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1 Introduction

The motivation for deformation quantization comes from the problem of passing
from classical to quantum mechanics. Let’s recapitulate some standard formal-
izations of these two situations:

Definition 1.1. A classical system is a finite-dimensional Poisson manifold
M (the phase space of the system). The algebra of observables of the system
(e.g. position, momentum) is the algebra C∞(M) of complex-valued smooth
functions on M , and the time evolution of observables is governed by the
Poisson bracket, which is an antisymmetric bilinear form

{, } : C∞(M)⊗ C∞(M)→ C∞(M)

satisfying a distributive law with respect to the product.

Definition 1.2. A quantum system is a Hilbert space H (the space of states of
the system). The algebra of observables of the system is the algebra O(H) of
(nice) linear operators on H, and the time evolution of observables is governed
by the commutator bracket [, ] of operators.

Here’s a question of obvious physical interest: given a classical system, can
we define a corresponding quantum system in such a way that the physical
meaning of the observables is preserved?

The first thing one might try is to assign quantum observables to classical
observables in such a way that the Poisson bracket maps to the commutator.
Unfortunately, it was shown in the early 20th century that this isn’t possible.

There’s a fundamental physical quantity in quantum mechanics called Planck’s
constant and denoted ~. One can regard ~ as a formal parameter and observe
that observables in quantum mechanics tend to commute “mod ~”:

[S, T ] = C1(S, T )~ + C2(S, T )~2 + · · ·

The idea of deformation quantization is to identify the Poisson bracket with C1,
the “linear part” of the commutator.
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Definition 1.3. Let M be a Poisson manifold. A deformation quantization of
M is an associative product

? : C∞(M)[[~]]⊗ C∞(M)[[~]]→ C∞(M)[[~]]

such that, writing

f ? g = B0(f, g) +B1(f, g)~ +B2(f, g)~2 · · ·

we have B0(f, g) = fg and B1(f, g) = {f, g}.

(Then C1(f, g) = 2B1(f, g), by antisymmetry.)

Remark 1.4. Really, there’s a groupoid of deformation quantizations of M
whose morphisms are reparametrizations by continuous automorphisms of C[[~]]
which preserve B0 and B1, but we’ll elide this here.

Remark 1.5. There’s a sneaky red herring here: the reason we’re allowed
to stipulate B1 = {f, g} rather than some arbitrary bilinear form such that
B1(f, g) − B1(g, f) = 2{f, g} is that any formal deformation of C∞(M) to
an associative algebra can be reparametrized into a deformation where B1 is
anticommutative.

Kontsevich constructed a functorial deformation quantization for Poisson
manifolds. As we’ll see, this apparently innocuous algebraic problem leads to
some surprisingly deep mathematics. In this talk, we’ll only discuss Kontsevich’s
result when the underlying manifold is Euclidean space Rn, because that’s hard
enough.

2 Deformation theory

We’re deforming today, so let’s recall a few concepts from deformation theory.

Definition 2.1. A formal moduli problem is a functor from the category Art of
augmented finite-dimensional local commutative C-algebras to groupoids that
looks like it’s supposed to be representable by some kind of stack; I won’t go
into the details of the definition here.

Example 2.2. Fix an associative algebra A. Define a functor DefA : Art →
Gpd by letting DefA(a) be the groupoid whose objects are associative a-

algebras Ã together with isomorphisms

φ : Ã⊗a C
∼→ A

and whose morphisms are isomorphisms of a-algebras commuting with φ.

Most examples of formal moduli problems I’ve come across are of pretty
much this flavor. As you can see, this one in particular has a rather direct
bearing on the problem at hand.
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You’ll often hear the phrase “deformation theory is controlled by differential
graded Lie algebras” uttered by the literati. I find this infuriatingly vague,
but it’s a shorthand for a very concrete truth that can be thought of as the
fundamental theorem of deformation theory. So let’s set up the somewhat weird
presentation of DGLAs that’s required to tell this story. I don’t really know how
to motivate this, so I’ll just tell it like it is.

Let g be a graded vector space. We’re going to shift it up by 1 and take the
dual - now we have g∨[−1]. Let’s take the free complete commutative algebra
on this,

Tg := C[[g∨[−1]].

We’ll consider vector fields on the derived formal scheme Spf Tg, which should
be thought of as a formal neighborhood of the origin in g[1]. In particular, we’ll
consider vector fields D of degree -1 (why not?) which are zero at the origin.

