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1. Two notions of instability

Previously, we constructed the transfinite Goodwillie spectral sequence (TGSS), whose signature is roughly

E1
t,J(Sn) = πtSn−|J|+‖J‖ ⇒ πtS

n.

This spectral sequence computes unstable homotopy from stable data. Over the next couple of talks, we’ll
discuss the differentials in this spectral sequence, but for today, let’s just focus on understanding the rela-
tionship between the E1 page and the E∞ page at a high level.

Before jumping in, recall that elements in the E1
t,J term of the TGSS are denoted α[J ], where α ∈

πtSn−|J|+‖J‖ is a stable element and J is CU sequence with excess ≥ n.
Let β ∈ πtSn. Where does it come from in the E1 page? In other words,

Question 1.1 (Vague). How “stable” is β?

One possible answer to this question is as follows. Consider the Goodwillie tower of the identity evaluated
at Sn.

...

P2(Sn)

Sn P1(Sn) ' Ω∞Sn.
Given an element β ∈ πtSn, the further down the tower you can map it and get something nonzero, the

“more stable” it is.

Definition 1.2. An element β ∈ πtSn has Goodwillie filtration 2k if its image in πtP2k(Sn) is nonzero, but
its image in πtP2k−1(Sn) is null.

Equivalently, β is detected in the TGSS by elements of the form α[j1, . . . , jk]. This is because the 2k-th
layer of the Goodwillie tower is given by the homotopy of L(k)n, and via the TAHSS they come from the
homology of L(k)n which are indexed by CU sequences of length equal to k.

Example 1.3. β has Goodwillie filtration one iff it is stable.

There is also a different notion of instability arising from the EHP sequence. Recall that the EHP sequence
gives us a long exact sequence

· · · → πt+2S
2n+1 P−→ πtS

n E−→ πt+1S
n+1 → · · · .
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Let 0 6= β ∈ πtS
n be an unstable element, i.e., it dies in πtSn. Then there exists r1 ≥ 0 minimal such

that Er1+1(β) = 0. By exactness, there exists α1 ∈ πt+r1+2S
2(n+r1)+1 such that P (α1) = Er1(β), so

β ∈ E−r1P (α1). In this situation, we shall say that “α1 is a child of β”.
If α1 is still unstable, we can repeat this process and inductively get β ∈ E−r1P · · ·E−rlP (αl). We say

that “αl” is a l-th generation descendant of β”. We also say that β is unstable of degree at least k if it has
a k-th generation descendant.

Eventually, this process stops because we have produced an element αk that is stable and survives to
α ∈ πs∗. For some reason, we regard stable elements as infertile. . .

Pictorially, this looks like

(†) α ∈ πs∗
E∞←−− π∗S2j1+1 3 αk

P−→ π∗S
j1 Erk

←−− π∗S2j2+1 3 αk−1
P−→ · · · P−→ π∗S

jk Er1

←−− π∗Sn 3 β.

Such a sequence (α1, . . . , αk) is called a lineage of β, and we write β ∈ α 〈j1, j2, . . . , jk〉. It is easy to see
that the sequence (j1, . . . , jk) is CU of excess ≥ n.

Examples 1.4. I’ll give the lineage of a couple of elements, assuming we already know the relevant homotopy
groups from some other method (e.g., Serre’s method, Toda’s method, . . . ).

(a) We have π9S
4 ∼= Z/2⊕ Z/2 but πs5 = 0, so let x1, x2 ∈ π9S4 be the two generators. I claim that one is

in η2 〈4〉 and the other is in η 〈5〉.
Consider part of an EHP sequence

· · · → π11S
9 P−→ π9S

4 E−→ π10S
5 → · · · .

This splits off a short exact sequence

0→ Z/2→ Z/2⊕ Z/2→ Z/2→ 0.

So one of the elements, say x1, is in the image of P . But π11S
9 is already in the stable range with

generator η2, so we have x1 = P (η2), and x1 ∈ η2 〈4〉.
Now consider E(x2) 6= 0 in π10S

5. We have

· · · → · · ·π12S11 P−→ π10S
5 E−→ π11S

6 → · · · .

Since π11S
6 ∼= Z, the map E must be zero, and therefore E(x2) ∈ P (π12S

11). The group π12S
11 is in

the stable range with generator η, so we have x2 ∈ E−1P (η), and x2 ∈ η 〈5〉.
(b) We have π8S

2 ∼= Z/2, so let x ∈ π6S2 be the generator. I claim that x ∈ η 〈5, 2〉.
Consider part of an EHP sequence

· · · → π10S
5 P−→ π8S

2 E−→ π9S
3 → · · · .

Since π9S
3 = 0, we see that E(x) = 0 and x = P (y) for some y ∈ π10S5 ∼= Z/2. Now consider another

EHP sequence

· · · → π12S
11 P−→ π10S

5 E−→ π11S
6 → · · · .

Because π11S
6 ∼= Z, the homomorphism E is zero and therefore y ∈ P (π12S

11). We are now in the stable
range, and in fact y = P (η), so x is descended from η ∈ πs1 with lineage (5, 2).

