
8. Akhil Mathew, 11/04

This is about the rational version of trace methods.

Let A be a simplicial ring, not necessarily commutative (this is the same as an E1-algebra
over Z that is connective). We can associate to this K(A), the connective algebraic K-
theory spectrum, and we care about it s homotopy groups. This is hard. Recall we also had
THH(A), a connective spectrum and also a Z-module. This is A∧A∧A A. I’m thinking of A
as something over Q.

In previous talks, we’ve seen that there’s a natural map of spectra K(A)→ THH(A), There’s
an S1-action on THH(A), which comes from the fact that you can realize it as the realization

of a cyclic spectrum. So we get a lift K(A) → THH(A)hS
1
. The theorem for today is that

this is locally constant when you tensor with Q.

Definition 8.1. Write HC−(A) for the negative cyclic homology of A; this is defined to be

HH(A)hS
1
. (Here HH(A) is the Z-version.)

Theorem 8.2 (Goodwillie). Suppose A → A′ is a morphism of simplicial rings such that
π0A � π0A

′ is surjective, and the kernel is nilpotent. Then there is a homotopy pullback
square:

K(A)⊗Q //

��

HC−(A⊗Q)

��

K(A′)⊗Q // HC−(A′ ⊗Q)

In relative K-theory, this says fiber(K(A)→ K(A′))⊗Q ' fiber(HC−(A)→ HC(A′))⊗Q.

This is not Goodwillie’s original statement; it’s weird because HC− is not a connective
spectrum.

8.1. Norm maps. Recall that for a spectrum X with G-action (for finite G), there is a
norm map XhG → XhG. This is an equivalence if G acts freely, i.e. X = G+ ∧ Y . If X is

acted on by S1, you can do the same thing, but the norm map you get is ΣXhS1 → XhS1
. If

X = S1
+ ∧ Y for some Y , then this dimension-shifting norm is an equivalence.

(If X = S1
+, then XhS1 = S0 but X = ΣF (S1

+, S
0), so you definitely need a shift in dimen-

sion. . . )

Part of Goodwillie’s theorem is that the right square in

K(A)⊗Q //

��

HC−(A⊗Q)

��

ΣHC+(A⊗Q) = HH(A⊗Q)hS1

��

oo

K(A′)⊗Q // HC−(A′ ⊗Q) ΣHC+(A′ ⊗Q)oo

is also a homotopy pullback.
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Example 8.3. Consider A = Q ⊕ Q[1]. I want to compare K(A) to K(Q). Start by

computing HC−(A). This is over Q, so HC−(A) = HH(A)hS
1
. A is the free E∞-ring on X1

(on S1), and HH(A) = FreeE∞(S1
+ ∧ S1) = FreeE∞(x1, y2), where the homotopy groups are

A(x1)⊗Q[y2]. (Tensoring with S1 commutes with any free construction.)

Let S1 act on a spectrum X. Then b : π∗X → π∗+1X satisfies b2 = ηb, where η be the Hopf
element. But we’re working rationally, so b is a differential. b(x1) = y2 so b(x1y

k
2 ) = yk+1

2 .

Lemma 8.4. Let S1 acts on X where X is rational. Suppose b is exact on π∗X. Then

XhS1 → X induces an injection on π∗ with image ker(b). Also, ΣXhS1 ' XhS1
.

We’ll take relative Hochschild homology, so we’re ignoring the part in degree zero. The
conclusion is that

π∗ fiber(HH(A)→ HH(Q))hS
1

=

{
Q if ∗ > 0 is even

0 otherwise.

Question 8.5. How do we compute K(A)⊗Q?

Answer: if X is a connective spectrum, then

π∗X ⊗Q = π∗(Ω
∞X)⊗Q Hur→ H∗(Ω

∞X,Q)

is an inclusion and the image are the primitives. So to take the K-groups, take Ω∞, take the
homology, and compute primitives.

We have a model for Ω∞K(A); ignoring the connected components, this is BGL∞(A)+. We
care about the homology, so we can ignore the +. So we’re looking for the primitives in
H∗(BGL∞(A);Q).

A is not a discrete ring, so let me remind you what BGL∞(A) is. A has a nontrivial π0 and
a π1. Then π1BGL∞(A) = GL∞(Q) and π2BGL∞(A) = M∞(Q), and there are no other
homotopy groups. Moreover the action of π1 on π2 via the adjoint action. We want the
homology of this.

