5. JAY SHAH: AXIOMATIC APPROACH TO ALGEBRAIC K-THEORY

Question: what is the universal property of K7 Suppose C is a category with notion of exact
sequence. Then Ky(C) = Z{X : X € obC}/ ~ where [X] ~ [ X'+ [X"]if X' - X — X" is
an exact sequence of abelian groups.

This satisfies the universal property
Hom 4(KoC, A) 2 {¥:0bC — A : P(X) =¢(X)+»(X")}.

Consider this in the setting of categories with cofibrations. Then ob and Kj are both functors
Cat oy — Set. Ko satisfies:

(1) Let E(C) be the category of exact sequences in C. Then there are two functors E(C) — C,
one sending (X’ — X — X”) to X', and the other sending it to X”. Then Ky(E(C)) —
Ky(C) x K¢(C) is an isomorphism. (“Kj splits exact sequences.”)

(2) Consider the monoid structure induced by the functor E(C) — C sending (X' — X —
X7") to X. Then this induces the structure of an abelian group on Ky(C).

K is universal w.r.t. functors satisfying the above two properties, with natural transforma-
tions from objects.

This gives a good motivation for considering algebraic K-theory. Pass from the objects of
C to the moduli space iC of objects of C. Consider this as an oo-category, which you can
think of as a category with mapping spaces. I had a map obC — KoC. Now, I want a map
iC — KC.

I’'m going to be working with Waldhausen oo-categories: an oco-category C with a zero object
and a subclass of maps (satisfying some properties), which I call the cofibrations. Denote the
special maps by <; they satisfy:

e closed under composition

e contain the equivalences

e closed under composition, and contain 0 < X for all X

e closed under pushouts: if X < Y is a cofibration, and X — Z is another map, you can
form the pushout diagram
X——Y

| |

J ——W
and moreover Z — W is a cofibration.

Remark 5.1. Let C be a Waldhausen oco-category. Then 0 < X are cofibrations, and thus
I can pushout 0 — X and 0 — Y to obtain the coproduct X VY. So in particular, C always
has coproducts.

If all maps in C are cofibrations, then C admits pushouts. So all finite colimits.



For example, if C is the derived category of a ring or ring spectrum, and every map is a
cofibration, then K(C) = K(D(R)).

I can consider pointed compact objects in local systems C = Fun(X, Top)¥; this admits finite
colimits, and so the subcategory of cofibrations is maximal. Then K (C) is called the A-theory
of X.

If C is finite pointed sets and cofibrations are the monomorphisms, then K(C) = QS° by
Barratt-Priddy-Quillen.

Now I want to talk about the category Wald,, of Waldhausen oc-categories. I've told you
the objects; the morphisms are exact functors, as below:

Definition 5.2. F': C — D is ezact if:
e [ preserves the zero object:
e [ preserves cofibrations;

e F preserves pushouts where one leg is cofibrant.

Wald, has the following features:

e limits and filtered colimits are computed as in Cat.

e Wald,, admits direct sums: make C — C x D < D using the fact that these have zero
objects.

e Has a zero object

Compactly generated oco-category: any can be written as the direct limit of compact
subobjects.

What does K : Wald,, — Top satisfy?
e Need to send the zero object to a point
e Need to preserve filtered colimits

e [ designed K| to split exact sequences, so this should “split cofiber sequences”, and it
should be “grouplike” (analogues of properties (1) and (2) in our earlier discussion of
Ky).

Instead of cofiber sequences, I should be thinking of 1-step filtered objects.

Definition 5.3. Let F1C be a Waldhausen category with objects X < Y in C, and morphisms
= commutative squares

X——Y

| ]

XY’
To give this the structure of a Waldhausen category, I need to specify the cofibrations:
such a diagram is a cofibration if X — X’ is a cofibration, and the map from the pushout
X'UxY' = Y'is a cofibration.



The point is that I can write an exact functor Fj : F1C — C; it sends (X — Y) — Y/X (here
Y/ X means the cofiber). I also have an exact functor I1 g : F1C — C sending (X — Y) — X.

I
You can also consider the functor F1C = C sending (X < Y) =Y.

As you might expect from the notation, this will extend to a simplicial object.

Definition 5.4. A reduced finitary functor Wald 2 Top is additive if:

(1) ®(Fc) B

(2) @(F1C)

®(C) x ®(C) is an equivalence

(h’ﬂ“) ®(C) x ®(C) is an equivalence.

Definition 5.5. Algebraic K-theory is an additive functor Wald., — Top, which receives a
natural transformation from ¢ (the moduli space of objects functor) such that for any additive
functor @, Nat(K, &) — Nat(i, ®) is an equivalence.

Remark 5.6. i is corepresentable by Fin,. (Proof: exercise.) So Nat(i, ®) ~ ®(Fin,).

Corollary 5.7. If ® = K, then the space of global operations on K-theory Nat(K, K) ~
K (Fin,) ~ QS° by BPQ.

Note: the domain matters — Blumberg, Gepner, and Tabuada calculate K-theory on stable
oo-categories, and their global operations is K (.5).

You have to define TH H on Wald, as an additive functor. (You usually don’t think of THH
as landing in spaces.) Clark says you can do this. In this case, THH (Fin,) ~ THH(S) ~ S.

Construction of K-theory. I'm looking at additive functors F*%(Wald, Top) — Fin/ lt(Wald, Top)
and trying to prove the existence of a left adjoint. This should remind you of a similar situa-

tion: Exc(C, D) < Fun(C,D) (where Exc means l-excisive functors). This has a left adjoint

P; that can be explicitly constructed: P;(F') = colimy, o Q" FX".

I want to connect additivity to the property of being excisive.

C——

*
XH(X:X)J{ J{

rc-2sc~c

(X—)Y)HXJILO J{
C—x



Apply @ to this diagram. Note that the lefthand composition is the identity (this is a retract
diagram).

o(C) ——

The bottom square is a pullback square by additivity; so the top square is too. Additive
functors should turn pushout squares into pullback squares.

Extend to simplicial objects. F;,,C has objects Xg < ... — X; 5,C has objects 0 — X| —
... = Xp,. You can come up with some obvious face maps to get simplicial objects FoC, SeC.
If T apply i to S,, I get Waldhausen’s S, construction.

C— s

XH(X:X)J J
F.c—tmg ¢

(X—)Y)»—)XJ{ J{

C——
I have a levelwise pullback square if I consider simplicial diagrams:

~C

OC —— %

|

OF,C —— ®S,C

F, admits a contracting homotopy, gotten by taking X; - --- - X, to0 - X; — --- = X,
(this fails to be a contracting homotopy on S, in the same way that the argument showing
EG is contractible doesn’t work on BG). So I should expect the bottom left to be trivial.
The problem is that something is wrong with geometric realizations in Wald,,. But in some
enlargement of Wald, I can expect this to be trivial. The idea is to force the S, construction
to actually be the suspension.

So make the enlargement Wald,, < D Wald, by formally making geometric realization. Now
I want to make a localization, called D, Walds,, where the S, is forced to be the suspension.
So the analogy works perfectly: I can form the adjoint to the inclusion of additive functors
into filtered functors in the same way as P; is defined.

Pi® ~ colimy, o 2" 0 ® o S.
Magic: you might think this colimit is hard to compute. But, you’ be wrong: if & = ¢, then

this is Q2 o [ 0 .5,. This is exactly Waldhausen’s construction. The higher P,’s are all trivial
for 4.
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