Since we have these two notions of instability, a natural question to ask would be:

Question 1.5. What is the relationship between the degree of instability and the Goodwillie filtration?

To make this a little more precise, recall that we also have “Goodwillie names” for unstable elements. For
example, η2[4] and η[5] survive in the Goodwillie spectral sequence and detect elements in π9S

4. How are
they related to η2 〈4〉 and η 〈5〉?

To answer this question, our main theorem today is

Theorem 1.6 ([Beh12, Thm. 3.5.1]). Suppose we have an element α[j1, . . . , jk] ∈ E1
∗,J(Sn) in the TGSS.

Then

α[j1, . . . , jk] ∈ E−lk∗ P∗E
−lk−1
∗ P∗ · · ·E−l1∗ P∗α

for some α ∈ E1
∗,∅(S

2j1+1), where ls = js − (2js+1 + 1) for 1 ≤ s < k and lk = jk − n.
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Furthermore, if, for all s, the elements α[j1, . . . , js−1] ∈ E1
∗,[j1,...,js−1]

(S2js+1) are permanent cycles, con-

verging to elements αs ∈ π∗(S2js+1), then we have Els(αs+1) = P (αs) modulo elements of higher Goodwillie
filtration.

The first part of this theorem will be shown once we know how the P and E maps act on the TGSS.
This was actually computed last time, so I’ll recall the statement below. The second part of the theorem
means that if all the intermediate steps in the zigzag (†) survive the spectral sequence, then we can lift this
statement about the E1 term of the TGSS to a statement on the level of the E∞page about actual unstable
homotopy groups, up to the associated graded.

In summary, “under favorable circumstances” – i.e., if the hypothesis of the second part of the theorem
is satisfied and if descendants are unique, and so on – if β ∈ π∗Sn is detected by α[j1, . . . , jk], then

β ∈ E−lkPE−lk−1P · · ·E−l1P (α̃)

for α̃ stabilizing to α. Moreover, the degree of instability of the element β is equal to k, and β has lineage
β ∈ α 〈j1, . . . , jk〉.

This theorem is not too hard to show. We’ll need the following facts, of which the harder ones were
already discussed in a previous talk.

Lemma 1.7 ([Beh12, Cor. 3.4.2, 3.4.4]).

(a) The P map induces a map of TGSS’s:

E1
t+2,J(S2n+1) πt+2(S2n+1)

E1
t,[J,n](S

n) πt(S
n).

P∗ P

The left map is described by
P∗(α[J ]) = α[J, n].

In particular, the P map takes an element of Goodwillie filtration 2k−1 to an element of Goodwillie
filtration at least 2k.

(b) The E map induces a map of TGSS’s:

E1
t,J(Sn) πt(S

n)

E1
t+1,J(Sn) πt+1(Sn+1).

E∗ E

The left map is described by

E∗(α[J ]) =

{
α[J ], e(J) ≥ n+ 1

0, otherwise.

In particular, the E map takes an element of Goodwillie filtration 2k to an element of Goodwillie filtration
at least 2k.

Proof sketch of lemma. To show that the P and E maps induce maps of TGSS’s, we need to show that they
induce maps of the transfinite towers that give rise to the spectral sequences. Since the TGSS is built from
the TAHSS, a preliminary step is to show that P and E induce maps of TAHSS’s and the towers that beget
them. Unpackaging the definition of all these transfinite spectral sequences, this just boils to checking for
maps between the Mitchell-Priddy spectra, which are constructed inductively using the cofiber sequences
produced previously.

The description of the induced maps P∗ and E∗ follows from [Beh12, Prop. 2.2.6].
�

The theorem follows.

Remark 1.8. The analogue of this lemma for the TAHSS can be used to give an inductive procedure for
computing the TAHSS’s. The main observations are:
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• En−1 induces a map of TAHSS

En−1∗ : {Eα∗,∗(L(k))} → {Eα∗,∗(L(k)n)}

given by truncation.
• P induces an injective map of TAHSS

P∗ : {Eα∗,∗(L(k − 1)2m+1)} → {Eα∗,∗(L(k)m)}.

For example, suppose we completely understand the TAHSS for L(k − 1) including its differentials. By
truncation, we also completely understand the TAHSS for L(k − 1)2m+1. But this embeds into the TAHSS
for L(k): namely,

E1
t,∗(L(k − 1)2m+1) πt(L(k − 1)2m+1

E1
t,∗(L(k)m) πt(L(k)m).

This gives us a bunch of differentials in the TAHSS for L(k) via the correspondence

dL(k−1)(α[J ]) = α′[J ′] ⇔ dL(k)(α[J,m]) = α′[J ′,m].