First, we’re really interested in the relative K-theory w.r.t. Q. We’re ignoring things that
come from H∗GL∞(Q). We could look at BGL∞(A) → BGL∞(Q) that kills π2. There’s a
fiber sequence K(M∞(Q))→ BGL∞(A)→ BGL∞(Q). We know the homology of the fiber,
so try to do this using the Serre spectral sequence:

Hi(GL∞(Q); Symj M∞(Q)) =⇒ Hi+2j(BGL∞(A)).

Goodwillie has a preceding paper where he proves that the trace map M∞(Q)toQ induces an
isomorphism on H∗(GL∞). So if you take j = 1, you’re getting a contribution corresponding
to H∗(GL∞(Q)), which we’re pretending we know. In Goodwillie’s Relative K-theory paper,
he finds a way of dealing with Symj .

8.2. Another way of thinking about cyclic homology. The idea is to replace group
homology with Lie algebra homology, and you get something that looks like cyclic homology.
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Let A be a discrete Q-algebra. Instead of the general linear group, consider the general
linear Lie algebra gln(A), and gl∞(A) = lim−→ gln(A). The object of study is H∗(gl∞(A);Q)

(Lie algebra homology); this is a Hopf algebra, because there are maps gln(A) ⊕ glm(A) →
gln+m(A). But we just need the coalgebra structure.

Definition 8.6. Define additive K-theory to be K+(A) = PrimC∗(gl∞(A);Q).

Theorem 8.7 (Loday-Quillen-Tsygan). There is a natural identification K+(A)≥1 ' ΣHC(A).

K+ works better than K; it commutes with geometric realization.

Now we restate the Goodwillie theorem in the fase where A is a Q-algebra. Let I ⊂ A be a
nilpotent ideal. Then there is a natural identification

fiber(K(A)→ K(A/I))⊗Q ' fiber(K+(A)→ K+(A/I)).

In general K(A) and K+(A) aren’t directly related, but they are related in the relative case
when you quotient by a nilpotent ideal. Similarly, in general you can’t expect H∗GL∞ to be
related to H∗gl∞.

The goal is to find some way of comparing H∗(GL∞(A);Q) with H∗(gl∞(A);Q). There’s
a theory of Malcev and Quillen (that you can read about in the appendix to Goodwillie’s
relative K-theory paper) that says that there is an equivalence of categories between nilpotent
groups which are uniquely divisible, and nilpotent Lie algebras over Q. This comes from Lie
theory. There’s a canonical way to associate a nilpotent group to a nilpotent Lie algebra
over R, given by using the Baker-Campbell-Hausdorff formula (and things converge because
of nilpotence). We’re going to send a nilpotent Lie algebra g to the grouplike elements in
(Ug)∧ (completion w.r.t. the augmentation ideal). (In the other direction, take primitives.)

Suppose V is a representation of a uniquely Q-divisible nilpotent group. Say that V is
nilpotent if the Q[G]-action on V annihilates a power of the augmentation ideal. In this case,
H∗(G;V ) ' H∗(g;V ).

New setting: A is a ring, I ⊂ A is a nilpotent ideal, and we want to know K+(A). So we’re
looking at

(8.1) PrimC∗(GL∞(A);Q)→ PrimC()GL∞(A/I);Q)

which relates to K. On the other hand, we’re looking at

(8.2) PrimC∗(gl∞(A);Q)→ Prim(C∗(gl∞(A/I);Q)).

which relates to K+. You can’t compare them directly, because things aren’t nilpotent.

Idea: let S be a finite subset of N, and give it a total ordering. Consider ΓS ⊂ GLS(A)
(matrices which are congruent modulo I to a strictly upper-triangular matrix). I is nilpotent,
so this is a nilpotent group. This is some system of subgroups of GL∞(A).

Let X1 be the fiber of (8.1), and X2 the fiber of (8.2). You can construct a Lie algebra version
of ΓS , where you impose the same condition, but strictly upper triangular means zeros on
the diagonal, instead of 1’s.
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Fact 8.8.

X1 = lim−→PrimC∗(ΓS ;Q)

X2 = lim−→PrimC∗(Γ
Lie
S ;Q)

The theorem is that there is an equivalence of these.

4


	8. Akhil Mathew, 11/04
	8.1. Norm maps
	8.2. Another way of thinking about cyclic homology


