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The following notes are expanded from a talk I gave in the graduate topology
seminar "Juvitop" at MIT. The main reference is [Nek94]. L-functions form a cen-
tral topic in algebraic number theory, and their special values at integer arguments
contain rich arithmetic information. Beilinson’s conjectures offer a framework to
understand the somewhat mysterious transcendental nature of these special val-
ues. The central concept is that of a regulator map from a K-theoretical object
to a Hodge-theorical object. Please inform me of corrections and comments at
yihang@math.harvard.edu.

Notation: If f(s) is a meromorphic function near s = s0 ∈ C, we denote by
f∗(s0) the leading coefficient of the Laurent expansion of f at s0. We call this the
special value of f at s0.

Date: 10/24/2015.
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1. Classical motivation

1.1. Some classical identities. The following identities are instances of special
values of L-functions:
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Here (1.1) and (1.2) are due to Euler, (1.3) is due to Leibniz, and (1.4) is due to
Dedekind (1839).

1.2. Riemann’s zeta function. In modern number theory, L-functions play a
central role. Roughly speaking, they are Dirichlet series

∑
ann

−s whose coefficients
an contain arithmetic information. The first example is Riemann’s zeta function:

ζ(s) =
∑
n≥1

1

ns
=
∏
p

(1− p−s)−1.

The infinite sum and product converge absolutely for <s > 1. It is classical (due
to Riemann) that ζ(s) has a meromorphic extension to C, with a simple pole only
at s = 1, and it has a functional equation relating its values at s and 1− s, s ∈ C.

We are interested in the special values (i.e. values at integer arguments) of ζ(s).
Euler shows the following formula at positive even integers:

ζ(2m) =
(−1)m+1(2π)2mB2m

2(2m)!
, m ∈ Z>0,(1.5)

where B2m ∈ Q is the Bernoulli number given by the following expansion

t(et − 1)−1 =
∑
k≥0

Bk
tk

k!
.

In particular, we get (1.1) and (1.2).
On one hand, the rational numbers B2m contain interesting global information

about the arithmetic of cyclotomic fields. (c.f. Kummer’s Theorem and Theorem
of Herbrand-Ribet. This circle of ideas developed into what is known as Iwasawa
theory.) On the other hand, ζ(2m) has π2m as its "transcendental part", which we
would like to understand in general.

Using the functional equation, we easily get

ζ(1− 2m) =
B2m

2m
,m ∈ Z>0.

For example, we have ζ(−1) = −1/12, which can be suggestively written as

1 + 2 + 3 + · · · = −1/12.

Historically, Euler observed this identity using formal operations.
The rest cases are the positive odd integers and the negative even integers. They

are of course again related by the functional equation. The nature of these zeta
values remain very mysterious. It is known that infinitely many of ζ(2n+1), n ∈ Z>0
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are irrational (Rivoal 2000), and ζ(3) is irrational (Apéry 1979). But it is unknown,
for instance, whether ζ(5) is irrational.

At the even negative integers, the functional equation shows that ζ has simple
zeros there, and the leading Taylor coefficients ζ∗(−2m) are easily related to ζ(2m+
1).

The beauty of the Beilinson-type conjectures is that they offer a recipe for under-
standing these zeta values as elements of R×/Q×, not only at positive even integers
but also at positive odd integers, in terms of algebraic K-theory.

1.3. Dedekind zeta functions. Generalizing Riemann’s zeta function, there are
Dedekind zeta functions ζF (s) associated to any number field F . By definition,

ζF (s) =
∑
a

|OF /a|−s =
∏
p

(1− |OF /p|−s)−1,

where a runs through the ideals of OF and p runs through the non-zero prime ideals
of OF . The infinite series and the infinite product converge absolutely for <s > 1.
Like Riemann’s zeta function, the Dedekind ζF (s) has meromorphic extension to C
with a simple pole only at s = 1, and there is a functional equation relating s and
1− s.

Example 1.3.1. We have

ζQ(i)(s) = ζ(s)L(s, χQ(i)) = ζ(s)(1− 3−s + 5−s − 7−s + · · · ).

ζQ(
√

2)(s) = ζ(s)L(s, χQ(
√

2)) = ζ(s)(1−3−s−5−s+7−s+9−s−11−s−13−s+ · · · ).

To illustrate once more that the special values of L-functions contain interesting
global arithmetic information, we have the following

Theorem (Class number formula). The residue of ζF (s) at s = 1 is given by

2r1(2π)r2

|dK |1/2 w(K)
h(F )R(F ).

Here as well as in what follows we set r1 and r2 to be the number of real and
complex places of F , respectively. (i.e. real embeddings and complex embeddings up
to complex conjugation). We define

h(F ) = |Pic(OF )| ,

R(F ) =
∣∣∣det(log |ui|j)1≤i,j≤r1+r2−1

∣∣∣ ,
where {ui}1≤i≤r1+r2−1 is a Z-basis for O×F / tors ∼= Zr1+r2−1, and |·|j is the absolute
value induced by the j-th archimedean place. (We are omitting one archimedean
place.)