What is such a vector field? Algebraically, it’s a continuous derivation

Q̂ : Tg → Tg[−1]

which is compatible with the augmentation. We’re looking for equations in g,
and Tg is built from g∨, so let’s just take the C-linear dual of everything; the

dual T∨g of Tg is the cofree coalgebra on g[1], and Q̂ corresponds to a coderivation

Q : T∨g → T∨g [1].

For this, it suffices to give a linear map

P : T∨g → g[2],

maybe satisfying some conditions, because then we can extend by the co-Leibniz
rule. This, in turn, is the data of linear maps

P1 : g[1]→ g[2], P2 : (g[1]⊗2)Σ2 → g[2], P3 : (g[1]⊗3)Σ3 → g[2], · · ·

Observe that P1 is a degree 1 endomorphism of g, and P2 is a degree 0 antisym-
metric product on g.

Finally, assume that Q commutes with itself:

[Q,Q] = 0.

This condition is of course trivial for vector fields of even degree, but Q is odd
so anything can happen. At the level of the Pi, this shows that P 2

1 = 0, so that
P1 is a differential on g, and that P2 satisfies a Jacobi identity; the coderivation
condition implies that P1 is a derivation with respect to P2. We’ve arrived at
the following unconvential definition:

Definition 2.3. A differential graded Lie algebra is a graded vector space g
together with a degree 1, self-commuting vector field on Tg such that Pi = 0 for
i > 2.
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Emboldened by our success, we go further:

Definition 2.4. An L∞-algebra is a graded vector space g together with a
degree 1, self-commuting vector field.

This definition behaves the way you’d expect it to. For instance, once you
have P3, you no longer have the Jacobi identity strictly, but P3 provides a cell
whose boundary is the Jacobi identity. I get very confused by this, because it
seems to be putting the differential - which I think of as part of the fabric of the
underlying object - on the same footing as the Lie bracket, which is a structure
on the object. But that’s life.

So what’s the point? This definition makes it clear how to associate a formal
scheme, and hence a formal moduli problem, to a DGLA of L∞-algebra - we
just take the formal schemes of zeroes of the vector field D. (It’s actually a
formal stack, once we take into account certain automorphisms of Tg.)

Theorem 2.5. (Pridham, Lurie, ...) Once everything is sufficiently derived,
this assignment gives an equivalence of categories between L∞-algebras and
formal moduli problems.

We’re going to start writing down lots of formulae. For the sake of sanity,
we’ll suppress most signs.

Example 2.6. Let A be an associative ring and consider the cohomological
Hochschild complex C∗(A,A). We have

Cn(A,A) = Hom(A⊗n, A)

and if f ∈ Cn(A,A), then

df(a1⊗· · ·⊗an+1) = a1f(a2⊗· · ·⊗an+1)+

n∑
i=1

f(a1⊗· · ·⊗aiai+1⊗· · · an+1)+f(a1⊗· · ·⊗an)an+1.

We can make C∗(A,A) into a DGLA: if f ∈ Cn(A,A) and g ∈ Cm(A,A),
we define f ◦ g ∈ Cn+m−1(A,A) by

(f ◦ g)(a1 ⊗ · · · ⊗ an+m−1) =

n∑
i=1

f(a1 ⊗ · · · g(ai ⊗ · · · ⊗ ai+m−1)⊗ · · · an+m−1).

and
[f, g] = f ◦ g − g ◦ f.

This DGLA gives rise to the formal scheme of deformations of A as an associative
algebra.

Example 2.7. Let R be a commutative ring and let PV ∗(R) be the algebra
of polyvector fields on Spec R. We have a Lie bracket, the Schouten-Nijenhuis
bracket, on PV ∗(R) given by

[v1 ∧ · · · ∧ vn, w1 ∧ · · · ∧ wm] =
∑
i,j

([vi, wj ] ∧ {everything else}).
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With the zero differential, this becomes a DGLA which gives rise to the formal
scheme of deformations of the zero Poisson bracket on R (so the a-points are
Poisson structures on R⊗ a which vanish on the special fiber).

At this point the strategy becomes clear. If we can give an equivalence
of L∞-algebras between C∗(R,R) and PV ∗(R), we’ll have shown that they
represent the same formal moduli problem: the problem of deforming the zero
Poisson bracket to a Poisson bracket on R[[~]]1 is the same as the problem of
giving an associative multiplication on R[[~]] agreeing with the multiplication
on R to zeroth order. But the former deformation problem has a canonical
solution: if {, } is a Poisson bracket on R, then ~{, } is a deformation of the zero
Poisson bracket. We just have to check that this correspondence can be made
compatible with linear terms, and we’ll be home safe.

