
5. Jay Shah: Axiomatic approach to algebraic K-theory

Question: what is the universal property of K0? Suppose C is a category with notion of exact
sequence. Then K0(C) = Z{X : X ∈ ob C}/ ∼ where [X] ∼ [X ′] + [X ′′] if X ′ → X → X ′′ is
an exact sequence of abelian groups.

This satisfies the universal property

HomAb(K0C, A) ∼= {ϕ : ob C → A : ϕ(X) = ϕ(X ′) + ϕ(X ′′)}.
Consider this in the setting of categories with cofibrations. Then ob and K0 are both functors
Catcofib → Set. K0 satisfies:

(1) Let E(C) be the category of exact sequences in C. Then there are two functors E(C)→ C,
one sending (X ′ → X → X ′′) to X ′, and the other sending it to X ′′. Then K0(E(C))→
K0(C)×K0(C) is an isomorphism. (“K0 splits exact sequences.”)

(2) Consider the monoid structure induced by the functor E(C) → C sending (X ′ → X →
X”′) to X. Then this induces the structure of an abelian group on K0(C).

K0 is universal w.r.t. functors satisfying the above two properties, with natural transforma-
tions from objects.

This gives a good motivation for considering algebraic K-theory. Pass from the objects of
C to the moduli space iC of objects of C. Consider this as an ∞-category, which you can
think of as a category with mapping spaces. I had a map ob C → K0C. Now, I want a map
iC → KC.

I’m going to be working with Waldhausen ∞-categories: an ∞-category C with a zero object
and a subclass of maps (satisfying some properties), which I call the cofibrations. Denote the
special maps by ↪→; they satisfy:

• closed under composition

• contain the equivalences

• closed under composition, and contain 0 ↪→ X for all X

• closed under pushouts: if X ↪→ Y is a cofibration, and X → Z is another map, you can
form the pushout diagram

X �
�

//

��

Y

��

Z // W

and moreover Z →W is a cofibration.

Remark 5.1. Let C be a Waldhausen ∞-category. Then 0 ↪→ X are cofibrations, and thus
I can pushout 0 ↪→ X and 0 ↪→ Y to obtain the coproduct X ∨ Y . So in particular, C always
has coproducts.

If all maps in C are cofibrations, then C admits pushouts. So all finite colimits.
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For example, if C is the derived category of a ring or ring spectrum, and every map is a
cofibration, then K(C) = K(Dc(R)).

I can consider pointed compact objects in local systems C = Fun(X,Top)ω∗ ; this admits finite
colimits, and so the subcategory of cofibrations is maximal. Then K(C) is called the A-theory
of X.

If C is finite pointed sets and cofibrations are the monomorphisms, then K(C) = QS0 by
Barratt-Priddy-Quillen.

Now I want to talk about the category Wald∞ of Waldhausen ∞-categories. I’ve told you
the objects; the morphisms are exact functors, as below:

Definition 5.2. F : C → D is exact if:

• F preserves the zero object:

• F preserves cofibrations;

• F preserves pushouts where one leg is cofibrant.

Wald∞ has the following features:

• limits and filtered colimits are computed as in Cat.

• Wald∞ admits direct sums: make C → C × D ← D using the fact that these have zero
objects.

• Has a zero object

• Compactly generated ∞-category: any can be written as the direct limit of compact
subobjects.

What does K : Wald∞ → Top satisfy?

• Need to send the zero object to a point

• Need to preserve filtered colimits

• I designed K0 to split exact sequences, so this should “split cofiber sequences”, and it
should be “grouplike” (analogues of properties (1) and (2) in our earlier discussion of
K0).

Instead of cofiber sequences, I should be thinking of 1-step filtered objects.

Definition 5.3. Let F1C be a Waldhausen category with objects X ↪→ Y in C, and morphisms
= commutative squares

X �
�

//

��

Y

��

X ′ �
�

// Y ′

To give this the structure of a Waldhausen category, I need to specify the cofibrations:
such a diagram is a cofibration if X ↪→ X ′ is a cofibration, and the map from the pushout
X ′ ∪X Y ′ → Y ′ is a cofibration.
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The point is that I can write an exact functor F1 : F1C → C; it sends (X ↪→ Y )→ Y/X (here
Y/X means the cofiber). I also have an exact functor I1,0 : F1C → C sending (X ↪→ Y ) 7→ X.

