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More than twenty years ago, Griffiths introduced the definition of variation 
of Hodge structure as a way of formalizing some properties of the families 
of Hodge structures on cohomology groups of a family of smooth projective 
varieties. It may have seemed, at the time, that these properties of the local 
systems of cohomology groups were very special to the geometric situation 
from which they arose. It is my goal to show that the variations of Hodge 
structure, in a sense slightly generalized from the original, play a central 
role in the theory of all local systems, or representations of the fundamental 
group, on a smooth projective variety. 

The material in §§1, 2, and 3 is expository. In §1, which corresponds 
most closely to the conference talk, I will describe the basic correspondence 
between representations of the fundamental group and Higgs bundles, geo­
metric objects on X. From this correspondence, it will be easy to describe 
which representations come from complex variations of Hodge structure— 
they are the fixed points of a natural C* action. In §2, I will give a brief 
explanation of the main idea for constructing the moduli space of Higgs 
bundles, and from this discuss a crucial closure property which allows one 
to conclude that there are many fixed points of the C* action. In §3, I will 
describe Hitchin's idea for relating the cohomology of the moduli spaces to 
the cohomology of the fixed point sets. 

§4 contains new research, done in January 1990 (admittedly, a bit after 
the conference concluded!). The result is a sort of structure theorem for 
representations of n{(X) into Sl(2, C). This was prompted by discussions 
with D. Toledo, J. Carlson, W. Goldman, and K. Corlette. It is an analogue 
of topics discussed several years ago in a seminar organized by N. Boston, 
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330 C. T. SIMPSON 

about work of Culler and Shalen. I would also like to thank P. Deligne for 
some helpful remarks. 

1. Variations of Hodge structure and Higgs bundles 

Let X be a smooth projective variety. A complex variation of Hodge struc­
ture on X is a C°° vector bundle V with decomposition V = (&p+q=w ̂  9 

and flat connection D, satisfying the axioms of Griffiths transversality 

D = d + d + e + e:vp^^Au\vp^)^A°^\vp^)^AK0(vp-Uq+l) 
®A0A(Vp+l>q-1), 

and existence of a polarization. A polarization is a hermitian form {u, v), 
preserved by Z), such that Vp,q _L Vr,s for (p, q) ^ (r,s), and 
( - 1 ) P ( K , K ) > 0 for ue Vp'q. 

These objects occur naturally as descriptions of the variable Hodge struc­
tures on cohomology of varieties in algebraic families indexed by X [12]. For 
example, if / : Y —• X is a projective smooth map, define Vx = Hl(Yx , C), 
with Hodge decomposition Vp,q = Hp,q(X). The flat connection is obtained 
by translating cohomology classes topologically. The notion of complex vari­
ation of Hodge structure is a slight generalization of the notion of integer 
variation of Hodge structure introduced by Griffiths [13]—the cohomology 
groups of a family of varieties have integer lattices preserved by the flat con­
nection. We will ignore this aspect and concentrate on the notion of variation 
of Hodge structure in the abstract, as a kind of structure on a connection or 
representation of the fundamental group. One advantage of the notion of 
complex variation of Hodge structure is that such objects are direct sums of 
components corresponding to irreducible representations of the fundamental 
group [7]. 

The purpose of this first section is to discuss some results which indicate 
that the representations underlying complex variations of Hodge structure 
play an important role in the representation theory of nx(X). In discussing 
fundamental groups we will suppress reference to choice of base points. 

From a variation of Hodge structure, one obtains a system of Hodge bun­
dles, a direct sum E = 0 Ep,q of holomorphic vector bundles with en-

domorphism valued one-forms 6: Ep'q -* Ep~l'q+l <g> Q.lx such that 9 A 6 = 
0. The holomorphic bundles Ep,q are just the bundles Vp,q provided with 
holomorphic structure d equal to the appropriate component of the connec­
tion D. The maps 6 are similarly components of D as denoted above. 

In the geometric situation of a smooth family of varieties f:Y-+X, 
the system of Hodge bundles associated to a variation of Hodge structure 
is easy to describe: Ep,q = RqfQp

x , and 8x is obtained by cup product 

with the Kodaira-Spencer deformation class r\x e Hl(Yx, T(YX)) 0 (&l
x)x . 

I remember wondering, in Griffiths's class, whether one could recover the 
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THE UBIQUITY OF VARIATIONS OF HODGE STRUCTURE 331 

variation of Hodge structure from this holomorphic data. The answer turns 
out to be yes. 

The systems of Hodge bundles which arise from irreducible complex vari­
ations of Hodge structure are stable, i.e., any subsystem of Hodge sheaves 
U c E must have deg(C/)/rk(£7) < deg(2?)/ rk(E) (note that this condition 
makes reference to a choice of hyperplane class). The condition of stability 
is related to Griffiths's result about degrees of the Hodge bundles [13]. The 
systems of Hodge bundles which come from variations of Hodge structures, 
being flat as C°° bundles, must satisfy ct(E) = 0. Using techniques of 
Yang-Mills theory, the construction can be inverted to give a one-to-one cor­
respondence between irreducible complex variations of Hodge structure and 
stable systems of Hodge bundles with vanishing Chern classes. 

This is an example of a more general statement for all representations of 
n{(X), the "nonabelian Hodge theorem." A Higgs bundle on X is a pair 
(E, 9) consisting of a holomorphic bundle E and an endomorphism-valued 
one-form 9: E —• E <g> Ql

x such that 9 A 9 = 0. A Higgs bundle is stable if, 
for any subsheaf U c E preserved by 9 , the degree divided by the rank of 
U is strictly smaller than that of E (again, this condition refers to a choice 
of hyperplane class). 

THEOREM 1. There is a one-to-one correspondence between the set of stable 
Higgs bundles with c((E) = 0, and the set of irreducible representations of 
n{(X). A representation has a structure of variation of Hodge structure if and 
only if the associated Higgs bundle has a structure of system of Hodge bundles, 
and in this case the correspondence is the one described above. 

