ALGEBRAIC K-THEORY: DEFINITIONS & PROPERTIES (TALK NOTES)

JUN HOU FUNG

1. Brief history of the lower K-groups

Reference: Grayson, "Quillen's Work in Algebraic K-Theory"

1.1. The Grothendieck group. Grothendieck's work in the 60s on generalizing Riemann-Roch led him to consider vector bundles (coherent sheaves) on an algebraic variety X. These form a commutative monoid under \oplus , and we may group complete to obtain:

$$K(X) = \langle [E], E \in \operatorname{Vect}(X) \mid [E] = [E'] + [E''] \text{ for each SES } 0 \to E' \to E \to E'' \to 0 \rangle$$

Let $X = \operatorname{Spec} R$ be affine. Write $K_0(R) = K(X)$.

<u>Serre</u>: (vector bundles on Spec R) \longleftrightarrow (f.g. projective R-modules)

Examples.

(a) F a field (or a PID).

Every projective F-module is free, so $K_0(F) \xrightarrow{\dim} \mathbb{Z}$ is an isomorphism.

(b) \mathcal{O}_K , the ring of integers of a number field K.

It's a Dedekind domain, so every f.g. projective module has the form $\mathcal{O}_K^{n-1} \oplus I$ for some ideal I that is uniquely determined in the ideal class group. So $K_0(\mathcal{O}_K) \cong \mathbb{Z} \oplus \operatorname{Cl}(K)$.

1.2. Topological *K*-theory.

- Motivated by Grothendieck, Atiyah and Hirzebruch studied the situation where X is a finite simplicial complex.
- Using Σ and *Bott periodicity*, they constructed a generalized cohomology theory $K^*(X)$ with $K^0(X) = K(X)$.
- Adams introduced cohomology operations ψ^k on K(X) to study vector fields on spheres. The ψ^k 's are characterized by $\psi^k[L] = [L^{\otimes k}]$ for line bundles L. Quillen later uses these to compute the cohomology of $GL(\mathbb{F}_q)$.

1.3. K_1 and K_2 . Can something similar to topological K-theory be done in the algebraic setting?

Definition (Bass). $K_1(R) = GL(R)/[GL(R), GL(R)]$

Idea, motivated by Σ : a vector bundle over ΣX is determined by gluing data along the equator $X \subset \Sigma X$, i.e., by GL(E) where E is a trivial bundle. Homotopic maps give isomorphic bundles, so we should quotient out by " $GL(E)^{\circ} \supseteq E(R)$ ", the subgroup generated by elementary matrices.

Lemma (Whitehead). [GL(R), GL(R)] = [E(R), E(R)] = E(R).

Let's compute some K-groups.

Examples.

(a) F a field (or a commutative local ring).

E(F) = SL(F), so $K_1(F) \cong F^{\times}$.

(b) R a commutative ring.

Have determinant map det : $K_1(R) \to R^{\times}$. Have splitting $R^{\times} = GL_1(R) \hookrightarrow GL(R) \twoheadrightarrow K_1(R)$. Thus $K_1(R) \cong R^{\times} \oplus SK_1(R)$ where $SK_1(R) = \ker$ det. If $R = \mathcal{O}_K$, then $K_1(\mathcal{O}_K) \cong \mathcal{O}_K^{\times} \oplus SK_1(\mathcal{O}_K)$. By Dirichlet's unit theorem, $\mathcal{O}_K^{\times} \cong \mu(K) \oplus \mathbb{Z}^{r-1}$; by Bass-Milnor-Serre, $SK_1(\mathcal{O}_K) = 0$. So $K_1(\mathcal{O}_K) \cong \mu(K) \oplus \mathbb{Z}^{r-1}$.

Why is this group K_1 ?

Proposition (Localization). R a Dedekind domain, F its fraction field. Have exact sequence:

$$\bigoplus_{\mathfrak{p}} K_1(R/\mathfrak{p}) \to K_1(R) \to K_1(F) \to \bigoplus_{\mathfrak{p}} K_0(R/\mathfrak{p}) \to K_0(R) \to K_0(F) \to 0$$

Looks like the end of some long exact sequence.

Later:

Definition (Milnor). $K_2(R) = \ker(\operatorname{St} R \to E(R))$

The Steinberg group St R is the abstract group modelled on elementary matrices with just the "obvious" relations, so $K_2(R)$ is the group of "non-obvious" relations amongst elementary matrices.

Bass-Tate added $K_2(F)$ to the above localization sequence; Bass further added $K_2(R)$.

Remark. Can compute K_2 of a field using *Matsumoto's theorem*, e.g., $K_2(\mathbb{F}_q) = 0$.

2. Quillen's +-construction

Somehow, need input from homotopy theory to access higher K-groups.

Quillen's motivation: work on *Adams' conjecture*, discussion with <u>Sullivan</u>. Our motivation: *topological K-theory*. Recall:

- Complex K-theory represented by spectrum $KU = \{(\mathbb{Z} \times) BU, \Omega BU, \ldots\}$ and $U \simeq BGL(\mathbb{C})$
- Real K-theory represented by spectrum $KO = \{(\mathbb{Z} \times)BO, \Omega BO, \ldots\}$ and $O \simeq BGL(\mathbb{R})$.