As examples, identity (1.3) corresponds to the fact that Z[
√
−1] is PID, and

(1.4) corresponds to Z[
√

2] being PID.
We see that once again the special values of ζF contain global information such

as h(F ). This is remarkable because ζF is defined by simply multiplying together
local information: we have the terms |OF /p| which can be thought of as a kind of
mod p point counting.
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For this talk the most interesting term is R(F ), called the regulator of F . It
determines the "transcendental part" of the zeta value. For example, for F =
Q(
√

2), we have

u = 1 +
√

2, R(F ) = |det(log |u|)| = log(1 +
√

2).

This is the same log(1 +
√

2), so to speak, as in (1.4).
We can regard R(F ) as follows. The maps log |·|j form a regulator map

r : O×F → Rr1+r2−1.(1.6)

The domain of r is O×F ∼= K1(OF ), and it is known to be of rank r1 + r2 − 1
(Dirichlet’s Unit Theorem). The map r is of full rank, and R(F ) is equal to the
covolume of r.

1.4. Higher regulators. One might ask whether the higher K groups Ki(OF ) can
be related to other values of ζF .

Theorem (Borel, 1972). Let m ∈ Z>1. Set

dm :=

{
r2, m even
r1 + r2, m odd

.

Then
dimQK2m−1(OF )⊗Q = dm.

We remind the reader that for i ∈ Z≥3, we have Ki(OF ) ∼= Ki(F ). Here the
significance of the number dm is that it is also equal to the order of vanishing of
ζF (s) at s = 1−m. By the functional equation, ζ∗F (1−m) is related to ζ(m).

Lichtenbaum asked the following question: For m ∈ Z>1, can we define a reg-
ulator map rm : K2m−1(OF ) → Rdm , generalizing (1.6), in such a way that the
covolume of rm is related to ζ∗F (1−m) (or ζF (m)) ?

This project was accomplished by Borel in the 1970’s. Since it is known that
Borel’s approach is equivalent to Beilinson’s more general approach, we will not
discuss the former here.

2. Motivic L-functions

Number fields are zero dimensional arithmetic objects. We move forward to
higher dimensions. Conjecturally, one can associate L-functions to motives, the
latter being objects of a conjectural nature that should capture cohomological in-
formation from algebraic geometry in a universal way. The resulting L-functions
are commonly referred to as motivic L-functions. These represent the rough idea
of "L-functions of a geometric origin", as opposed to other interesting L-functions
of an analytic origin, namely the automorphic L-functions. Of course Langlands’
program conjectures that the motivic L-functions form a well characterized subset
of the automorphic L-functions.

2.1. Realizations of motives. We will consider motives of the form

M = hi(X)(n)(2.1)

where X is a smooth projective variety over Q. We say M is a pure motive of
weight

w = i− 2n.



BEILINSON’S CONJECTURES (TALK NOTES) 5

Here the symbol (n) is called the n-th Tate twist, c.f. Example 2.1.3 below. The
reader can think of (2.1) as a formal symbol. What is important are the various
realizations of M .

• Betti realization: ConsiderMB = Hi(X(C),Q(n)). Here the cohomology is
taken with respect to the analytic topology on X(C), and Q(n) := (2πi)nQ.
The space MB is a Q-Hodge structure pure of weight w, equipped with a
Q-linear involution F∞ on MB , called the infinite Frobenius, given by the
action of the complex conjugation simultaneously onX(C) andQ(n). These
structures are compatible in the sense that the action of F∞ ⊗ c (where c
is the complex conjugation in Gal(C/R)) on MB ⊗QC preserves the Hodge
decomposition

MB ⊗ C =
⊕

p+q=w

Hp,q.

• l-adic realization. Let l be a prime number. ConsiderMl = Hi
ét(XQ̄,Ql)(n).

This is a representation of Gal(Q̄/Q) on a finite dimensional Ql-vector
space, pure of weight w. The twist (n) means that the Galois representation
is twisted by the n-th power of the l-adic cyclotomic character of Gal(Q̄/Q).

• De Rham realization: Consider MdR = Hi(X,Ω·)(n). This is a finite di-
mensional Q-vector space with a decreasing filtration. Here Hi(X,Ω·) is
the hypercohomology of the complex

Ω· : OX
d−→ Ω1

X/Q
d−→ Ω2

X/Q
d−→ · · ·

of sheaves w.r.t. the Zariski topology of X. The Tate twist (n) here simply
means shifting the indexing of the filtration, so that the filtration on MdR

is given by
F kMdR := Hi(X,Ω·≥k+n),

where Ω·≥j is the complex obtained from Ω· by replacing the terms ΩiX/Q
by zero for i < j.

There are canonical comparison isomorphisms:
• Betti to de Rham:

I : MB ⊗Q C ∼−→MdR ⊗Q C.

Under this isomorphism, (F kMdR)⊗C ⊂MdR⊗C corresponds to
⊕

p≥kH
p,q ⊂

MB . The action φ∞⊗c on LHS corresponds to the action of id⊗c on RHS.
• Betti to l-adic:

Il : MB ⊗Q Ql
∼−→Ml.

This implicitly depends on the choice of an embedding Q̄→ C. With such
a choice, we can view complex conjugation as an element c′ ∈ Gal(Q̄/Q).
Then the action of φ∞⊗ id on LHS corresponds to the action of c′ on RHS,
through the action of Gal(Q̄/Q) on RHS.

We will think of the data (MB ,Ml,MdR, I, Il) as associated to M .

