5. JAY SHAH: AXIOMATIC APPROACH TO ALGEBRAIC K-THEORY

Question: what is the universal property of K_0 ? Suppose C is a category with notion of exact sequence. Then $K_0(\mathcal{C}) = \mathbb{Z}\{X : X \in ob \mathcal{C}\}/\sim$ where $[X] \sim [X'] + [X'']$ if $X' \to X \to X''$ is an exact sequence of abelian groups.

This satisfies the universal property

 $\operatorname{Hom}_{Ab}(K_0\mathcal{C}, A) \cong \{\varphi : \operatorname{ob} \mathcal{C} \to A : \varphi(X) = \varphi(X') + \varphi(X'')\}.$

Consider this in the setting of categories with cofibrations. Then ob and K_0 are both functors $\operatorname{Cat}_{cofib} \to Set. K_0$ satisfies:

- (1) Let $E(\mathcal{C})$ be the category of exact sequences in \mathcal{C} . Then there are two functors $E(\mathcal{C}) \to \mathcal{C}$, one sending $(X' \to X \to X'')$ to X', and the other sending it to X''. Then $K_0(E(\mathcal{C})) \to K_0(\mathcal{C}) \times K_0(\mathcal{C})$ is an isomorphism. (" K_0 splits exact sequences.")
- (2) Consider the monoid structure induced by the functor $E(\mathcal{C}) \to \mathcal{C}$ sending $(X' \to X \to X'')$ to X. Then this induces the structure of an abelian group on $K_0(\mathcal{C})$.

 K_0 is universal w.r.t. functors satisfying the above two properties, with natural transformations from objects.

This gives a good motivation for considering algebraic K-theory. Pass from the objects of \mathcal{C} to the moduli space $i\mathcal{C}$ of objects of \mathcal{C} . Consider this as an ∞ -category, which you can think of as a category with mapping spaces. I had a map ob $\mathcal{C} \to K_0 \mathcal{C}$. Now, I want a map $i\mathcal{C} \to K\mathcal{C}$.

I'm going to be working with Waldhausen ∞ -categories: an ∞ -category C with a zero object and a subclass of maps (satisfying some properties), which I call the cofibrations. Denote the special maps by \hookrightarrow ; they satisfy:

- closed under composition
- contain the equivalences
- closed under composition, and contain $0 \hookrightarrow X$ for all X
- closed under pushouts: if $X \hookrightarrow Y$ is a cofibration, and $X \to Z$ is another map, you can form the pushout diagram

and moreover $Z \to W$ is a cofibration.

Remark 5.1. Let \mathcal{C} be a Waldhausen ∞ -category. Then $0 \hookrightarrow X$ are cofibrations, and thus I can pushout $0 \hookrightarrow X$ and $0 \hookrightarrow Y$ to obtain the coproduct $X \lor Y$. So in particular, \mathcal{C} always has coproducts.

If all maps in \mathcal{C} are cofibrations, then \mathcal{C} admits pushouts. So all finite colimits.

For example, if C is the derived category of a ring or ring spectrum, and every map is a cofibration, then $K(C) = K(D^c(R))$.

I can consider pointed compact objects in local systems $\mathcal{C} = \operatorname{Fun}(X, \operatorname{Top})^{\omega}_*$; this admits finite colimits, and so the subcategory of cofibrations is maximal. Then $K(\mathcal{C})$ is called the A-theory of X.

If C is finite pointed sets and cofibrations are the monomorphisms, then $K(C) = QS^0$ by Barratt-Priddy-Quillen.

Now I want to talk about the category $Wald_{\infty}$ of Waldhausen ∞ -categories. I've told you the objects; the morphisms are exact functors, as below:

Definition 5.2. $F : \mathcal{C} \to \mathcal{D}$ is *exact* if:

- F preserves the zero object:
- F preserves cofibrations;
- F preserves pushouts where one leg is cofibrant.

 $Wald_{\infty}$ has the following features:

- limits and filtered colimits are computed as in Cat.
- Wald_{∞} admits direct sums: make $\mathcal{C} \to \mathcal{C} \times \mathcal{D} \leftarrow \mathcal{D}$ using the fact that these have zero objects.
- Has a zero object
- Compactly generated ∞ -category: any can be written as the direct limit of compact subobjects.

What does $K : Wald_{\infty} \to Top satisfy?$

- Need to send the zero object to a point
- Need to preserve filtered colimits
- I designed K_0 to split exact sequences, so this should "split cofiber sequences", and it should be "grouplike" (analogues of properties (1) and (2) in our earlier discussion of K_0).

Instead of cofiber sequences, I should be thinking of 1-step filtered objects.

Definition 5.3. Let $F_1\mathcal{C}$ be a Waldhausen category with objects $X \hookrightarrow Y$ in \mathcal{C} , and morphisms = commutative squares

To give this the structure of a Waldhausen category, I need to specify the cofibrations: such a diagram is a cofibration if $X \hookrightarrow X'$ is a cofibration, and the map from the pushout $X' \cup_X Y' \to Y'$ is a cofibration. The point is that I can write an exact functor $F_1: F_1\mathcal{C} \to \mathcal{C}$; it sends $(X \hookrightarrow Y) \to Y/X$ (here Y/X means the cofiber). I also have an exact functor $I_{1,0}: F_1\mathcal{C} \to \mathcal{C}$ sending $(X \hookrightarrow Y) \mapsto X$. You can also consider the functor $F_1\mathcal{C} \xrightarrow{I_{1,1}} \mathcal{C}$ sending $(X \hookrightarrow Y) \to Y$.