Then it remains to compute the remaining differentials in order to understand the TAHSS for L(k).

2. Some counterexamples

Theorem 1.6 gives a relationship between the lineage of an unstable element and the element that detects
it in the E1 term of the TGSS. One might wonder if something stronger holds: perhaps every “circumstance”
is “favorable”. For example,

Question 2.1. Is it true that every element of Goodwillie filtration 2k has degree of instability equal to k?

This fails in an uninteresting way:

Example 2.2. There is a unique element α6/3[4] ∈ π18S4 that is detected in the TGSS for S4 by α6/3[4]

with the property that E(α6/3[4]) = 0. The element α6/3[4] has Goodwillie filtration 21. Moreover, α6/3[4] =
P (α6/3), so it has lineage α6/3 〈4〉, and the two notions agree.

However, there is another element 1[11, 5] in π18S
4 that is the unique element detected by 1[11, 5]. Consider

the sum x = α6/3[4] + 1[11, 5]. The element x is still detected by α6/3[4], so it still has Goodwillie filtration

21. However, E(x) = E(1[11, 5]) = P (P (1)) for 1 ∈ π23S23:

π23S
23 P−→ π21S

11 P−→ π19S
5.

So x has lineage 1 〈11, 5〉, i.e., it has degree of instability 2.

We can “repair” this example by choosing x = α6/3[4] instead, i.e., by throwing out all the terms of higher
Goodwillie filtration. So a better question is:

Question 2.3. Is every element x of Goodwillie filtration 2k equivalent to another element x′ modulo Good-
willie filtration 2k+1 such that the degree of instability of x′ is equal to k?

This turns out to still be false, but for a much more interesting reason. It is related to the “bad differential”
of [Beh12, Sec. 5.4], a differential in the first 20 stems of the TEHPSS that cannot be lifted from one in the
TGSS by the standard method.

Proposition 2.4. Every element of π24S
5 that is detected in the TGSS by α8/5[5] has degree of instability

equal to 2.
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Proof. Let α8/5[5] ∈ π24S5 be the unique unstable element detected by α8/5[5]. We wish to show it has a
grandchild. In order to compute its lineage, we’ll need to rely on calculations in sections 5 and 6 of [Beh12].
We have

E(α8/5[5]) = η2[13, 6] 6= 0

E(η2[13, 6]) = 0 ⇒ η2[13, 6] = P (η2[13])

E(η2[13]) = 0 ⇒ η2[13] = P (η2).

So we have α8/5[5] ∈ E−1PPη2 and α8/5[5] ∈ η2 〈13, 6〉. This is an element in π24S
5 with Goodwillie

filtration 21 but degree of instability 2.
In fact, every element of π24S

5 that is detected by α8/5[5] has degree of instability 2. This is because all

the other generators of π24S
5 are stably nontrivial, i.e., of lower Goodwillie filtration. �

Question 2.3 has a positive answer in some cases. It is tautological if k = 0, and it is also true when k = 1
in the metastable range.

Proposition 2.5. Suppose that 0 6= β ∈ πt+mSm, t ≤ 3n − 2, is detected by α[n] in the TGSS for Sm for
some α ∈ πst−n+1. Then β ∈ α 〈n〉.

Example 2.6. The elements in π9S
4 from example 1.4(a) satisfy the hypotheses of this proposition.

Proof. We want to compute the lineage of β. We claim that En−m(β) 6= 0. The element En−m(β) is
detected by α[n] in the TGSS for Sn by lemma 1.7. If α[n] ∈ E1(Sn) is hit by a TGSS differential, then
α[n] ∈ E1(Sm) must be hit by a corresponding TGSS differential. But it is not, and we conclude that
α[n] ∈ E1(Sn) survives the spectral sequence and En−mβ 6= 0 in πt+nS

n.
On the other hand, t ≤ 3n− 2 imply 2n+ 1 ≥ (t+ n+ 2)− (2n+ 1) + 2, so we’re in the stable range and

πst−n+1
∼= πt+n+2(S2n+1). Under this isomorphism, the stable element α corresponds to an unstable element

α ∈ πt+n+2S
2n+1, detected by α[∅] in the TGSS for S2n+1. In the TGSS for Sn, we have P∗(α[∅]) = α[n]

again by (1.7).
Therefore, En−mβ and P (α) agree modulo elements of Goodwillie filtration ≥ 2. But there are no nonzero

elements of πt+n(Sn) of Goodwillie filtration ≥ 2. That is to say, the group E1
t,J(Sn) = πt+nS

n−|J|+‖J‖ is

zero if |J | ≥ 2, because t+n ≤ 4n−2 and n−|J |+‖J‖ ≥ n−2 + (2n+ 1) = 4n−1. So En−mβ = P (α). �
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