Definition 2.1.1. For any subring A of R, define MH+
A to be the category of

mixed A-Hodge structures together with an A-linear involution φ∞ such that φ∞
preserves the weight filtration and φ∞ ⊗ c preserves the hodge filtration. Let

MB :=MH+
Q
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and
M∞ :=MH+

R .

Tensoring with R naturally induces a functorMB →M∞, denoted by · ⊗ R

Definition 2.1.2. Let l be a prime number. Define Ml to be the category of
continuous representations of Gal(Q̄/Q) over finite dimensional Ql-vector spaces.

Thus we have MB ∈MB and Ml ∈Ml.

Example 2.1.3. We can apply the usual linear algebra operations to get new motives,
e.g. tensor products, direct sums, taking duals. These can be understood simply
on the level of the realizations. For instance, the so-called Tate motive

M = Q(1) = h0(SpecQ)(1)

is the dual of h2(P1
Q). It is a pure motive of weight −2. We have

Ml = (lim←−
k

µlk(Q̄))⊗Zl
Ql

MB = (2πi)Q,
where the Hodge decomposition is the pure Hodge type (−1,−1) and φ∞ acts as
−1. We have

MdR = Q
with F−1 = Q, F 0 = 0. The Betti to de Rham comparison isomorphism is as
follows. We think of MB ⊂ MB ⊗ C as (2πi)Q ⊂ C. Then under the comparison
isomorphism, MdR is just the standard copy of Q included in C. In other words,
there is a way to choose a Q-basis 1B for MB and 1dR for MdR, such that under
the comparison isomorphism

I : MB ⊗ C ∼−→MdR ⊗ C,
1B ⊗ 1 goes to 1dR ⊗ 2πi.

In general we have the relation

hi(X)(n) = hi(X)⊗Q(1)⊗n.

2.2. L-functions. Consider a motive M as in (2.1). Let p be a prime number.
Choosing an embedding ιp : Q̄ ↪→ Q̄p, we get the inertia and decomposition sub-
groups at p:

Ip ⊂ Dp ⊂ Gal(Q̄/Q).

The quotient Dp/Ip ∼= Gal(F̄p/Fp) is topologically generated by the arithmetic
Frobenius φ : x 7→ xp. Fix another prime number l 6= p. Consider

P lp(M,T ) := det(1− φ−1T,M
Ip
l ).

This can be checked to be independent of the choice of ιp.

Conjecture 2.2.1. P lp(M,T ) is a polynomial in T with coefficients in Z, and
independent of l.

This conjecture is known when X has good reduction at p, which means that
there is a smooth projective model X of X over Zp. In this case Ip acts trivially
on Ml and the conjecture follows from the proof of Weil’s conjectures by Deligne.
In particular, P lp(M,T ) is independent of l for almost all p. In the following we will
assume this conjecture and write

Pp(M,T ) := P lp(M,T ).
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If p is a prime at which X is not known to be of good reduction, we will say that
p is a bad prime.

Let Lp(M, s) = Pp(M,p−s)−1, s ∈ C. The L-function associated to M is defined
as

L(M, s) =
∏
p

Lp(M, s).(2.2)

There are conjectures about the factors Lp at bad primes p (purity conjectures) that
will guarantee that the above infinite product converges absolutely and without
zeros for <s > 1 + w/2.

Example 2.2.2. L(Q(1), s) = ζ(s+ 1).

Example 2.2.3. L-functions of zero dimensional motives recover the classical no-
tion of Artin L-functions (including Dedekind zeta functions discussed above and
Dirichlet L-functions). For instance for F a number field we have

ζF (s) = L(h0(SpecF )(0), s).

Generalizing properties of the Riemann and Dedekind zeta functions, the follow-
ing conjecture about motivic L-functions is standard.

Conjecture 2.2.4. (1) L(M, s) has a meromorphic extension to C, holomor-
phic outside 1 + w/2. If w is odd, then L(M, s) is entire.

(2) L(M, s) satisfies a functional equation (of a precise form) relating s and
w + 1− s.

We can think of the stripe

w/2 < <s < 1 + w/2

as the critical stripe of L(M, s). Its central line <s = (1 + w)/2 is the line of
symmetry for the functional equation. To the right of the critical stripe, the Euler
product (2.2) converges absolutely without zeros (conjecturally). We will call this
region the convergence region. We call s = (1 + w)/2 the central point and s =
1+w/2 the near central point. Thus the near central point is conjecturally the only
possible pole for L(M, s).

Conjecture 2.2.4 is regarded as far from approachable in general. For instance,
for elliptic curves E over Q the conjecture for L(h1(E), s) is known only after the
famous Modularity Theorem, which implies Fermat’s Last Theorem. As for now
the only known cases of the conjecture, apart from zero dimensional L-functions,
are related to either abelian varieties or Shimura varieties.

3. Beilinson’s conjectures on special values of L-functions

Consider a motive M = hi(X)(n) as in (2.1). The integers i, n, w = i − 2n will
appear in the following discussion.

