
HOPF ALGEBROIDS AND STACKS

BARRY JOHN WALKER

Abstract. These are notes I prepared for a talk on producing stacks from Hopf algebroids. In
no way am I an expert on this material, so there are lots of gaps and mistakes, all due to me of
course. The main reference can be found on the web, see (1).
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1. Background

Recall that a stack is a sheaf of groupoids that satisfies the descent condition. In more detail;
let

F : Cop → Groupoids

be a sheaf where C is a Grothendieck category. The descent condition means that for any cover

U = {Ui → U}

in C there is an equivalence of categories

F (U) ∼= Desc(U , F )

Now we need to define the descent data category.
Let U = {Ui → U} be a covering of an object U in C. We’ll define a new category, Desc(U , F ):

Date: April 21, 2006.
1



2 BARRY JOHN WALKER

(1) objects will be pairs ({xi} , {φi,j}) where xi is an object of F (Ui) and

φij : xi|Uij
→ xj|Uji

are isomorphisms in F (Uij) that satisfy the cocycle condition

φjk ◦ φij ∼= φik

(2) The morphisms are a compatible collection of maps from xi → x′i.

Some comments are in order. Each object is a collection of data, namely class of objects
together with restriction maps. The idea is supposed to be similar to having a vector bundle
and looking at its local trivilazations.

2. Hopf Algebroids

First a Hopf algebroid is a cogroupoid object in the category of rings. Let’s right this out in
much more detail.

A Hopf algebroid is a pair (A,Γ) or rings together with some structure maps such that for
any commutative ring B, the sets Hom(A,B) and Hom(Γ, B) are the objects and morphisms of
a groupoid. Call this groupoid GΓ(B).

The structure maps are

ηl : A→ Γ (co-source)
ηr : A→ Γ (co-target)
∇ : Γ → Γ⊗A Γ (coproduct)
ε : Γ → A (co-unit)
c : Γ → Γ (co-inverse)

There are some diagrams containing all these maps that need to commute, but we’ll leave that
out for now. The source map ηl will be assumed to be a flat map of left A-modules. In this case,
there are enough injective comodules to do homological algebra and is part of the hypothesis
for the change of rings theorem.

Definition 2.1. Let (A,Γ) be a Hopf algebroid. A left A-module M is a Γ co-module if there is
a left A-linear map

ψ : M → Γ⊗AM

that is co-associative and counitary.

3. Schemes

An affine scheme is a representable functor from the category of rings to sets. Let R be a
commutative ring with unit, then Spec(R) is the functor Hom(R,−). It’s classical that the
opposite category of rings is equivalent to the category of affine schemes. The inverse map is
given by taking global sections.

In order to get a stack from a Hopf algebroid we will put a topology on Ringsop. There are a
few topologies to choose from, but I will follow what Goerss does in (1) and start with the flat
topology.



HOPF ALGEBROIDS AND STACKS 3

Definition 3.1. A map of affine schemes f : Spec(B) → Spec(A) is flat if the map of rings
f : A→ B is flat

A map of affine schemes f : Spec(B) → Spec(A) is of locally of finite type if there exists an
affine open cover of locally ringed spaces

Spec(A) =
⋃

Spec(Ai) = Ui

such that if we have an open cover

f−1(Ui) =
⋃

Spec(Bij)

of the pre-image, then each Bij is a finitely generated Ai-algebra.
With this information, a covering of a scheme X is a collection{

Xi
fi−→ X

}
such that each fi is a flat and locally of finite type map of affine schemes and

X =
⋃

fi(Ui)

as sets. This definition comes from Milne’s E’tale cohomology book.

Lemma 3.2. A map A→ B is faithfully flat iff Spec(B) → Spec(A) is flat and surjective.

If Ui = Spec(Ai) and X = Spec(R), this is equivalent to S →
∐
Aj being faithfully flat for

some finite subcollection of the original cover. I think this follows from the fact that Spec(A) is
quasi-compact; every open cover has a finite subcover. This puts the flat topology on Ringsop.
There are other topologies, for example the Zariski and E’tale.

4. Stacks from Hopf Algebroids

Suppose we have a Hopf algebroid (A,Γ), the assignment

GΓ : Spec(R) 7→ GΓ(R)

is a presheaf of groupoids (with source category Ringsop. The presheaf GΓ is typically not a
stack, write M(A,Γ) for the associated stack. This all depends on the chosen topology for
Ringsop.

