# Juvitop Seminar

## Spring 2017

In Spring 2017, Juvitop was about Obstruction Theory for Structured Ring Spectra.-
$\begingroup$
#### The associativity of Morava K theories

### Hood Chatham

Reference: Robinson, "The associativity of Morava K Theories" (pages 74-79).

Angeltveit, "THH and Cohomology of $A_\infty$ ring spectra" (section 3).

$\endgroup$ -
$\begingroup$
#### Introduction to THH

### Denis Nardin

$\endgroup$ -
$\begingroup$
#### The Center of Morava K Theory is Morava E Theory (if you give it the right $A_{\infty}$ structure)

### Andy Senger

$\endgroup$ -
$\begingroup$
#### Introduction to Andre Quillen Homology

### Morgan Opie

References: Quillen, Homology of commutative rings

$\endgroup$ -
$\begingroup$
#### Introduction to Topological Andre Quillen Homology

### Jun-hou Fung

$\endgroup$ -
$\begingroup$
#### $BP$ is $E_4$

### Hood Chatham

$\endgroup$ -
$\begingroup$
#### Introduction to Gamma homology

### Peter Haine

$\endgroup$ -
$\begingroup$
#### Gamma homology of discrete rings

### Robin Elliott

$\endgroup$ -
$\begingroup$
#### There is a unique $E_\infty$ structure on $KU$

### Eva Belmont

$\endgroup$ -
$\begingroup$
#### The Brauer Group of Morava E Theory

### Jeremy Hahn

Reference: On Brauer Groups of Lubin-Tate Spectra

$\endgroup$ -
$\begingroup$
#### The Brauer Group of Morava E Theory Part 2

### Jeremy Hahn

$\endgroup$ -
$\begingroup$
#### Constructing $E_\infty$ rings from $p$-divisible groups

### Allen Yuan

$\endgroup$

Eva is live texing notes, which are available here: (pdf , tex).

This seminar was organized by Hood Chatham and Eva Belmont.