This theorem (as well as the definitions which preceded it) is the result of 
work of N. Hitchin [16], K. Corlette [4], S. Donaldson [8, 9, 10], P. Deligne 
(work with A. Beilinson, and various communications), K. Uhlenbeck and 
S. Yau [28], Y. Siu [27], and myself [24, 25]. The simplest original version is 
the theorem of Narasimhan and Seshadri [22]. 

It might be helpful to include a description, not of the proof of the theo­
rem, but of the mechanism of the resulting correspondence. A Higgs bundle 
is a smooth vector bundle E provided with an operator D" = d + 9 . If one 
chooses a smoothly varying hermitian metric K, then one obtains an oper­
ator D'K = dK + 9K . The formulas are chosen so as to be compatible with 
the case of variations of Hodge structure, in which the metric K is taken 
as the positive definite form obtained by appropriately changing the signs of 
the polarization on the different Hodge bundles. They are 

(dKu, v)K + (w, dv)K = d{u,v)K, 

(9Ku, v)K - (u, 9v)K = 0. 

Then the combination DK = D'K + D" is a connection on E, with curvature 
FK = DK . One direction of the theorem consists in showing that if E is sta-
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332 C. T. SIMPSON 

ble and has vanishing Chern classes, then the equation FK = 0 can be solved 
to find a harmonic metric [22, 8, 9, 28, 16, 24]. The resulting flat connection 
DK gives the representation of the fundamental group corresponding to the 
Higgs bundle. Note that the variations of Hodge structure are particular 
cases of such solutions. The other half of the theorem consists in showing 
that every irreducible representation occurs this way, by solving some similar 
equations for a metric on a flat bundle, to get a Higgs bundle [4, 10, 27, 25]. 

THEOREM 2. There are coarse moduli spaces AfHiggs and MRep for the 
Higgs bundles and representations which occur in the previous theorem. They 
are algebraic varieties whose points parametrize Jordan equivalence classes 
of objects, or equally well direct sums of stable or irreducible objects. The 
correspondence of the theorem becomes a homeomorphism Mm = AfRep of 
the underlying topological spaces. 

The homeomorphism is not a complex analytic map, but it is expected to 
be real analytic at the smooth points. The construction of MR , an affine 
variety, is standard (see, for example, [6]). We will give a heuristic indication 
of the construction of Mm in the next section. 

The place of the complex variations of Hodge structure in the space of all 
local systems is clarified by this correspondence. A representation underlies 
a variation of Hodge structure if and only if the associated Higgs bundle 
can be given a structure of system of Hodge bundles. The points in MHi 

which have structures of systems of Hodge bundles may be characterized as 
the fixed points of a natural C* action: 

t: (E, d)*-+(E, tO). 

It is easy to see that if / : (E, 6) = (E, td) for a number t of infinite order, 
then E has a structure of system of Hodge bundles, by decomposing E into 
generalized eigenspaces of / and arranging them in strings with eigenvalues 
related by powers of t. 

The moduli space Mm is not compact, but we can still take limit points 
of orbits of C* to find many fixed points. 

PROPOSITION 3. If E e ^Higgs * t^ien ^o = ^ m ^ o ^ exists in ^mggs an^ 
is a fixed point of C*. 

This was first discovered by Hitchin in his context [16]. We will see why it 
is true from the discussion of the construction of Mm in the next section. 

COROLLARY 4. Any representation of n{(X) may be deformed to a repre­
sentation underlying a complex variation of Hodge structure. In particular, a 
rigid representation must already underly a complex variation. 

From this corollary, one may deduce that certain groups T cannot occur 
as fundamental groups of a smooth projective variety X. For example, the 
monodromy of a complex variation of Hodge structure must fix an indefinite 
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THE UBIQUITY OF VARIATIONS OF HODGE STRUCTURE 333 

hermitian form, so it lies in some U(p, q) C Gl(w). If T is a group with a 
representation which cannot be deformed into any U(p, q), then T cannot 
be nx{X). See [25] for a more complete discussion. 

2. Construction of the moduli space 

Let me explain briefly the construction of the moduli space ^Higgs' le a ying 
out the technical details. These have been circulated in [26], to be published 
later. 

A Higgs bundle on X can be thought of as a vector bundle E together 
with action of the symmetric algebra of the tangent bundle Sym' TX. The 
one-form 6 gives an action of the symmetric algebra rather than of the 
full tensor algebra because of the condition 6 A 8 — 0, which says that the 
endomorphisms corresponding to different tangent vectors commute. 

The projection of the cotangent bundle / : T*X —• X is an affine map. 
T*X is the relative spectrum of a sheaf of algebras, in fact, of the symmetric 
algebra of the tangent bundle: 

T*X = Spec(Sym' TX), fj9T*x = Sym J X 

A quasi-coherent sheaf ? on f l is therefore the same thing as a qua-
sicoherent sheaf E = fj? on X together with an action of Sym' TX on 
E. 

This interpretation may be applied to give a picture of a Higgs bundle 
(E, 6) as a sheaf IP on T*X. This picture was studied by Hitchin under 
the name "spectral curve" [16, 17], and further by Oxbury [23]. A point 
(x, £) in T*X is in the support of If if and only if the linear function 
^ *-* €(v) of v e TxX is an eigenvalue of the operation of TxX on Ex 

given by 6X. 
The sheaves which arise from Higgs bundles this way are coherent, and in 

fact finite and flat over @x. In particular, the dimension of the support of 
IP is equal to the dimension of X (denote it by d), and the map from the 
support of W to X is proper. Geometrically, the last condition means that 
the support of % does not intersect the divisor at infinity. 