3.1. Elementary reduction. We would like to study the behavior of L(M, s) at
an integer s ∈ Z. Using the elementary relation

Lp(M, s+m) = Lp(M(m), s),m ∈ Z,
where M(m) := M ⊗ Q(1)⊗m = hi(X)(n + m), we reduce to studying s = 0.
Moreover, using the conjectural functional equation we reduce to the case where
s = 0 lies at or to the right of the central point (1 + w)/2. i.e. w < 0.
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When w = −1, s = 0 is the central point. When w = −2, s = 0 is the near central
point. When w < −2, s = 0 lies in the convergence region. We remark that in this
last case L(M, 0) can in principle be computed using (2.2), without assuming any
conjectures, although the uniqueness of the factors Lp at bad p might be unknown.
In contrast, in the w = −1 case one has to prove meromorphic extension of L(M, s)
before making sense of the central value L∗(M, 0).

3.2. The regulator map. Assume from now on w < 0. Beilinson defines a regu-
lator map of the form

r : C1 → C2,(3.1)

where
C1 = Hi+1

M (X,Q(n))Z

C2 = Hi+1
M∞(XR, n).

Detailed discussion of C1, C2, as well as r is postponed to later sections. Here let
me just briefly indicate the nature of these objects.
C1 is a Q-vector space, conjecturally of finite dimension. Here H∗M(X,Q(n)) is

the so-called motivic cohomology of X with coefficients in Q(n). We remind the
reader that the theory of motivic cohomology (with Z(n) coefficient, so to speak,)
is already in some sense established thanks to the work of Voevodsky et. al. (To
be discussed briefly in §4.4.) Nevertheless, it was expected long before this that the
Q(n) coefficient motivic cohomology should be more concretely given in terms of
algebraic K-theory as follows (meaning of the notation will be explained in §5)

Hp
M(X,Q(q)) = (K2q−p(X)⊗Q)(q).(3.2)

Beilinson took (3.2) as definition when he considered the regulator map in the
1980’s. It is now known that Voevodsky’s theory of motivic cohomology indeed
gives the correct Q(n) coefficient cohomology as (3.2). The extra subscript Z in the
definition of C1 indicates a modification that has something to do with choosing a
model of X over Z.
C2 is called the absolute Hodge cohomology of X (with R(n) coefficient), and is

a much more elementary object. It is a finite dimensional R-vector space which can
be defined and computed elementarily in terms ofMB⊗R ∈M∞.Moreover, the Q-
structure on MB together with the Q-structure on MdR (and the knowledge of the
comparison isomorphism I : MB ⊗C→MdR ⊗C) equips the top exterior product
space detC2 of C2 with a Q-structure. In case C2 is zero as an R-vector space,
this Q-structure means that C2 still remembers an element of R×/Q×, denoted by
c+(M), which will be referred to as Deligne’s period if w ≤ −2. When w = −1,
there is also a definition of Deligne’s period c+(M) ∈ R×/Q×, which has little to
do with C2. (e.g. C2 could be non-zero.) For the definition of Deligne’s period see
Definition 4.3.1. More details about C2 will be presented in §4.3.

The regulator map r is Q-linear and induces an R-linear map C1 ⊗ R→ C2.

3.3. The conjectures.

Conjecture 3.3.1 (Beilinson). Assume w < −2. Then
(1) r ⊗ R : C1 ⊗Q R→ C2 is an isomorphism.
(2) With respect to the Q-structures on detC1 and detC2, we view det r as an

element of R×/Q×. We have 0 6= L(M, 0) ≡ det r mod Q×.
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Let’s make several remarks.

Remark 3.3.2. If C2 = 0 (and w < −2), then the conjecture predicts that C1 = 0
and

L(M, 0) ≡ c+(M) mod Q×.
This case is often referred to as critical. In this case the introduction of c+(M) and
the conjecture about the L-value was due to Deligne. For example, for the Riemann
zeta function, the positive even integers are critical and the positive odd integers
≥ 3 are non-critical. c.f. Example 4.3.3

Remark 3.3.3. The functional equation translates between s = 0 and s = w+1, the
latter lying to the left of the central point. The conjectural form of the functional
equation and the conjectural behavior of the L-function would imply that dimR C2

is equal to the order of vanishing of L(M, s) at s = w + 1.

Beilinson also formulates the conjecture for w = −1 and w = −2. For w = −2,
s = 0 is the near central point and may be a pole of L(M, s). The order of the pole
is related to algebraic cycles on X by Tate’s conjecture. The relevant space is

Nn−1(X) := CHn−1(X)/CHn−1(X)0,

where the Chow group CHj(X) is the group of codimension j algebraic cycles with
Q coefficients on X modulo rational equivalence and CHj(X)0 is the subgroup of
homologically trivial cycles. Tate conjectures that

− ords=0 L(M, s) = dimQN
n−1.

The regulator map needed in this case is built from r as above together with the
cycle class map

r′ : Nn−1(X)→ H2n−1
M∞ (XR, n) = C2.

Conjecture 3.3.4 (Beilinson). Assume w = −2. Then
(1) (r ⊕ r′)⊗ R : C1 ⊗ R⊕Nn−1(X)⊗ R→ C2 is an isomorphism.
(2) L∗(M, 0) ≡ det(r ⊕ r′) mod Q×.

For w = −1, we are dealing with the central point s = 0. In this case we have
Deligne’s period c+(M) defined, (c.f. Definition 4.3.1 and Remark 4.3.2), which
has little to do with C2.

