
K-THEORY OF FINITE FIELDS

ADAM AL-NATSHEH

Abstract. These are some notes from a talk I gave at Juvitop. I basically outlined the ar-
gument Quillen gave in his original paper [1] to compute the algebraic K-groups of a �nite
�eld. If you happen to actually read this and have any comments or questions or �nd any
mistakes, then please feel free to email me.
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1. Introduction

R will be a ring q a prime number. Recall one de�nition of the algebraic K-groups of a
ring is

Ki (R) := πi (BGL(R)+)
where the plus construction is taken with respect to the elementary matricesE (R) ⊂ GL(R) =
π1 (BGL(R)). We also have that BGL(R)+ is simple, which follows from the fact that it is an
H -space (this was basically done in the last talk, or at least alluded to). We’ll take this claim
as given. Our goal is to de�ne a map

θ : BGL(Fq ) → Fψq

for some space Fψq which will be constructed as the homotopy �xed points of a map BU →
BU representing the Adams operation ψq on complex K-theory, such that θ∗ is an isomor-
phism on homology. We will then show
Proposition 1.0.1. Fψq is simple with π2j (Fψq ) = 0 and π2j−1 (Fψq ) = Z/(q j − 1).

This will give us the calculation.

2. The Main Theorem

Let’s pretend that I’ve done all that and see where it takes us. The Hurewicz homomor-
phism gives us

π1 (BGL(Fq ) π1 (Fψ
q )

H1 (BGL(Fq ) H1 (Fψ
q )

�

�
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where the horizontal maps are induced by θ . The map on the right is an isomorphism because
π1 (Fψ

q ) is abelian. The map on the left is just the quotient mapGL(Fq ) → GL(Fq )/E (Fq ) and
so is surjective, hence the top map is too, both with kernel E (Fq ). By the universal property
of the plus construction we have a map θ ′ : BGL(Fq )+ → Fψq such that θ = θ ′i where
i : BGL(Fq ) → BGL(Fq )

+. Now i and θ are both isomorphisms on homology, so that θ ′ is as
well. Both BGL(Fq )

+ and Fψq are simple, so by Whitehead’s theorem we have that θ ′ is a
homotopy equivalence. Then with

Ki (Fq ) = πi (BGL(Fq )
+) = πi (Fψ

q )

we immediately have

Theorem 2.0.1. K2j (Fq ) = 0 and K2j−1 (Fq ) = Z/(q
j − 1).

And we’re done. Well, not quite. I still owe you some more information. In particular I
should probably

(1) de�ne Fψq and determine some of its basic properties, including those given in 1.0.1,
as there’s nothing more basic than its homotopy,

(2) construct the map θ : BGL(Fq ) → Fψq ,
(3) and prove θ∗ is an isomorphism on H∗.

I’m not actually going to do 3. It involves lots of algebra and computations with spectral
sequences and what not, so for the purpose of this talk I’ll leave it the master himself [1].
But I’ll do the other two, which are just some homotopy theory and representation theory,
respectively.

3. The Space Fψq

3.1. Adams operations on BU . On complex K-theory, we have Adams operations

ψq : K̃ (B) → K̃ (B)

for all q and B compact. So by Yoneda, we’d like to view the natural transformations ψq

as maps BU → BU (recall K̃ (−) is representable by pointed maps [−,BU ]), but BU is not
compact. Fortunately, we can get around this.

We can give BU the structure of a cell complex with cells Xn in only even dimension;
i.e., such that X 2n = X 2n+1. Our goal is to show K̃−1 (Xn ) = 0 and apply the Milnor exact
sequence. We’ll use induction for the �rst. For the base case, we have

K̃−1 (X 1) = K̃−1 (X 0) = K̃−1 (∗) = 0

Now assume K̃−1 (X 2n ) = K̃−1 (X 2n+1) = 0. We have X 2n+2/X 2n �
∨
S2n+2 so by the exact

sequence of a co�bration in K-theory we have that

0 =
∏

K̃−1 (S2n+2) = K̃−1
(∨

S2n+2
)
→ K̃−1 (X 2n+2) → K̃−1 (X 2n ) = 0

is exact, hence K̃−1 (X 2n+2) = 0. The Milnor exact sequence for K-theory can be written as

0→ lim
←−−

1 K̃−1 (Xn ) → [BU ,BU ]→ lim
←−−

[Xn ,BU ]→ 0

The �rst term is now 0 so the second map is an isomorphism. We already have Adams oper-
ationsψq de�ned on [Xn ,BU ] = K̃ (Xm ) so we take the limit and get map BU → BU , which
we also callψq , representing the Adams operation.
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3.2. De�ning Fψq . For a space X , the �xed points of a map д : X → X can be seen as the
pullback of the diagonal X → X 2 along (1,д) : X → X 2. However, this isn’t very homotopy-
theoretic. Instead let’s replace the diagonalBU → BU 2 with a homotopy-equivalent �bration
BU

�
→ BU I → BU 2, giving us a map ∆ : BU I → BU that sends a path to its endpoints. Let

Fψq be the pullback of ∆ along (1,ψq ) : BU → BU 2. To be explicit, elements of Fψq are
pairs (x ,p) of points x ∈ BU and paths p from x to ψq (x ). If we choose basepoints then the
vertical maps in the following pullback diagram are �brations with �ber ΩBU

Fψq BU I

BU BU 2

φ ∆

(1,ψ q )

In a similar way as before, we can de�ne a map d : BU 2 → BU representing the di�erence
operation on complex K-theory, so that (a,b) get sent to a − b. We can use d to extend the
previous diagram as

Fψq BU I PBU

BU BU 2 BU

φ ∆

m

n

(1,ψ q ) d

where PBU is the path space ending at some �xed point b ∈ BU , n(p) = p (0), andm(p) is the
path t 7→ d (p (t ),p (1)) joining d (p (0),p (1)) to b (note we can choose d such that d (x ,x ) = b
for all x ∈ BU ). You can then easily check that Fψq is the pullback ofn alongd (1,ψq ) = 1−ψq ,
and that

Proposition 3.2.1. Fψq is the homotopy �ber of 1 −ψq .