For a ring R, we should look at the classifying space $\underline{BGL(R)}$ and its homotopy groups. <u>Problems:</u>

- $\pi_1 BGL(R) = GL(R)$, not $K_1(R)$
- $\pi_i BGL(R) = 0$ for i > 1.

Therefore, need to modify BGL(R). <u>Kervaire</u> introduced a construction to kill a *perfect* normal subgroup of π_1 without changing H_* .

Proposition (+ construction). Let X be a connected pointed CW complex, $N \leq \pi_1 X$ perfect. There exists a connected CW complex X^+ and a map $i: X \to X^+$ such that

- (i) $\pi_1(i)$ is the quotient map $\pi_1 X \to \pi_1 X^+ \cong \pi_1 X/N$.
- (ii) $H_*(i)$ is an isomorphism with any system of local coefficients.

Furthermore, this satisfies a universal property: if Y is some other connected space and $f: X \to Y$ is such that $N \leq \ker f_*$, then there exists $f^+: X^+ \to Y$, unique up to homotopy, such that

Therefore, + is functorial up to homotopy.

Sketch of a construction.

- (1) Attach 2-cells to kill $N \leq \pi_1 X$.
- (2) Attach 3-cells to correct "noise" in H_* .

The assumption that N is perfect means we can attach 3-cells "precisely", i.e., without affecting other H_* groups.

Example. Σ_n symmetric group on n letters, $A_n \leq \Sigma_n$ alternating group, which is normal and perfect if $n \geq 5$. Take colimits and form $B\Sigma_{\infty}^+$ with respect to A_{∞} . The theorem of Barratt-Priddy-Quillen says $\pi_* B\Sigma_{\infty}^+ \cong \pi_* S$.

Back to K-theory: $E(R) \triangleleft GL(R)$ is perfect, so form $BGL(R)^+$ with respect to E(R).

Definition. $K_n(R) = \pi_n BGL(R)^+$ for $n \ge 1$.

By construction, $K_1R = \pi_1 BGL(R)^+ = GL(R)/E(R)$. Can also see this definition agrees with classical K_2 using group cohomology.

Problem: $BGL(R)^+$ is path connected. Ad hoc fix: define $K(R) = K_0 R \times BGL(R)^+$, the *K*-theory space of *R*.

Theorem (Quillen, Gersten-Wagoner). $\Omega BGL(SR)^+ \simeq K_0 R \times BGL(R)^+$, where SR is the "suspension" of R.

Thus obtain a <u>delooping</u> of K(R), i.e., a Ω -spectrum $\{K_0(S^nR) \times BGL(S^nR)^+\}$ whose *n*-th homotopy group is K_nR .

2.1. Products.

Proposition. $BGL(R)^+$ is a commutative <u>*H*-group</u>.

The operation is induced by a map $\oplus : GL(R) \times GL(R) \to G(R)$ interweaving rows and columns:

$$BGL(R)^+ \times BGL(R)^+ \simeq B(GL(R) \times GL(R))^+ \xrightarrow{B \oplus ^+} BGL(R)^+$$

Theorem (Loday). There exists a bilinear and associative product $K_p R \otimes K_q R \to K_{p+q} (R \otimes S)$ that is natural in R and S.

If R is commutative, then $K_p R \otimes K_q R \to K_{p+q} R$ is graded-commutative.

This product is induced by the tensor product of matrices, appropriately stabilized.

2.2. Group completion.

Definition. A group completion of a homotopy associative, homotopy commutative *H*-space X is a map $f: X \to Y$ where Y is a homotopy associative, homotopy commutative *H*-space such that

- (i) $f_*: \pi_0 X \to \pi_0 Y$ is the group completion of the commutative monoid $\pi_0 X$
- (ii) The map $(\pi_0 X)^{-1} H_* X \to H_* Y$ induced by f is an isomorphism.

Let (\mathcal{S}, \oplus) be a symmetric monoidal category acting on \mathcal{X} (denote this action by \oplus also). Define $\mathcal{S}^{-1}\mathcal{X}$ to be the category whose objects are $(s, x) \in \mathrm{ob}(\mathcal{S} \times \mathcal{X})$ and whose morphisms $(s, x) \to (t, y)$ are pairs of equivalence classes of maps $u \oplus s \to t$, $u \oplus x \to y$ for some $u \in \mathrm{ob} \mathcal{S}$. Then \mathcal{S} acts on $\mathcal{S}^{-1}\mathcal{X}$ by $s \cdot (t, x) = (t, s \oplus x)$, and this action is *invertible*.

Theorem (Quillen). Let S be a symmetric monoidal category in which "translations are faithful". Then $B(S^{-1}S)$ is the group completion of BS. We care about the case S =iso $\mathbf{P}(R)$, the category of f.g. projective *R*-modules with isomorphisms as morphisms.