Conjecture 3.3.5 (Beilinson). Assume w = −1. Then
(1) There is a non-degenerate height pairing

h : CHn(X)0 ⊗ CHdimX+1−n(X)0 → R
(2) ords=0 L(M, s) = dimQ CHn(X)0.
(3) L∗(M, 0) ≡ c+(M) det(h) mod Q×.

There are also ways to formulate the conjectures uniformly for all w < 0. More-
over, the conjecture of Bloch-Kato about special values of L-functions supplement
Beilinson’s conjectures in that they determine the L-values completely, rather than
just up to Q×. c.f. [Kin03].

3.4. Known cases. The conjectures for Dedekind zeta functions and Dirichlet L-
functions are proved by Borel and Beilinson. In higher dimensions only partial
results are known, all related to elliptic curves or Shimura varieties. c.f. [Nek94]
§8.
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4. Motivic cohomology and absolute cohomologies

The object H∗M∞(X,n) is an example of an absolute cohomology theory, and
the motivic cohomology H∗M(X,Q(n)) is conjecturally the universal construction of
absolute cohomology. Thus the regulator map (3.1) can be regarded as a realization
map. We discuss the formal aspects of this philosophy as well as give an explicit
description of H∗M∞(X,n) in this section.

4.1. Two philosophies. Compare the following two philosophies:
(1) Motives. (Grothendieck.) Let V be a suitable subcategory of the category

of algebraic varieties over a field k. We want to construct a universal
cohomology theory on V. In particular we want to construct a categoryM
of motives, as the target of that universal cohomology theory. For X ∈ V,
we can take its universal cohomology and get objects hi(X)(n) ofM. (Here
(n) is the n-th Tate twist.) Any reasonable concrete cohomology theory will
factor through a realization functor fromM to the target category of that
cohomology.

(2) Motivic complexes. (Beilinson.) We want to do better than Philosophy
(1). For X ∈ V, we would like to produce an object RΓ(X,n) of the derived
category D(M) of M, supposing the latter makes sense, for each n ∈ Z.
The cohomology of RΓ(X,n) will recover hi(X)(n) ∈ M as before. We
think of X 7→ RΓ(X,n) as the universal way of forming cochain complexes.

Here is one important thing that Philosophy (2) allows us to do. The categoryM
should be a tensor category and contains the unit object 1. Let A := EndM(1).
Consider the functor

ΓM := HomM(1, ·) :M→ A−mod.
Take its derived functor

RΓM : D(M)→ D+(A−mod).

For X ∈ V, we can consider the "motivic cochain complex"

RΓM(X,n) := RΓM(RΓ(X,n)) ∈ D+(A−mod).

We denote its cohomology by

Hi
M(X,n) := Hi(RΓM(X,n)) ∈ A−mod.(4.1)

Depending on whether we worked with the Z-linear or Q-linear version ofM, (so
that A = Z orQ resp.) we also denoteHi

M(X,n) byHi
M(X,Z(n)) orHi

M(X,Q(n)),
respectively. These are the so-called motivic cohomology of X. By construction,
there should be a spectral sequence

ExtpM(1, Hq(RΓ(X,n))) = ExtpM(1, hq(X)(n))⇒ Hp+q
M (X,n).(4.2)

We will refer to this spectral sequence as the geometric to absolute spectral sequence.
Beilinson speculates that it degenerates for smooth projective X. Moreover, Beilin-
son expects that ExtiM vanishes for i greater than the Kronecker dimension of the
ground field k (= transcendence degree over Q +1 if char k = 0 or transcendence
degree over Fp if char k = p.) In particular if k = Q and X is smooth projective
over Q, we would have a short exact sequence

0→ Ext1
M(1, hi(X)(n))→ Hi+1

M (X,n)→ HomM(1, hi+1(X)(n))→ 0,(4.3)

where the third group vanishes when w = 1− 2n ≤ −2 for weight reasons.
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N.B. Beilinson knows that for the above speculations about the motivic com-
plexes and motivic cohmology to work, the category M has to be some category
of mixed motives (i.e. allowing non-smooth varieties), whose associated category
of semi-simple objects would be the category of pure motives. This is in sharp
contrast to Grothendieck’s philosophy about motives, where one is totally allowed
to restrict attention to smooth projective varieties and consider only pure motives.
Unfortunately, unlike the situation with pure motives, where a proof of the stan-
dard conjectures about algebraic cycles would automatically lead to a good theory,
as for now people have not found a good framework to formulate the theory of
mixed motives.1

4.2. Realizations: absolute cohomology theories. We can project the previ-
ous story under a realization functor. Let g be the name of a reasonable (e.g. Weil)
cohomology theory, e.g. H∗g = H∗B , H

∗
dR, etc. LetMg be the target category of g.

We would have a realization functor M → Mg. Thus we replace the conjectural
functors

V 3 X 7→ hi(X)(n) ∈M
by the concrete functors:

V 3 X 7→ Hi
g(X)(n) ∈Mg.