One can give a general construction of moduli spaces for coherent sheaves 
on a projective variety, similar to the construction for torsion free sheaves. 
Let Z be a projective variety, with fixed ample bundle @z{\). A coherent 
sheaf % on Z has pure dimension d if the dimension of the support of 
every subsheaf of % is d. Let /?(<?% m) denote the Hilbert polynomial, 
equal to h (IP(ra)) for large m. We may use these polynomials to give a 
definition of stability by comparing values for m > 0. Let r(&) denote 
the highest coefficient of /?(!?, m). In the case when d = dim(X), pure 
dimension d is the same as torsion free, and r{W) is essentially the rank 
of %. In general, we say that % is p-stable (resp. p-semistable) if, for any 
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334 C. T. SIMPSON 

subsheaf & c %, 
p ( ^ , m ) p(£,m) 

r{^) r{^) 
(resp. <) , for m > 0. 

PROPOSITION 5. 77z£re /s a coarse moduli space M(P) for p-semistable 
coherent sheaves I? of pure dimension d, with Hilbert polynomial P, up to 
the relation of Jordan equivalence. M(P) is a projective variety. 

PROOF. See [26]. 

This means that the closed points of M(P) are in one-to-one correspon­
dence with the Jordan equivalence classes of semistable sheaves (two objects 
are Jordan equivalent if the irreducible factors in their Jordan-Holder series 
are the same), or equivalently with the direct sums of stable sheaves. And 
the coarse moduli condition means that if {3?s}seS is an algebraic family 
of sheaves, indexed by a scheme S, such that each <8̂  is p-semistable with 
Hilbert polynomial P, then there is a canonical map from S to M(P) send­
ing s to the point representing the equivalence class of &s. 

We apply this to our situation by letting Z be a projective closure of 
T*X. We may choose an ample <^z(l) which, when restricted to the open 
set T*X, is equal to the pullback of @x(\). The Higgs bundles on X cor­
respond to coherent sheaves of pure dimension d = dim(X) on Z whose 
support is contained in T*X. Then, the notion of /^-stability for the coherent 
sheaf I? is the same as the notion of ^-stability for the corresponding Higgs 
bundle (E, d) on X (^-stability is defined in the same way using Hilbert 
polynomials). It is a consequence of the nonabelian Hodge theorem that, for 
Higgs bundles with trivial Chern classes, the notions of ^-stability and p-
semistability defined using Hilbert polynomials are equivalent to the notions 
of stability and semistability defined just using the degree [26]. A similar rel­
evant fact is that any semistable torsion free Higgs sheaf with trivial Chern 
classes must be locally free [25]. 

Thus the semistable or stable Higgs bundles on X with vanishing Chern 
classes correspond exactly to the p-semistable or p-stable coherent sheaves 
of pure dimension d on Z , with appropriate Hilbert polynomial, and whose 
support is contained in T* X . The moduli space MHi is the open subset of 
the moduli space M(P, Z) of sheaves on Z , determined by the condition 
of the support being contained in T*X . 

This picture makes it easy to see why Proposition 3 is true. C* acts by 
scaling on T*X, and we may assume that it acts on Z . This induces an 
action on the moduli space M(P, Z ) , restricting to the desired action on 
MHi s . Since M(P, Z) is projective, the limit <8̂  = l i m , ^ t% exists and is 
invariant, for any point I? . If % is a point in AfHi , the support of % is 
contained in T*X, and as the scaling goes to zero, the support remains in a 
compact subset of T*X . Thus the support of the limit &0 is also contained 
in T*X (and in fact ^ is supported along the zero section). So the limit 
r 0 exists in MHiggs. 
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THE UBIQUITY OF VARIATIONS OF HODGE STRUCTURE 335 

3. Topology of the moduli space 

In this section we will discuss Hitchin's method for finding the homology 
of the moduli space ^H i g g s . He completed the calculations for bundles of 
rank two on a curve. Half of his argument generalizes easily, the result saying 
that the Betti numbers are essentially the sums of Betti numbers of the fixed 
point sets of the C* action, the spaces of variations of Hodge structure. The 
other half, the calculation of the Betti numbers for the spaces of variations 
of Hodge structure, seems to be very difficult. Hitchin's calculation in this 
step depended on the fact that bundles of rank two were considered. We 
will not accomplish anything in regard to this second half of the problem, 
so nothing new will be calculated. I just want to make the point that the 
homology of the whole moduli space is obtained from the homology of the 
spaces of variations of Hodge structure. 

Another problem concerns singularities of the moduli space. Again, we will 
avoid this by dealing only with smooth components of the moduli space. For 
example, if d and r are relatively prime, then the moduli space of Higgs 
bundles of degree d and rank r, on a curve, is smooth. Altogether this 
section will be concerned only with restating Hitchin's method in a general 
context. We will use algebraic geometric language, and are really just restating 
known results of Kirwan [19]. 

Suppose M is a projective variety with an action of C*. Let Va denote 
the components of the set of fixed points of the action. Let Sa and Ta 

denote, respectively, the sets of "incoming" and "outgoing" points for Va. 
In other words, S is the set of points x such that lim. n tx e V and T 
is the set of points x such that lim, ^tx e V . The collections {S } and 
{Ta} are each stratifications of M. 

Fix a linearized very ample line bundle L. The strata may be ordered 
by considering the action of C* on L . Over each Va , C* acts on L by a 
character t \-> t~ . Denote this k by k(a). 

LEMMA 6. Suppose x e Sa n T*. Then k(a) < k{fi) and if equality holds 
then a = P and x e Va. 

PROOF. By looking at a single orbit, it can be reduced to the case of the 
standard action on P , where it is easy to check. 

Because of this lemma, we may define a partial ordering on the {a} . Say 
that a < /? if Sa n 7^ / 0 . Say that a subset of indices A c {a} is 
lower-closed if, whenever a e A and /? < a, then /? e A . 