As you might expect from the notation, this will extend to a simplicial object.

Definition 5.4. A reduced finitary functor $\operatorname{Wald}_{\infty} \xrightarrow{\Phi}$ Top is *additive* if:

(1) $\Phi(F_1\mathcal{C}) \xrightarrow{(F_1,I_{1,0})} \Phi(\mathcal{C}) \times \Phi(\mathcal{C})$ is an equivalence (2) $\Phi(F_1\mathcal{C}) \xrightarrow{(I_{1,0},I_{1,1})} \Phi(\mathcal{C}) \times \Phi(\mathcal{C})$ is an equivalence.

Definition 5.5. Algebraic K-theory is an additive functor $\operatorname{Wald}_{\infty} \to \operatorname{Top}$, which receives a natural transformation from i (the moduli space of objects functor) such that for any additive functor Φ , $\operatorname{Nat}(K, \Phi) \to \operatorname{Nat}(i, \Phi)$ is an equivalence.

Remark 5.6. *i* is corepresentable by Fin_{*}. (Proof: exercise.) So Nat $(i, \Phi) \simeq \Phi(\text{Fin}_*)$.

Corollary 5.7. If $\Phi = K$, then the space of global operations on K-theory $Nat(K, K) \simeq K(Fin_*) \simeq QS^0$ by BPQ.

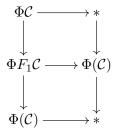
Note: the domain matters – Blumberg, Gepner, and Tabuada calculate K-theory on stable ∞ -categories, and their global operations is K(S).

You have to define THH on $Wald_{\infty}$ as an additive functor. (You usually don't think of THH as landing in spaces.) Clark says you can do this. In this case, $THH(Fin_*) \simeq THH(S) \simeq S$.

Construction of *K***-theory.** I'm looking at additive functors $F^{add}(Wald, Top) \hookrightarrow Fin_*^{filt}(Wald, Top)$ and trying to prove the existence of a left adjoint. This should remind you of a similar situation: $Exc(\mathcal{C}, \mathcal{D}) \hookrightarrow Fun(\mathcal{C}, \mathcal{D})$ (where Exc means 1-excisive functors). This has a left adjoint P_1 that can be explicitly constructed: $P_1(F) = \operatorname{colim}_{n \to \infty} \Omega^n F \Sigma^n$.

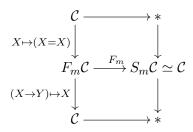
I want to connect additivity to the property of being excisive.

Apply Φ to this diagram. Note that the lefthand composition is the identity (this is a retract diagram).



The bottom square is a pullback square by additivity; so the top square is too. Additive functors should turn pushout squares into pullback squares.

Extend to simplicial objects. $F_m\mathcal{C}$ has objects $X_0 \hookrightarrow \ldots \hookrightarrow X_m$; $S_m\mathcal{C}$ has objects $0 \hookrightarrow X_1 \hookrightarrow \ldots \hookrightarrow X_m$. You can come up with some obvious face maps to get simplicial objects $F_{\bullet}\mathcal{C}$, $S_{\bullet}\mathcal{C}$. If I apply *i* to S_{\bullet} , I get Waldhausen's S_{\bullet} construction.



I have a levelwise pullback square if I consider simplicial diagrams:

$$\begin{array}{c} \Phi \mathcal{C} \longrightarrow \ast \\ \downarrow & \downarrow \\ \Phi F_{\bullet} \mathcal{C} \longrightarrow \Phi S_{\bullet} \mathcal{C} \end{array}$$

 F_{\bullet} admits a contracting homotopy, gotten by taking $X_1 \to \cdots \to X_n$ to $0 \to X_1 \to \cdots \to X_n$ (this fails to be a contracting homotopy on S_{\bullet} in the same way that the argument showing EG is contractible doesn't work on BG). So I should expect the bottom left to be trivial. The problem is that something is wrong with geometric realizations in Wald_{∞}. But in some enlargement of Wald_{∞} I can expect this to be trivial. The idea is to force the S_{\bullet} construction to actually be the suspension.

So make the enlargement $\operatorname{Wald}_{\infty} \hookrightarrow D \operatorname{Wald}_{\infty}$ by formally making geometric realization. Now I want to make a localization, called $D_{fiss} \operatorname{Wald}_{\infty}$, where the S_{\bullet} is forced to be the suspension. So the analogy works perfectly: I can form the adjoint to the inclusion of additive functors into filtered functors in the same way as P_1 is defined.

$$P_1\Phi\simeq\operatorname{colim}_{n\to\infty}\Omega^n\circ\Phi\circ S^n_{\bullet}.$$

Magic: you might think this colimit is hard to compute. But, you' be wrong: if $\Phi = i$, then this is $\Omega \circ I \circ S_{\bullet}$. This is exactly Waldhausen's construction. The higher P_n 's are all trivial for *i*.