Then we may seek to carry out a construction that would be the realization of
Philosophy (2) w.r.t. to the realizationM→Mg. That is to say, we would like to
construct, for each X ∈ V, an object

RΓ(X,n) ∈ D(Mg)

in some natural way, such that its cohomology recovers Hi
g(X)(n) ∈Mg. Suppose

this is done, then we can proceed analogously as before. We define

Ag := EndMg (1),

ΓMg := HomMg (1, ·) :Mg → Ag −mod,
and define the corresponding absolute cochain complex and absolute cohomology by

RΓMg
(X,n) := RΓMg

(RΓ(X,n)) ∈ Db(Ag −mod)

Hi
Mg

(X,n) := Hi(RΓMg (X,n)) ∈ Ag −mod.
We also call the original cohomology theory H∗g (X)(n) a geometric cohomology.
The motivation for this terminology will be clear from Example 4.2.1 below. Thus
one might say that Philosophy (1) of motives is seeking the universal geometric
cohomology, whereas the motivic cohomology produced by Philosophy (2) is the
universal absolute cohomology.

We would get realization maps for absolute cohomologies:

Hi
M(X,n)→ Hi

Mg
(X,n).(4.4)

Beilinson’s regulator map (3.1) can be understood in terms of (4.4). We also have
the realization of the geometric to absolute spectral sequence (4.2):

ExtpMg
(1, Hq

g (X)(n))⇒ Hp+q
Mg

(X,n).

One should expect this to degenerate for nice X (e.g. smooth and projective).

1Please correct me if I am wrong.
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Example 4.2.1. We illustrate the ideas with the Λ = Z/NZ coefficient étale coho-
mology

X 7→ H∗ét(Xksep ,Z/NZ),

where N ∈ Z is coprime to char k. Here the target categoryMg is the category of
Λ[Gal(ksep/k)]-modules. The terminology "geometric cohomology" is justified in
this case, as H∗ét(Xksep ,Λ) is the cohomology of the geometric fiber Xksep . We have

1 = Λ

Ag = Λ

ΓMg
(·) = (·)Gal(ksep/k).

The object RΓ(X,n) ∈ D(Mg) is Rf∗(Λ), where f : X → Spec k is the structure
map of X. The corresponding absolute cohomology is

Hi
Mg

(X,n) = Hi
ét(X,Λ(n)).

The geometric to absolute spectral sequence in this case is the Hochschild-Serre
spectral sequence.

4.3. The absolute Hodge cohomology. The Betti version of the above story is
worked out by Beilinson. We consider the category V of separated schemes of finite
type over R. We will use the R-coefficient Betti cohomology, so the target category
isM∞ defined in Definition 2.1.1. For each X ∈ V, Beilinson constructs

RΓ(X,n) ∈ Db(M∞),

whose cohomology objects are H∗B(X(C),R(n)) ∈ M∞. Proceeding as before, we
obtain the absolute Hodge cohomology

H∗M∞(X,n).

N.B. One could also work with MH+
Q or MH+

Z instead of M∞ = MH+
R and

obtain the corresponding absolute cohomology groups, abbreviated asH∗H(X,Q(n))
and H∗H(X,Z(n)) respectively. We have

H∗H(X,Q(n)) = H∗H(X,Z(n))⊗Z Q
but

H∗M∞(X,n) 6= H∗H(X,Q(n))⊗Q R
in general.

The geometric to absolute spectral sequence

ExtpM∞(1, Hq
B(X(C),R(n)))⇒ Hp+q

M∞(X,n)

degenerates when X is smooth and projective. Moreover, for N ∈M∞, we have

ExtiM∞(1, N) =


W0N

+ ∩ F 0NC , i = 0

W0N
+\W0N

dR/F 0(W0N
dR) , i = 1

0 , i ≥ 2

,(4.5)

where
N+ := Nφ∞

NdR := (NC)φ∞⊗c.

Therefore, for smooth and projective X over R, denoting
N := Hi

B(X(C),R(n)),
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N ′ := Hi+1
B (X(C),R(n)),

w := i− 2n,

we have a short exact sequence analogous to (4.3):

0→ Ext1
M∞(1, N)→ Hi+1

M∞(X,n)→ HomM∞(1, N ′)→ 0.(4.6)

Note that N and N ′ are pure of weight w and w + 1 respectively, so using 4.5 and
the vanishing of the first or the third group above for weight reasons, we have

Hi+1
M∞(X,n) =


Ext1(1, N) = N+\NdR/F 0(NdR) , w ≤ −2

Hom(1, N ′) = (N ′)+ ∩ F 0(N ′C) , w = −1

0 , w ≥ 0.

Now we consider a motiveM = hi(X)(n) as in (2.1) with X projective smooth over
Q. Assume w ≤ −2. Then the object C2 considered in the regulator map (3.1) is
given by

C2 = Hi+1
M∞(XR, n) = (MB ⊗ R)+\(MB ⊗ R)dR/F 0((MB ⊗ R)dR).

But the Betti to de Rham comparison isomorphism induces an isomorphism

(MB ⊗ R)dR ∼−→MdR ⊗ R,

and F 0 of LHS corresponds to the subspace (F 0MdR)⊗ R of RHS. We rewrite

C2 = (M+
B ⊗ R)\MdR ⊗ R/(F 0MdR)⊗ R.

This exhibits a Q structure on detC2 that comes from the Q structures on M+
B ,

MdR, and F 0MdR.
At this point we give the definition of Deligne’s period c+(M) of M .