Fix a lower-closed subset of indices A . Define an open subset UA and a 
closed subset WA of the space M by 

UA=\JSa, WA=\jTa. 
a£A a(E.A 

We have WA<zUA, and in fact WA is a deformation retract of UA . To see 
this, note that there is a neighborhood of WA which retracts to WA (this 
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336 C. T. SIMPSON 

is always true of closed algebraic subsets of algebraic varieties). Then, using 
the C* action, we can move points in UA into this neighborhood. 

PROPOSITION 7 (Bialynicki-Birula). Suppose UA is smooth. Then for any 
a e A, Va is smooth and Sa and Ta are algebraic geometric fiber bundles 
over Va with fibers which are affine spaces. The dimensions of these affine 
spaces may be found by using the action of C* on the normal bundle of Va 

as a model 

PROOF. See [2]. 

THEOREM 8. Suppose UA is smooth. Then 

dim H.( WA) = Vs dim HAT ,T -V). 
aeA 

Thus if t(a) denotes the complex relative dimension of Ta over Va, then 

dim// , ( l /J = ]Tdim// ; ._2 , ( a )(F). 

This is a restatement of the special case G = C* of the theorem of Kirwan 
[19], based on work of Atiyah and Bott [1]. Their proofs were phrased in 
the language of Morse theory and moment maps, the main point being that 
the square norm of the moment map for the action of the maximal compact 
subgroup (in this case, U(l)) is a perfect Morse function. We will sketch 
a proof in algebraic geometric language. The fact that the stratification is 
perfect is simply due (using resolution of singularities) to the fact that the 
strata are varieties fibered with fibers which are affine spaces. 

PROOF OF THEOREM 8. Recall that WA is a deformation retract of UA , so 
we may calculate the homology of WA . Argue by induction on A . We may 
concentrate on the process of adding one stratum T -Ta to a closed space 
W = WA, with a a minimal element which is not in A, so that AUa will 
still be lower-closed. Let T denote the closure of T, and R the complement 
T - T. The condition that a is minimal among those not contained in A 
implies that R = T n W. Let T denote a suitable birational transform of 
T, and R the inverse image of R . Applying excision, the pair (Wu T, W) 
is the same as (T, R) or (T, R). We have a relative homology sequence 

• Ht{W) -> Ht(W U l ) ^ J7.(f, R) -• • • • . 

We claim that the map Ht(WuT) —• H.(f, R) is surjective. This will prove 
the theorem. Since T maps to W U T, it suffices to show that 

//.(f) - //,.(/% R) 

is surjective. Geometrically this says that the relative homology classes can be 
closed up in T to give homology classes. By resolution of singularities [15], 
we may choose the birational transform T in such a way that T is smooth 
and there is a map p: f -> V restricting to the given projection on T. Let n 
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THE UBIQUITY OF VARIATIONS OF HODGE STRUCTURE 337 

denote the real dimension of T. Applying the duality between homology and 
cohomology (note that the relative homology is dual to compactly supported 
cohomology on T), and Poincare duality, the map which is claimed to be 
surjective is the same as the restriction map 

Hn~\T)-+Hn~\T). 

The pullback from the cohomology of V to the cohomology of T is an 
isomorphism, since the fiber of T over V is topologically trivial. This 
isomorphism factors as 

Hn~\V) -> Hn~\f) -+ Hn~\T), 

which proves the claimed surjectivity. This proves the theorem. 
We will apply the theorem in the following situation. Let M denote a 

component of the moduli space AfHiggs which is smooth. In order to obtain 
such a component, one may have to consider the moduli space for Higgs 
bundles corresponding to groups other than Gl(«). For example, the moduli 
space of stable Higgs bundles of degree d and rank r on a curve corresponds 
to the moduli of representations into P Sl(r, C), with a certain characteristic 
class equal to d. If d and r are relatively prime, then all points are stable 
and this component is smooth. 

Now M is not projective. We may embed it in a projective closure M, 
which might not be smooth, but where the action of C* extends. Let {a} be 
the set of indices indicating fixed point sets Va . Proposition 3 implies that 
there is a lower-closed subset A c {a} such that M = UA c M. The fixed 
point sets Va, a e A, are exactly the subsets parametrizing Higgs bundles 
which have structure of systems of Hodge bundles. By Theorem 1, these are 
the moduli spaces of representations which underlie complex variations of 
Hodge structure. We may apply Theorem 8 to conclude 

COROLLARY 9 (Hitchin). If M is a component of MHi which is smooth, 
and if {Va}aeA is the set of connected components of the space of variations 
of Hodge structure in M, then 

dimHi(M) = J2dimHi_2t{a)(VJ. 

Here t(a) is the complex relative dimension of the space of "outgoing" direc­
tions normal to V . 

a 

This occurred in Hitchin's paper as the basis of his calculation of the Betti 
numbers of the component M(2, 1) of projective representations of rank 
two and odd degree on a Riemann surface [16]. The difficult part about 
generalizing Hitchin's calculation would be to calculate the Betti numbers of 
the spaces of variations of Hodge structure Va . 

Let me indicate how to calculate the t(a), particularly when X is a curve. 
This calculation will use the notion of Dolbeault cohomology. The Dolbeault 

Licensed to Mass Inst of Tech.  Prepared on Thu Oct 20 21:28:28 EDT 2016for download from IP 18.9.61.112.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



338 C. T. SIMPSON 

cohomology of a Higgs bundle (E, 6) (with trivial Chern classes) is defined 
to be the hypercohomology 

H^(X9 E) = Hl(E - ^ £ 0 f l ^ £ ^ f l ^ . . . ) . 

This is isomorphic to the de Rham cohomology of the associated local system 
[25]. If the local system has a structure of variation of Hodge structure 
of weight w, then the cohomology group H^ol(X, E) will have a Hodge 
decomposition of weight w + / . The associated Higgs bundle has a structure 
of system of Hodge bundles E = @p+q=w Ep'q ,and for p + q = w + /, 

Hp>\X,E) = H\Ep>g~i^Ep-l>g+l-i®nl
x->•••). 