Example 4.1. Another example is the degenerate case of the above; we take the Hopf algebroid
(A,A) for some commutative ring A. It’s a Hopf algebroid where all the structure maps are
the identity. Thus we can look at the sheaf of groupoids it produces. It’s a sheaf since it is
representable and in the flat topology, representable presheaves are sheaves.

Claim 4.2. : The only morphisms in the groupoid given by (Hom(A,R),Hom(A,R)) are the
identity isomorphisms.
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Proof. Recall the groupoid structure, given two objects f ∈ Hom(A,R) and g ∈ Hom(A,R) in
our groupoid, we get a morphism between them if

A

f

s

t

g

A
φ

R

can be filled in so that things commute. In the case that s = t = id we see that φ = f = g.
There is a unique map that does make the diagram commute, which is the identity arrow in the
groupoid. �

Now given a cover

{Spec(Si) → Spec(B)}
the associated descent data is a collection of objects si that agree on intersections, thus by the
sheaf condition it lifts to a global object. This produces the equivalence of categories needed to
be a stack.

The whole point here is given a ring R we can construct a stack, called Spec(R) = GR .
There is actually a moduli problem floating around here. Suppose (A,Γ) is a Hopf algebroid. A
morphism of stacks

Spec(R) →M(A,Γ).

corresponds to an equivalence class of pairs

(f : A→ S, φ : Γ → S ⊗r S)

where R→ S is a faithfully flat extension.
I don’t really understand this observation, see the Goerss notes for more stuff.

Example 4.3. Let L be the ungraded Larzard ring, so that Hom(L,R) is naturally isomorphic
to the set of formal group laws over R. If we let W be the ring that represents isomorphisms,
then (L,W ) is a Hopf algebroid. The associated stack M(L,W ) = MFGL has the cool property
that morphisms

Spec(R) →MFGL

classify equivalence classes of formal group laws over faithfully flat extensions of R.

I think the reason for this is tied up with what Haynes Miller was trying to tell me at the end
of the talk. In particular, we need to understand the associated stack functor in this case to get
the result.

Remark 4.4. There is also an example for elliptic curves using the Weirestrass forms of the
curves.
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5. Representable Morphisms

Definition 5.1. A stack M is representable if it is isomorphic to Spec(R) for some ring R.

A representable morphism of stacks is one whose fibers are schemes. The first step is to define
the fibre product of a groupoids. Given a diagram

G2

g

G1

f
H

of groupoids, the “homotopy pull-back” G1 ×h
G G2 is the groupoid with objects consisting of

triples

(x, y, φ)

with x an object in G1 and y an object of G2 and

φ : f(x) → g(y)

is an isomorphism in H. A morphism from (x, y, φ) to (x′, y′, φ′) is a pair of morphisms x→ x′

and y → y′ so that

f(x)

φ

f(x′)

φ′

g(y) g(y′)

commutes in H. Comments from the audience suggested that to lift this construction to
presheaves of groupoids, just compute it point wise. He also mentioned that there are some
subtleties in producing a stack in this way. The consequence of course, is a notion of pullback
for stacks.

A morphism

M→N
of stacks is representable (with respect to affines) if whenever we form the homotopy pull-back

Spec(R)×h
N M M

Spec(R) N

there is an equivalence of groupoid sheaves

Spec(R)×h
N M∼= Spec(S)

for some commutative ring S, in other words, pull-backs along affines are affine.
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Example 5.2. If (A,Γ) is a Hopf algebroid then

α : Spec(R) →M(A,Γ)

is representable.

Proof. First suppose that α is actually represented by a map α : A → R. Likewise, suppose
that our test map β : Spec(S) →M is represented by β : A→ R. Then

Spec(R)×h
M Spec(S) ' Spec(R⊗ Γ⊗ S)

and so the pull-back is affine. We can reduce to this case using the following trick. Suppose we
have started with some general map x : Spec(R) →M. Then there is a faithfully flat extension
i : R→ R′ so that

i∗x : Spec(R′) →M
is represented by a map A → R′. Again, this has to do with the associated stack functor
and depends on the topology chosen. I don’t understand this yet. Do the same for α and use
faithfully flat descent to get the pull-back to be affine. �

Definition 5.3. A map f : Spec(S) → M of stacks is flat if f is representable, and when
ever we pull back along a morphism of the form g : Spec(R) →M the induced maps out of the
pull-back are induced by flat maps of rings.