Definition 4.3.1. Suppose the weight w of M is negative. Consider the following
map induced from the Betti to de Rham comparison

αM : M+
B ⊗ R→MdR ⊗ R/(F 0MdR)⊗ R.

αM . It is always injective. We callM critical if αM is an isomorphism. In this case
we define Deligne’s period c+(M) ∈ R×/Q× to be the determinant of αM , w.r.t.
the Q structures on M+

B , MdR, and F 0MdR.

Remark 4.3.2. When w ≤ −2, from the above discussion we see that M is critical
if and only if C2 = 0. When this is the case c+(M) coincides with the Q structure
on detC2. (c.f. the discussion about C2 in §3.2.) When w = −1, for weight reason
M is critical. In this case c+(M) appears in Conjecture 3.3.5.

Example 4.3.3. M = h0(SpecQ)(n) = Q(n), n ∈ Z≥1. In this case C2 is the target
of the regulator map that is conjectured to be related to ζ(n). For the realizations
and Betti to de Rham comparison isomorphism for M see Example 2.1.3 (with
things raised to the n-th tensor power). We have C2 = R when n is odd and
C2 = 0 when n is even. We have thus seen that M is critical (c.f. Remark 3.3.2)
exactly when n is even. In this case the Q structure on detC2, namely Deligne’s
period c+(M), is easily seen to be πn ∈ R×/Q×, as it is the determinant of the
comparison isomorphism

M+
B ⊗ R = MB ⊗ R ∼−→MdR ⊗ R.

The conjecture ζ(n) ≡ c+(M) mod Q× follows from Euler’s formula (1.5).
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4.4. Digression: Motivic cohomology partially achieved. We digress to record
the current status of motivic cohomology for the reader’s information. This sub-
section is not needed in the subsequent and may be skipped.

Beilinson conjectures that the Z(n) coefficient motivic cohomology H∗M(X,Z(n))
could be computed as the hypercohomology of a complex of Zariski sheaves on X.
More precisely, he conjectures

Conjecture 4.4.1. Let k be a field. For each n ≥ 0 there exists a complex of
sheaves Z(n), on the Zariski site V of smooth quasi-projective varieties over k,
satisfying the following.

(1) Z(0) = Z (concentrated in degree zero), Z(1) = O∗[−1].
(2) Hn(SpecF,Z(n)) is the n-th Milnor K-group of F for any field F of finite

type over k.
(3) H2n(X,Z(n)) = CHn(X) (Chow group with Z coefficients) for any X ∈ V.
(4) Hp(X,Z(n)) = 0, p < 0, X ∈ V.
(5) For X ∈ V, there is a E2-spectral sequence

Hp−q(X,Z(−q))⇒ K−p−q(X).

(6) Comparison with mod l absolute étale cohomology. More precisely, we have

Z(n)⊗L Z/lZ ∼= τ≤nRπ∗µ
⊗n
l ,

for l a prime different from char k, where π is the forgetful functor from the
étale site to the Zariski site and τ≤n is the usual truncation functor on the
derived category.

(7) For X ∈ V, we have Hi(X,Z(n)) ⊗ Q ∼= Hi
M(X,Q(n)), where the RHS is

defined by (3.2).

Suslin-Voevodsky have constructed a candidate for Z(n), and thanks to the work
of many people, most notably Voevodsky, all the properties (1) - (7) except (4) have
been verified. For a discussion of this see [Fri08] §6.3.

5. Construction of the regulator map

In this section we sketch the construction of the regulator map (3.1). Let M =
hi(X)(n) as in (2.1), with w = i− 2n < 0.

We have already seen the definition and a concrete description of C2 = Hi+1
M∞(X,n)

in §4.3. Let’s describe C1. By definition, we have

C1 = Hi+1
M (X,Q(n))Z,

where
Hi+1
M (X,Q(n)) := [K2n−(i+1)(X)⊗Q](n).

Here the superscript (n) means the weight n subspace for the Adams operators.
Let me briefly recall what this means. For a ring A, there is a family of operations{
ψk
}
k≥1

acting on each K-group Kj(A) that can be defined for example using
Quillen’s plus construction. On K0, each ψk is a group homomorphism and sends
[P ] to [P⊗k] for each projective R module P of rank one. We define

[Kj(A)⊗Q](m) :=
{
x ∈ Kj(A)⊗Q|ψk(x) = kmx, ∀k ≥ 1

}
.

Then it is a fact that we have the decomposition

Kj(A)⊗Q =
⊕
m≥0

[Kj(A)⊗Q](m).
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Now for our variety X over Q, there is the so called Jouanolou’s trick that finds an
affine scheme SpecA together with a morphism π : SpecA→ X that makes SpecA
a vector bundle over X. The morphism π induces isomorphism on the K-groups,
and we define the weight subspaces of Kj(X)⊗Q in terms of those for A.

Now we explain the subscript Z in the definition of C1. That it is well defined is
only conjectural. Choose a proper flat model X over Z for X, which always exists,
and define

[Kj(X)⊗Q]
(m)
Z := im(K ′j(X )⊗Q),

where image means first mapping into Kj(X) ⊗ Q and then project to the weight
m subspace. Beilinson conjectures that this definition is independent of the choice
of X . In fact, two choices of proper regular models X would always give rise to
the same result, but unfortunately such models are not known to exist in general.
Conjecturally, we would also have

Hi+1
M (X,Q(n)) = Hi+1

M (X,Q(n))Z

for n > max(i,dimX) + 1.