You can also consider the functor F1C
I1,1→ C sending (X ↪→ Y )→ Y .

As you might expect from the notation, this will extend to a simplicial object.

Definition 5.4. A reduced finitary functor Wald∞
Φ→ Top is additive if:

(1) Φ(F1C)
(F1,I1,0)
→ Φ(C)× Φ(C) is an equivalence

(2) Φ(F1C)
(I1,0,I1,1)
→ Φ(C)× Φ(C) is an equivalence.

Definition 5.5. Algebraic K-theory is an additive functor Wald∞ → Top, which receives a
natural transformation from i (the moduli space of objects functor) such that for any additive
functor Φ, Nat(K,Φ)→ Nat(i,Φ) is an equivalence.

Remark 5.6. i is corepresentable by Fin∗. (Proof: exercise.) So Nat(i,Φ) ' Φ(Fin∗).

Corollary 5.7. If Φ = K, then the space of global operations on K-theory Nat(K,K) '
K(Fin∗) ' QS0 by BPQ.

Note: the domain matters – Blumberg, Gepner, and Tabuada calculate K-theory on stable
∞-categories, and their global operations is K(S).

You have to define THH on Wald∞ as an additive functor. (You usually don’t think of THH
as landing in spaces.) Clark says you can do this. In this case, THH(Fin∗) ' THH(S) ' S.

Construction of K-theory. I’m looking at additive functors F add(Wald,Top) ↪→ Finfilt
∗ (Wald,Top)

and trying to prove the existence of a left adjoint. This should remind you of a similar situa-
tion: Exc(C,D) ↪→ Fun(C,D) (where Exc means 1-excisive functors). This has a left adjoint
P1 that can be explicitly constructed: P1(F ) = colimn→∞ΩnFΣn.

I want to connect additivity to the property of being excisive.

C //

X 7→(X=X)
��

∗

��

F1C
F1 //

(X→Y )7→X I1,0
��

S1C ' C

��
C // ∗
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Apply Φ to this diagram. Note that the lefthand composition is the identity (this is a retract
diagram).

ΦC //

��

∗

��

ΦF1C //

��

Φ(C)

��
Φ(C) // ∗

The bottom square is a pullback square by additivity; so the top square is too. Additive
functors should turn pushout squares into pullback squares.

Extend to simplicial objects. FmC has objects X0 ↪→ . . . ↪→ Xm; SmC has objects 0 ↪→ X1 ↪→
. . . ↪→ Xm. You can come up with some obvious face maps to get simplicial objects F•C, S•C.
If I apply i to S•, I get Waldhausen’s S• construction.

C //

X 7→(X=X)
��

∗

��

FmC
Fm //

(X→Y )7→X
��

SmC ' C

��
C // ∗

I have a levelwise pullback square if I consider simplicial diagrams:

ΦC //

��

∗

��

ΦF•C // ΦS•C
F• admits a contracting homotopy, gotten by taking X1 → · · · → Xn to 0→ X1 → · · · → Xn

(this fails to be a contracting homotopy on S• in the same way that the argument showing
EG is contractible doesn’t work on BG). So I should expect the bottom left to be trivial.
The problem is that something is wrong with geometric realizations in Wald∞. But in some
enlargement of Wald∞ I can expect this to be trivial. The idea is to force the S• construction
to actually be the suspension.

So make the enlargement Wald∞ ↪→ D Wald∞ by formally making geometric realization. Now
I want to make a localization, called Dfiss Wald∞, where the S• is forced to be the suspension.
So the analogy works perfectly: I can form the adjoint to the inclusion of additive functors
into filtered functors in the same way as P1 is defined.

P1Φ ' colimn→∞Ωn ◦ Φ ◦ Sn
• .

Magic: you might think this colimit is hard to compute. But, you’ be wrong: if Φ = i, then
this is Ω ◦ I ◦ S•. This is exactly Waldhausen’s construction. The higher Pn’s are all trivial
for i.
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