3.3. The homotopy of Fψq . We can now prove 1.0.1. By 3.2.1 we have the LES

· · · → πj (BU )
(1−ψ q )∗

−→ πj (BU ) → πj−1 (Fψ
q ) → πj−1 (BU ) → · · ·

where πj (BU ) = K̃ (S j ) is Z if j is even and 0 if j is odd. Alsoψq acts by multiplication by q on
K̃ (S2), hence by multiplication byqn on K̃ (S2n ). So (1−ψq )∗ is injective and these proeprties,
combined with exactness, easily give us the homotopy groups of Fψq .

In general for a �bration the action of π1 of the �ber on its higher homotopy comes from
π1 of the total space acting on the higher homotopy of the �ber. In our case π1 (BU ) = 0 so
we have that Fψq is simple.

3.4. Random lemma. We’ll prove this now, and use it later to construct the map θ . It turns
out to be quite important.

Lemma 3.4.1. If X is a space such that [X ,U ] = 0 (recallU � ΩBU ), then

φ∗ : [X , Fψq]→ [X ,BU ]ψ
q

is an isomorphism.

Proof. A map X → Fψq is the same thing as a map f : X → BU and a homotopy from f to
ψq f , hence φ∗ is surjective. Now suppose д : X → Fψq is such that φ∗ (д) is homotopic to
the constant map via some homotopy G : X × I → BU . Backing up the �bration from 3.2.1
we have a lift of the following diagram

X Fψq

X × I BU

д

(id,0) φ

G
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with the map on the right a �bration with �ber ΩBU . We conclude that the map д factors
through this �ber and is thus 0 by assumption. �

4. Constructing the map θ

4.1. Some representation theory. Let R (kG ) be the representation ring over a �eld k of a
�nite groupG, which we shall �x for now. We have a map R (CG ) → K0 (BG ) = [BG,BU ×Z]
sendingV to the mixing EG×GV . Composing with the projection gives a map to [BG,BU ]. In
pretty much the same way as forK0, we can construct Adams operations on R (CG ) such that
for characters χ we have ψq (χ (д)) = χ (дq ). From this it is easy to see that the operations
on the representation ring are compatible with those of complex K-theory in the sense that
the following diagram commutes for the map constructed above

R (CG ) K0 (BG )

R (CG ) K0 (BG )

ψ q ψ q

This gives us a map onψq �xed points R (CG ) → [BG,BU ]ψ q induced from the map above.
We also have another piece of information about the relationship between the complex

representations and K-theory.

Theorem 4.1.1 (Atiyah-Segal completion theorem). The map R (CG ) → K0 (BG ) described
above induces an isomorphism FR (CG )I � K0 (BG ), where I is the augmentation ideal of the
representation ring. Further, K1 (BG ) = 0.

Corollary 4.1.2. [BG,BU ]ψ q
� [BG,BUψ q ] = [BG, Fψq]

Proof. 0 = K1 (BG ) = [BG,U ]. Now apply 3.4.1. �

Let’s stop and see where we are. We have a map R (CG )ψ
q
→ [BG, Fψq], and our goal was

to produce a map BGL(Fq ) → Fψq . So we’ll probably end up using GLn (Fq ) for our group
G. Then our map tell us that for every complex representation ofGLn (Fq ) �xed underψq we
get a map (unique up to homotopy) BGLn (Fq ) → Fψq . We could then take the colimit. But
we don’t want just any map θ , we want it to be an induce an isomorphism on homology! So
in order to get a better handle on the map coming from a representation and the induced map
on homology, we will try to relate complex representations (�xed under Adams operations)
to representations over Fq . This is the Brauer lift.

4.2. Some more representation theory: the Brauer lift. Let’s �x an embedding ρ :
Fq
∗
→ C∗. Our groupG is still �nite, and we’ll takeE to be a �nite-dimensionalG-representation

over Fq . De�ne the Brauer character χE of E by

χE (д) =
∑

ρ (λi )

where the λi are the eigenvalues of д acting on E.

Claim. χE is the character of a unique virtual complex representation ρE.

Turns out this is true, so we’ll use it. This gives us a map R (FqG ) → R (CG ).
Now let E ∈ R (FqG ). Extend scalars and write

E = E ⊗Fq Fq

We can also check that ψq (ρE) = ρE, as the λi are stable under Frobenius x 7→ xq and
ψq (χ ) (д) = χ (дq ). So we have a map

R (FqG ) → R (CG )ψ
q
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which we call the Brauer lift. Combining this with what we did before we now have a map
R (FqG ) → [BG, Fψq]

so that for any �nite-dimensionalG-representation over Fq we get a homotopy class of maps
BG → Fψq . Taking GLn (Fq ) as our group, we let θn : BGLn (Fq ) → Fψq be the map corre-
sponding to the standard representation Fnq of GLn (Fq ). De�ne θ : BGL(Fq ) → Fψq as the
colimit of the θn . It turns out this induces an isomorphism on homology.
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