Example 5.0.2. H1
M(SpecQ,Q(1))Z = 0, H1

M(SpecQ,Q(1)) = Q× ⊗Z Q.

The essential ingredient of the construction of the regulator map (3.1) is the
construction of the (higher) Chern class maps: For Y a scheme over R satisfying
certain conditions, we construct maps

cj,m : Kj(Y )→ H2m−j
M∞ (Y,m).(5.1)

After that, we can then define the (higher) Chern character maps as

chj :=
∑
m≥0

(−1)m−1

(m− 1)!
cj,m : Kj(Y )⊗Q→

⊕
m≥0

H2m−j
M∞ (Y,m)(5.2)

for j > 0 and define

ch0 : K0(Y )⊗Q→
⊕
m≥0

H2m
M∞(Y,m)

to be the usual Chern character. It can be checked that the Chern character maps
chj map the weight m subspace [Kj(Y )⊗Q](m) to H2m−j

M∞ (Y,m).

Example 5.0.3. ch1 maps [K1(R) ⊗ Q](1) ∼= R× ⊗Z Q to H1
M∞(SpecR, 1) ∼= R. It

turns out to be given by the usual logarithm R× → R.

Finally the regulator (3.1) is defined as the following composition:

C1 = [K2n−i−1(X)⊗Q](n) → [K2n−i−1(XR)⊗Q](n) ch2n−i−1−−−−−−→ Hi+1
M∞(XR, n) = C2.

In the following we will sketch the construction of the Chern class maps (5.1),
and omit checking that the resulting Chern characters behave correctly w.r.t. the
weight subspaces. There turns out to be an axiomatic approach producing Chern
class maps from higher K-groups of a reasonable scheme to cohomology groups of
that scheme for any fixed cohomology theory that satisfies certain axioms. When
Y is smooth and quasi-projective, and the cohomology theory in question is the
absolute Hodge cohomology H∗M∞ , we can proceed as follows. We follow [Nek94]
§5, but also see [Sch88] §4. ([Sch88] uses the so-called Deligne cohomology instead
of the absolute Hodge cohomology H∗M∞ . The relation between them is discussed
for example in [Nek94] §7.)
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Firstly, we use Jouanolou’s trick mentioned above to reduce to the case Y =
SpecA is affine. This reduction step is the only place we need the original Y to
be smooth and quasi-projective. The following discussion holds for an arbitrary
finitely generated R-algebra A.

Given any element x of Kj(A), we map it under the Hurewicz map to

Hi(GL(A),R) = lim−→
N

Hi(BGLN (A),R).

It then suffices to construct maps

cj,m : Hj(BGLN (A),R)→ H2m−j
M∞ (SpecA,m).(5.3)

The functor A 7→ BGLN (A) from the category of R-algebras to the category of
simplicial sets is represented by a simplicial scheme (BGLN )•, which we abbreviate
as B•. Graphically B• is given by

id×1←−−−
←

SpecR GLN
µ←− GLN ×GLN · · · ·

←
1×id←−−−

,

where the GLN ’s are viewed as group schemes over R and µ is the multiplication
morphism.

Now we need three abstract ingredients involving simplicial schemes to produce
a result that does not involve simplicial schemes.

The first abstract ingredient is the definition of Hp
M∞(S•, q) for a simplicial

scheme S• over R, plus an isomorphism

ι : H2m
M∞(B•,m)

∼−→ H2m(B•(C),Q(m))⊗ R.

Note that H2m(B•(C),Q(m)) is just the familiar object H2m(BGLN (C),Q(m))
and we have ⊕

m≥0

H2m(BGLN (C),Q(m)) = Q[c1, · · · , cN ],

where cm ∈ H2m(BGLN (C),Q(m)) is the m-th Chern class of the universal bundle
E over BGLN (C).

The second abstract ingredient is the evaluation map

ev : SpecA×B•(A)→ B•,

as a morphism of simplicial schemes over R. Whenever we have a scheme P and
a simplicial set Q, we form their product P × Q to be a simplicial scheme. The
evaluation map induces a map

ev∗ : Hp
M∞(B•, q)→ Hp

M∞(SpecA×B•(A), q).

The third abstract ingredient is the Künneth formula and cap product for H∗M∞
in the following sense. Let P be a scheme over R and Q a simplicial set. As before
we form their product P×Q: this is a simplicial scheme. We have Künneth formula:

Hp
M∞(P ×Q, q) ∼=

⊕
j

Hp−j
M∞(P, q)⊗Hj(Q,R).

Correspondingly we have a cap product

∩ : H2m
M∞(P ×Q,m)⊗Hj(Q,R)→ H2m−j

M∞ (P,m).
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Putting these three ingredients together, we produce a pairing, now not involving
simplicial schemes:

〈·, ·〉 : [H2m(BGLN (C),Q(m))⊗ R]⊗Hj(BGLN (A),R)→ H2m−j
M∞ (SpecA,m),

by
〈x, y〉 := (ev∗ι−1(x)) ∩ y.

The map 〈cm, ·〉 gives the desired map (5.3).
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