We can apply this to the tangent space of the moduli space at a smooth 
point corresponding to a stable Higgs bundle. Let M denote a smooth com­
ponent of the moduli space of semistable Higgs bundles of flat type. This 
could be, for example, the moduli space of Higgs bundles of relatively prime 
degree d and rank r on a Riemann surface, corresponding to structure group 
PGl(r). Or, it could be a moduli space for principal Higgs bundles for an­
other structure group [25, 26]. In that case, End(£') below would be replaced 
by the adjoint Higgs bundle—but for simplicity we will stick to the vector 
case. 

The Zariski tangent space to ¥ at £ is given by the first cohomology 
group H^ol(X, End(E)). Note that although E may have nonzero degree, 
End(£) has degree zero, and corresponds to a flat vector bundle. If E is a 
fixed point of C*, then E has a structure of Hodge bundles E = @Ep,q . 
This structure corresponds to an action of C* on E, with t acting by f 
on Ep'q . HE is stable, this action is unique up to tensoring with a scalar 
(resulting in a translation of the indices (p, q)). The associated action on 
End(E) is uniquely determined, corresponding to a structure of system of 
Hodge bundles End(ls) = @pEnd(E)p,~'p. Then C* acts on the Dolbeault 

cohomology Hl{X, End(£)), combining the action on End(£') with the ac­
tion on the complex of differentials, by a character tm on Q^ . This ac­
tion corresponds to the Hodge decomposition of H\X, End(£)): / acts on 
Hp,q(X, End(-E)) by tp . The resulting action on the Zariski tangent space 
Hl(X, End(is)) is the same as the action induced by the action of C* on 
MHi s (it takes a bit of thought to check this). At a point E in a fixed point 
set VQ we have the decomposition 

TEM =T(SatE)®T{Va)®T{TatE) 

into the tangent space of the fiber of Sa over the point E , the tangent space 
to the fixed point set, and the tangent space to the fiber of Ta over E. 

Licensed to Mass Inst of Tech.  Prepared on Thu Oct 20 21:28:28 EDT 2016for download from IP 18.9.61.112.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



THE UBIQUITY OF VARIATIONS OF HODGE STRUCTURE 339 

Applying our discussion of the action on the Zariski tangent space, we have 

p>0 

T(Va) = H^(X,End(E)), 

and 
T(Ta>E) = QH&-'(X,End(E)). 

p<0 

When X is a curve, we have the additional information that, if E is stable, 
0 2 

HDol(End(E)) and HDol(End(E)) are one dimensional, with Hodge types 
(0, 0) and (1,1) respectively. The first is the statement that the only endo-
morphisms of E are the constants, and the second follows by duality. Thus 
we may calculate the dimension of H^0l~

p(X, End(i?)) by Riemann-Roch. 
That space is the first hypercohomology 

Hl(End(E)p'~p ->End(E)p~lA~p ®Ql
x). 

0 2 

If p ^ 0 , 1 , then the H and H are zero, so the dimension is equal 
to the holomorphic Euler characteristic of End(E)p,~p minus that of 
End(E)p~lA~p ®Q.lx. If p = 0 or p = 1 then the H° or H2 is one-
dimensional, so the dimension is equal to the difference in Euler character­
istics, plus one. 

4. An analogue of the theorem of Culler and Shalen 

The work described in this section was done in January 1990. It arose 
from discussions with D. Toledo, J. Carlson, W. Goldman, and K. Corlette. 
The theorem is motivated by work of M. Gromov [14], and M. Green and R. 
Lazarsfeld [11] J. Carlson and D. Toledo have already proved a local version 
of the theorem [3]. 

Recently it was pointed out to me that the idea that a harmonic map might 
factor through a Riemann surface appeared some time ago in the work of 
Jost and Yau [18]. Also I have received a preprint by Zuo which treats some 
similar questions in the classification of two-dimensional representations [29]. 

Culler and Shalen proved that if a group admits a nontrivial family of 
irreducible representations into Sl(2), then it has an amalgamation decom­
position described by a "graph of groups" [6]. We will prove a geometric 
analogue of this theorem for fundamental groups of smooth projective vari­
eties. The idea is that the geometric version of a graph is a Riemann surface 
possibly with a simple orbifold structure (an "orbicurve"—see below). We 
will show that if the fundamental group of a smooth projective variety X 
admits a nonrigid representation into Sl(2), then there is an algebraic map 
from X to an orbicurve and a representation of the fundamental group of the 
orbicurve into PS1(2), which when pulled back to X agrees with the original 
representation. We avoid complications having to do with the center {±1} 
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of Sl(2) by assuming that the original representation is lifted into Sl(2), and 
by constructing the representation for the orbicurve, and comparing the two, 
in PS1(2). 

We will adopt a simple definition of orbifold structure for a Riemann 
surface, in lieu of a more abstract formulation in terms of algebraic stacks. 
Define an orbicurve (Y, n) to be a smooth projective algebraic curve Y 
with some marked points si e Y and positive integers n{ > 2 attached to 
the marked points. 

Let yi denote elements in nx(Y - {st}) which represent loops around the 
points st respectively. The fundamental group nx(Y, n) is defined to be the 
quotient of nx(Y - {s^) obtained by imposing the relations y"' = 1. 

If X is an algebraic variety, we can define the notion of an algebraic 
map from X to an orbicurve ( 7 , n). This consists of an algebraic map 
<fi: X —• Y , with the following lifting property. If t is a coordinate function 
on a neighborhood of si with a simple zero at s(, then the pullback function 
<f>*(t) should have an n(th root, locally on X in the analytic topology. In 
other words, for any x e X such that <j>{x) = St, there exists a function 
u defined on a neighborhood of x such that u"1 = 4>*(i). Geometrically 
this means that the fiber <j>~ (st) is a union of divisors each with multiplicity 
divisible by nt. Given an algebraic map 4>: X —• (T, n), we obtain a map 
of fundamental groups 0+: nx(X) -* nx(Y, n). 

