S
m)

which corresponds to

E1
t,µ(Sn) =

{
πt(S

n−|J |+‖J‖) µ = µ(J), J c.u., |J | ≥ 0, e(J) ≥ n
0 else

=⇒ π∗(S
n).
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