6. Structure Sheaf

Definition 6.1. A stack M is an algebraic stack if we can chose a flat (and thus representable)
surjective morphism

Spec(S) →M
for some commutative ring S.

If M is an algebraic stack define the category

FLAT/M
to have objects the flat maps

Spec(R) →M.

A morphism

Spec(R)
x

f

M

Spec(S)

y

is a pair (f, φ) where f : S → R is a ring homomorphism and φ is an isomorphism φ : x→ f ∗y
(remember that Stacks is a 2-category. This means that the diagram only commutes up to
isomorphism and this isomorphism is part of the data.

As an example, consider the case when M = FGL. Then x and y are represented by formal
group laws G and H over faithfully flat extensions of R and S. We are then specifying a
isomorphism f ∗H ∼= G over a faithfully flat extension of R.
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Next, define a cover of an object Spec(R) →M of FLAT/M to be a faithfully flat map

Spec(S) → Spec(R).

Now that we have a topology on FLAT/M, a sheaf is a presheaf of sets that satisfies the the
standard equalizer diagram for all covers.

Definition 6.2. The structure sheaf on M is the functor

Spec(R) →M 7→ R.

It’s actually a sheaf of rings.

Proof. I guess it goes like this. Which I now think is wrong. Let Spec(S) → Spec(R) be a
covering in FLAT/M. The pull-back in the diagram

Spec(S)

Spec(R)

Spec(S) Spec(R) M
is the intersection. The fact that M is algebraic implies that the pull-back is affine, say of the
form Spec(T ). More over, the two maps Spec(T ) → Spec(S) are the two restriction maps and
we see that

Spec(T ) Spec(S) Spec(R)

is a coequalizer, and so

R S T

is an equilzer. �

7. Quasi-coherent Sheaves

Definition 7.1. A quasi-coherent sheaf F on an algebraic stack M is a sheaf on M such that
F (R, x) is a R module for every x : Spec(R) →M and for every diagram of the form

Spec(R)
x

f

M

Spec(S)

y

in FLAT/M the induced map of S modules f ∗F (R, x) → F (S, y) is an isomorphism.

I think we need a cocycle condition in this definition. But it is not mentioned in (1).
Explicitly, the cocycle condition says that if we have a chain of covers

Spec(R)
f−→ Spec(S)

g−→ Spec(T )
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over M then

φg◦f = φf ◦ f ∗φg : FR
'−→ (g ◦ f)∗FT = f ∗(g∗FT ).

Again, suppose (A,Γ) is a Hopf algebroid and let C be a Γ comodule. We would like to get
a quasi-coherent sheaf from such a gadget.

The idea is something like this. If

Spec(R)
x−→M = M(A,Γ)

is actually represented by a map x : A→ R define

FC(R, x) = R⊗A C.

The problem is, all objects in FLAT/M need not be of this form. There is an argument to
reduce to this case though.

We are allowed to restrict to such maps above because for any general morphism Spec(R) →
M there is a cover Spec(S) → Spec(R) so that the composition

Spec(S) → Spec(R) →M

can be represented by a map of rings A→ S. So, if you are keeping count, this is the third time
such a claim has reared its head. We need to figure this argument out at some point. Having
defined the presheaf on all the covers, the sheaf condition ensures a definition on Spec(R) →M.

I don’t understand the transition functions, but it goes like this. Again see (1) A morphism
in FLAT/M is a diagram of the form

Spec(R)
x

f

M = M(A,Γ)

Spec(S)

y

where f : S → R is a map of rings. This corresponds to a diagram

A

ηL

y

x

S

f

A
ηR

Γ R

which i guess is saying that there is a morphism from x to f ∗y in the groupoid given by the
Hopf algebroid. Either way, taking a push-out produces a map

α : S ⊗R Γ → R

and the transition function

FC(S, y) → FC(R, x)

is given by

S ⊗A C
id⊗ψ−−−→ S ⊗A Γ⊗A C

α⊗id−−−→ R⊗A C
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I guess one question to ask is, why is the map induced by applying −⊗A C to the ring map
S → R not good enough? It must have to do with getting an isomorphism at the end of the
day.

Theorem 7.2. There is an equivalence of categories

{Quasi-coherent sheaves on M(A,Γ)} ∼= (A,Γ)− (comodules)

8. Cohomology
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