THEOREM 10. Suppose X is a smooth projective variety, and p: nx(X) —• 
Sl(2, C) is a representation. Suppose that the image of p is Zariski-dense. 
Then there are two possibilities: 

(a) The representation p is rigid, in other words any nearby representation 
is conjugate to it; or 

(b) There exists an orbicurve (Y, n), an algebraic map </>: X —> (Y, n), 
and a representation T: nx(Y, n) —• PS1(2, C), such that p is the pullback 
of x via (j), i.e., p{y) = T0#(y) in PS1(2,C). 

REMARK. In case (a), p comes from a variation of Hodge structure, by 
Corollary 4. In fact, p is a subquotient of a Q-variation of Hodge structure 
[25]. 

REMARK. If the coefficients of p are algebraic integers, then in case (a) p 
will come from a family of abelian varieties. In this case one can interpret the 
conclusion as saying there is either a map to an orbicurve, or to the moduli 
space of abelian varieties (rather to a Shimura subvariety). This situation is 
closely related to that treated by Mok [21]. 

In the case when the image of p is discrete and cocompact, the theorem 
follows from results of Siu [27] and Carlson and Toledo [3]. For nondiscrete 
representations, their arguments give a local statement like (b). The tech­
niques we will use to obtain a global map to a curve are more akin to the 
arguments of Green and Lazarsfeld. The rigidity result (a) follows from a 
result of Corlette [5]. 
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The following corollary may alternatively be deduced from the arguments 
of Siu and Carlson and Toledo. 

COROLLARY 11. Suppose X is a smooth projective variety, and F is a free 
group on two or more generators. If nx(X) —• F —• 1 is a surjection, then 
there exists a map </>: X -+ Y to a Riemann surface and a factorization 

nx(X) - 71,(7) - F. 

PROOF. There is a nontrivial faithful family of Zariski-dense representa­
tions from F into PS1(2, C). Such may be obtained, for example, by uni-
formizing punctured Riemann surfaces. Also, since F is torsion free, any 
representation of the fundamental group of an orbicurve comes from a rep­
resentation of the fundamental group of the underlying curve; the equation 
yn = 1 implies that p(y) = 1 in F. 

REMARK. If Xs is a degenerating family of varieties, with the central fiber 
XQ given by a union of smooth divisors with normal crossings and multi­
plicities one, then we can form a simplicial complex representing the com­
binatorics of the intersections of components of the central fiber. Vertices 
correspond to components, edges to intersections, and faces to multiple inter­
sections. There is a map from Xs to XQ , which further projects in homotopy 
to a map to the simplicial complex. This map will have a lifting property for 
paths, so we obtain a surjection from nx(Xs) to the fundamental group of 
the simplicial complex. If the fundamental group of the simplicial complex 
has any nonabelian free quotients (for example if the simplicial complex is a 
graph with two or more cycles), then we can apply the corollary to find a map 
from Xs to a family of Riemann surfaces Ys (possibly after modifying the 
central fiber). So, in a sense, one does not have complete freedom to make 
fundamental groups by considering smooth varieties degenerating to some 
arrangement. 

PROOF OF THEOREM 10. We will suppose that condition (a) does not hold, 
i.e., p is not rigid. There is a nontrivial algebraic family of representations, 
parametrized by an algebraic curve Spec(i?) (which we may assume is defined 
over a finitely generated field t c C ) , 

/>: 7 ^ ) ^ 8 1 ( 2 , * ) , 

such that p is obtained by evaluating at a closed point. Let T denote the 
image of p. Let T denote the image of T in PS1(2, R). The original 
representation p, projected into PS1(2, C), factors through T, so it suffices 
to construct a factorization 

7 r 1 (X) - ,7 r 1 (F ,n ) - , r . 

Let r\ denote a generic geometric point of Speci? <8>k C. The image of 

pn:nx(X) ^PSl(29C) 

is also equal to T. The moduli space MRep of representations of nx(X) 
is an affine algebraic variety (the "character variety" [6]), so the image of 
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the algebraic curve of representations must go to infinity, in other words it 
is not contained in a compact subset. We may choose a family of generic 
geometric points r\ going to infinity, and let pt = pn (the projection into 

i ' 'it 

PS1(2, C)). These are representations of nx(X) which go to infinity in the 
character variety; which factor through T and in fact have image equal to 
T, and which are liftable to Sl(2, C). 

Consider the Higgs bundles Et associated to the representations pt. 
Choosing liftings to Sl(2, C), we may assume that the Et are Higgs bundles 
with det(2sr) = @x and Tr(0) = 0. Let at denote the determinant of 9t. 
It is a section of the second symmetric power of the cotangent bundle, and 
where nonzero locally looks like the square of a one-form ±at. If we think 
of (Et, dt) as a sheaf ^ on T*X, then the support of Wt is set-theoretically 
the graph of the multivalued section ±at: X —> T*X. 

LEMMA 12. For large values oft, at is not identically zero. 

PROOF. If at = 0 for all values of / , then the supports of <̂  would re­
main at the zero section. In particular, they would remain in a compact subset 
of T*X . By the discussion of §2, the points ^ would remain in a compact 
subset of the moduli space of Higgs bundles. Since the correspondence be­
tween Higgs bundles and representations gives a topological homeomorphism 
of moduli spaces, the representations pt would remain in a compact subset 
of the character variety, contradicting our choice. 

We may find t such that at does not vanish, and such that the image of 
the representation pt is equal to T. We may also assume that pt is Zariski-
dense. Replacing p by this pt, we have reduced to the following situation: 
p is a representation nx(X) —• PS1(2) whose image is the quotient T of 
nx(X). The image is Zariski-dense. The corresponding Higgs bundle (E, 0) 
has the property that det(0) = a ^ 0, whereas Tr(0) = 0. The eigenvalues 
of 0 are locally the square roots ±a. We have to show that p factors 
through the fundamental group of an orbicurve. 