This program will be carried out in two steps. First we’ll show that C∗(R,R)
is an algebra over the E2-operad in a way compatible with the Lie bracket; this is
the vaunted Deligne conjecture. By the formality of the E2-operad discussed by
Umut last week, we’ll have shown that C∗(R,R) is equivalent to its cohomology
algebra HH∗(R,R) as an E2-algebra.

By the Hochschild-Kostant-Rosenberg theorem, HH∗(R,R) is isomorphic
to PV ∗(R) as a complex. The final step is to lift this to an equivalence of E2-
algebras. This step only works when R ∼= R[x1, · · · , xn] is a polynomial algebra,
and we probably won’t say much about it, because Kontsevich is pretty vague
about how it works.

3 The Deligne conjecture

There are now as many proofs of the Deligne conjecture as there are stars in the
sky. Our sketch will loosely follow the paper “A solution of Deligne’s conjecture”
by McClure and Smith, which has the bonus of giving a cool combinatorial model
for the E2 operad.

Definition 3.1. An operad with multiplication is an operad O together with a
map of operads A∞ → O.

This just means that O has some distinguished binary operation µ which is
coherently associative and unital. Observe that if O is an operad with multi-
plication, the spaces O(n) fit together into a cosimplicial space: if ν ∈ O(n),
then

diν = µ ◦i ν ∈ O(n+ 1)

and
siν = 1 ◦i ν ∈ O(n− 1),

where ◦i just means “insert in the ith place”.

1I know I said we can only evaluate formal moduli problems on finite local Artin algebras,
but profinite local Artin algebras are totally allowed too.
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Example 3.2. Let A be an associative ring. Then the endomorphism op-
erad End(A) is an operad with multiplication given by the multiplication on A.
Moreover, the totalization of the associated cosimplicial abelian group is just
the Hochschild complex:

Tot (End(A)•) ' C∗(A,A).

The strategy here is to define an operad in posets whose nerve acts on the
totalization of any operad with multiplication, then to show that this operad
models E2.

Definition 3.3. The set W (n) of words of length n is the set of expressions
built from the symbols {1, · · · , n} by formal cup products and compositions.

For instance, 1(5(3), 2, 4∪6) is a word of length 6 - call it f . Words of length
n form an operad W as n varies by a kind of substitution best illustrated by
example: suppose I want to substitute the word g = 1(2 ∪ 3) for the letter 5
in the word above. Then I reindex the letters of g so that they begin with 5,
adjoin the arguments of g to the arguments of 5 in f2, and reindex the remaining
letters of f to get

f ◦5 g = 1(5(6 ∪ 7, 3), 2, 4 ∪ 8).

And it’s a symmetric operad, of course, because we can permute the letters of
any word.

There’s a nicely Hochschild-looking partial order on each W (n) which is
generated by the following requirements:

• 1(2, 3, · · · , n) > 2 ∪ 1(3, · · · , n);

• For each i with 2 ≤ i ≤ n− 1, we have

1(2, 3, · · · , n) > 1(2, · · · , i ∪ i+ 1, · · · , n);

• 1(2, 3, · · · , n) > 1(2, · · · , n− 1) ∪ n;

• The partial orderings are compatible with the operad structure.

With this partial ordering, we claim that the nerve of the operad of posets W
is equivalent to the E2-operad. We won’t make the slightest attempt to prove
this, but we will draw a picture of W (2):

1(2)

1 ∪ 2 2 ∪ 1

2(1)

2There’s a possible problem here concerning the ordering of the arguments of 5. McClure
and Smith use a fattened-up version of the operad that allows them to use all possible shuffles
between the old arguments and the new arguments.
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This is a circle, just as expected.
The final order of business is to describe how W acts on the totalization of

an operad with multiplication O. Recall that a point of Tot O(•) is a list

(· · · , a2 ∈ O(2), a1 ∈ O(1), a0 ∈ O(0))

along with all kinds of paths and cells, such as a path in O(1) between a1 and
µ(−, a0).

Suppose we have three such points, (ai), (bi) and (ci), and we wish to feed
them into an element of W (3), such as 2(1, 3). The only thing to do is to
pick an operation of the right valency from each list; in this example, we
get b2(a0, c0). Note futher that the paths and cells recorded by the points
of Tot O(•) give the paths and cells between operations required by the poset
structure of W ; for instance, we have a path between (1(2))((ai), (bi)) = a1(b0)
and (1 ∪ 2)((ai), (bi)) = µ(a0, b0).
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