Let U C X denote the set of points where a ^ 0. Over U, the mul­
tivalued one-form ±a determines an unramified double covering W —> U , 

2 2 

with a single valued one-form a such that a = a . For brevity we will 
replace the notation a simply by a . W might be disconnected, indicating 
that a is defined on U . In this case, some parts of the following discussion 
are unnecessary. 

By taking the normalization of the coordinate ring of X in the coordinate 
ring of W and then resolving singularities [15], we may assume that there 
is a smooth variety y/: Z —> X such that W is an open set in Z . Let 
E = y/*E. The support of the corresponding coherent sheaf If on T*Z 
is, over W, a union of two connected components. Therefore it is a union 
of two irreducible components everywhere, and we may choose one of these 
components as the graph of a section. This gives an extension to a one-form 
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a o n Z , which is an eigenvalue of 6 . Note that W is exactly the open set of 
Z where a does not vanish. The eigenspaces of a and -a are subsheaves 
L c E and M c E respectively. Over the open set W, these subsheaves 
are line bundles preserved by 6 , and in fact upon restricting to W there is 
a decomposition of Higgs bundles 

W = W ® IV 

Use the one-form a to map Z into an Albanese variety. Fix a base point 
P e Z . Recall that 

Alb(Z) = H°(Z, £ll
z)*/H{(Z, Z) 

is an abelian variety, the Albanese variety of Z . There is a map V: Z -» 
Alb(Z) sending P to the origin, defined by integration: 

¥(z)(>j) = jf\. 

The one-form a gives a linear function on the tangent space of Alb(Z). Let 
D c Alb(Z) be the sum of all the abelian subvarieties B' C Alb(Z) such that 
a\B> = 0. Let A be the quotient abelian variety A = Alb(Z)/B . Projection 
gives a map XV\ Z -^ A. 

LEMMA 13. Let D = Z -W. Then the image of D under the map Z —• A 
is a finite set of points. 

PROOF. Look at an irreducible component of D, which we may think of as 
the image of a smooth variety C —• Z [15]. The one-form a is zero on D, 
so it pulls back to zero on C . Therefore the image of Alb(C) —> Alb(Z) is a 
subabelian variety on which a vanishes. It is contained in B . The image of 
C in Alb(Z) is contained in a translate of Alb(C) (the translation depends 
on how far C is from the base point P ) . Therefore the image of C in 
A = Alb(Z)/P is one point. This proves the lemma. 

We would like to pass down to U c X rather than W c Z . If W 
is a disjoint union of two copies of U then this is easy and the next few 
paragraphs may be ignored. Otherwise, W is a Galois covering of U with 
Galois group {1, a} . The involution a takes a to a*a = -a. 

LEMMA 14. If r] is a one-form on Z such that rj\B = 0, then a*t] = -r\. 

PROOF. We may assume that the resolution of singularities Z is com­
patible with the action of a. (This may be accomplished by resolving the 
singularities of the ramification locus in X before taking the double cover; 
then there are at most conical singularities, and these can be resolved with 
one more blow up, which is canonical.) Therefore the space of one-forms 
decomposes into +1 and - 1 eigenvalues of a. The rational homology 
decomposes similarly, so the Albanese variety is isogenous to a product, 

Alb(Z) ~ Alb+(Z) x Alb"(AT). 
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Now a is a - 1 eigenvalue. In particular, the subvariety Alb+(X) is con­
tained in B. Thus if rj vanishes on B, it must come from a form on 
Alb~~(Z), so it is a - 1 eigenvalue. 

The map *F: W —• A takes a to the involution - 1 , up to a translation. 
Let ( = *¥(a(P))-*¥(P). 

ra(P) ra(z) fa{P) rz 
V(a(z))(r,)= / 1 /+/ n= / > / + / o*n 

JP Ja(P) JP JP 

and <j*(ri) = -rj for one-forms 7/ which are pulled back from A, so 

We can define an involution x : A -> A by x(a) — £ - a. Then ^(^(z)) = 
xx¥{z), so in particular the map ^.W-^A descends to a map 

F: U->A/{l,x}. 

This gives a rational map from X to A/{I, T } , SO there is a birational 
transform X —• X , isomorphic over [/, and a map F: X -+ A/{ 1, x} . We 
may assume that Z maps to X . The inverse image in Z of X - U is 
equal to the complement D — Z -W. Lemma 13 implies that the image 
F(X - U) c A/{I, T} is contained in a finite set. 

By Lemma 12, the dimension of F(X) is greater than or equal to one. 
There are two cases. 

Case 1: dimF(X) > 2 . We will obtain a contradiction. The basic idea is 
that from the point of view of the Lefschetz theorems, the complement of U 
has effectively codimension 2 (because of Lemma 13). There is a projective 
curve in U whose fundamental group surjects onto nx(X). Restricting to 
this curve or a double cover, the Higgs bundle decomposes, contradicting the 
assumed Zariski density. 

We make this argument more precise. Let « = dim(X) and d = dim{F(X)) 
> 2. By making a further birational modification we may assume that there 
is a projection X —• P"~ , such that the map 

X -• Pn~d x F(X) 

is generically finite. This further modification might modify U, but this is 
not a problem since we are obtaining a contradiction. Let Y be the nor­
malization of P"~ x F(X) in the function field of X. Then we have a 
birational map X —• Y . The image of X - U maps to a finite set in F(X), 
so it has codimension > 2 in Y. The image of the exceptional locus also 
has codimension > 2. Therefore we may choose an open set V c Y, the 
complement of a set of codimension > 2, which is identified with its in­
verse image F in I , and such that V c U. By the Lefschetz theorems 
[20], we may choose a smooth closed curve H in Y such that H c V and 
7t{(H) —• n{(V) —• 1 is a surjection. In particular, / / may be identified with 
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a smooth projective curve contained in U. The fundamental group of U 
surjects onto the fundamental group of X, so we have 

nx{H)^nx(X)-*\. 

On the other hand, there is a double or single cover K —> H, induced by 
the cover W —• U, such that E\K = LK® MK is a direct sum of Higgs 
bundles. Since K is a projective curve, this implies that p\n (A:) has image 

contained in a torus in PG1(2). Let T7 c T be the image of nx{K). It is 
either equal to T, or has index two. Let T be the Zariski closure of T' in 
PS1(2). Double covers are always Galois, so T normalizes Y1, and hence T 
is contained in the normalizer of T. If T is nontrivial, this normalizer is 
a proper subgroup, contradicting Zariski density of T. On the other hand, 
if T is trivial, then T7 is trivial and T has order two, again contradicting 
Zariski density. So Case 1, that the dimension of the image of F is greater 
than or equal to two, cannot happen. 

Case 2: dim(F(X)) = 1. We will obtain a map to an orbicurve, and fac­
torization of the representation. The image of F is a curve Yf C A/{I, T} . 
The image of X - U is contained in a finite set in Yf. Take the Stein factor­
ization, and note that he image of the first map in the factorization is normal. 
We get a smooth projective curve Y and a map / : X —• Y. 

LEMMA 15. This factors through the original variety f: X —• Y. 

PROOF. Let E denote the exceptional locus of the map g: X —• X. The 
exceptional locus is contained in the complement of U, so it is contained in 
finitely many fibers of / . Choose a point y e Y, and a local coordinate t at 
y . This pulls back to a function t on X, defined on a neighborhood of the 
component Ef of the exceptional set which maps to y . This neighborhood 
is the inverse image of an open set in I , so / gives a section of gj9~. 
However, since X is normal, gJ@-% = #x, in other words t descends to a 
function on X. These descended functions provide coordinates for a map 
from X to Y. 

So we finally have a map f:X—> Y to a Riemann surface. There is 
a finite set S c Y which contains the set of points where the map is not 
smooth, and the image of X - U. Let Y° = Y - S and V = f~l(Y°). V 
is an open subset of U. For y e Y°, let Cy = f~\y). It is a connected 
smooth projective variety contained in U. We have the fibration sequence 
in homotopy: 

l-+nl(Cy)^nl{V)^nl(Y')^l. 

Let A be the single or double cover of C induced by W —• U . Then the 
Higgs bundle E, restricted to A , decomposes as a direct sum of rank one 
Higgs bundles, 

E\A =L\A ®M\A . 
Ay Ay Ay 
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Therefore the representation p maps nx(A) into a torus in PS1(2). Let G 
denote the Zariski closure of the image of nx(C ) in PS1(2). Since nx(A ) 
has index at most two in nx(C' ) , G is a proper subgroup of PS1(2) (see the 
argument at the end of Case 1). 

If G is not trivial, then its normalizer N(G) is a proper subgroup of 
PS1(2) (PS1(2) contains no normal subgroups). But since nx(C) is normal 
in nl(V)9 the image of nx(V) is contained in the normalizer N(G) of the 
Zariski closure of nx(C ) . Since the fundamental group of the open set 
V surjects onto the fundamental group of X, this contradicts the assumed 
Zariski density of the image of nx(X). 

Therefore G is trivial, so p restricts to a trivial representation on nx(Cy). 

In other words, p factors through a representation x: nx(Y ) —• PS1(2). 
Finally, we have to show that Y can be given an orbifold structure such that 
f:X->(Y,n), and such that x factors through nx(Y, n). We will use the 
fact that the representation p = f*x of nx(V) factors through nx(X). 

Choose s e S and let y denote a path which goes around s. By inter­
secting generic hyperplane sections of X, we may find a curve H c X such 
that H —• Y is a ramified cover. Let n0 denote the ramification index over 
the point s . There is a loop ju in nx(Hn V) which projects to yn°. On the 
other hand, the loop // becomes trivial in nx(X). Since f*x factors through 
a representation of nx(X), it follows that f*x(ju) = T(yn°) = 1. Thus x(y) 
has finite order. 

Let n = n(s) be the order of z(y). Let A* c A denote punctured and un-
punctured neighborhoods of y , and let Q* c Q denote the inverse images in 
X. The representation T is a finite representation of the cyclic fundamental 
group of A*. Let A denote the ramified covering of degree n corresponding 
to this representation. Let Q denote the pull-back to X. The fact that f*r 
factors through a representation of nx(X) means that the covering Q* has 
an extension Qx to an unramified covering of Q . If t is a local coordinate 
on A, then we can extract an n th root on A: there is a function u (local 
coordinate also) on A such that un = t. Pulling back, we obtain a function 
f~\u) on Q. In particular, the function f~l(u) is bounded on Q*. Since 
Qx is obtained from Q* by adding a compact divisor, we can extend f~l(u) 
to a holomorphic function ux on Qx , such that u[ = f~l(t). Since Qx is 
unramified over the neighborhood Q of the fiber / ~ (s), the function ux 

provides the local analytic root extraction sought in the definition of a map 
to an orbicurve. 

Give Y the structure of orbicurve by assigning the numbers n(s) to the 
points s e S. The map / : X —• Y becomes a map from X to the orbicurve 
( 7 , n). Furthermore, since n(s) is the order of x{ys), the representation 

T: 7r1(r°)-.PSl(2,C) 
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factors through 

T: 7r1(y,n)-^PSl(2,C). 

The pullback f*x is representation of n{(X) in PS1(2, C). On the other 
hand, there is the open set V c X such that / : V —• Y°, and such that 
f*x = p as representations of nx(V). Since the fundamental group of V 
surjects to the fundamental group of X, p = f*x as representations of 
7t{(X). This proves Theorem 10. 
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