Proof outline. Condition on π_0 is easy to verify. For condition on H_* , construct a spectral sequence $E_{pq}^2 = H_p(\mathcal{S}^{-1}(*); (\pi_0 \mathcal{S})^{-1} H_q \mathcal{S}) \Rightarrow H_{p+q} \mathcal{S}^{-1} \mathcal{S}$ which degenerates to the desired isomorphism.

Proposition. $S = \text{iso } \mathbf{P}(R)$. Then $B(S^{-1}S) \simeq K_0 R \times BGL(R)^+$.

Proposition follows from two lemmas:

Lemma. Let $S = \text{iso } \mathbf{F}(R)$, where $\mathbf{F}(R)$ is the category of f.g. free R-modules, so $BS \simeq \bigcup_{n>0} BGL_n(R)$. Then $B(S^{-1}S) \simeq \mathbb{Z} \times BGL(R)^+$.

Proof. We'll just show that the basepoint (0,0) component $B(\mathcal{S}^{-1}\mathcal{S})_0$ of $B(\mathcal{S}^{-1}\mathcal{S})$ is homotopy equivalent to $BGL(R)^+$.

Step 1. Construct a map $\phi : BGL(R) \to B(\mathcal{S}^{-1}\mathcal{S})_0$.

Define $\phi_n : BGL_n R \to B\operatorname{Aut}(R^n, R^n) \hookrightarrow B(\mathcal{S}^{-1}\mathcal{S})_0$ to be the map induced by $(g \in GL_n R) \mapsto ((g, 1) \in \operatorname{Aut}(R^n, R^n))$. Have homotopy commutative diagram

Thus, get map $\phi : BGL(R) = \operatorname{hocolim}_n BGL_{n+1}R \to B(\mathcal{S}^{-1}\mathcal{S})_0$ Step 2. Show ϕ is acyclic (induces H_* -isos).

 $B(\mathcal{S}^{-1}\mathcal{S})$ is the group completion of $B\mathcal{S}$. Let e be the class of [R] in $\pi_0\mathcal{S}$. Then

$$H_*B(\mathcal{S}^{-1}\mathcal{S}) \cong H_*B\mathcal{S}[\frac{1}{e}] \cong \operatorname{colim}(H_*B\mathcal{S} \xrightarrow{(\oplus R)_*} H_*B\mathcal{S} \xrightarrow{(\oplus R)_*} \cdots)$$
$$\cong H_*\operatorname{hocolim}(B\mathcal{S} \xrightarrow{\oplus R} B\mathcal{S} \xrightarrow{\oplus R} \cdots)$$
$$\cong H_*BGL(R).$$

(Recall that BS is a *H*-space with operation \oplus .)

Step 3. B_0 , $BGL(R)^+$ are connected CW H-spaces with same H_* and π_1 (because

$$\pi_1 B(\mathcal{S}^{-1}\mathcal{S})_0 \cong H_1 B(\mathcal{S}^{-1}\mathcal{S}) \cong H_1 BGL(R) = GL(R)/E(R))$$

So by the relative Hurewicz theorem, Whitehead's theorem, etc., $BGL(R)^+ \simeq B(\mathcal{S}^{-1}\mathcal{S})_0$. \Box

Lemma. Let $F : S \to \mathcal{T}$ be cofinal functors between symmetric monoidal categories (i.e., for each $t \in \mathcal{T}$, there exists $s \in S$ and $t' \in \mathcal{T}$ such that $t \oplus t' \cong F(s)$) such that $\operatorname{Aut}_{\mathcal{S}}(s) = \operatorname{Aut}_{\mathcal{T}}(F(s))$ for all s. Then $B(S^{-1}S) \to B(\mathcal{T}^{-1}\mathcal{T})$ induces equivalences of basepoint components.

Applying this lemma to $\mathbf{F}(R) \hookrightarrow \mathbf{P}(R)$, we get

$$B(\mathcal{S}^{-1}\mathcal{S}) \simeq \pi_0 B \mathcal{S}^{-1} \mathcal{S} \times BGL(R)^+ \cong K_0 R \times BGL(R)^+.$$

3. The Q construction

Reference: Quillen, "Higher Algebraic K-Theory, Vol. I"

Turns out it was difficult to prove the basic theorems of algebraic K-theory using the + construction. We might expect this from the ad hoc addition of $K_0(R)$, which is divorced from homotopy theory. In 1972, Quillen came up with a new definition of K_* . The natural setting for this construction is exact categories.

Definition. An *exact category* is an additive category \mathcal{M} equipped with a family \mathcal{E} of "exact sequences" satisfying...

<u>Think</u>: an abelian category with usual exact sequences; even more concretely: $\mathbf{P}(R)$, the category of f.g. projective *R*-modules.

If

$$0 \to M' \to M \to M'' \to 0$$

is an exact sequence, then we call $M' \to M$ an *admissible monomorphism* (\to) and $M \to M''$ an *admissible epimorphism* (\to) .

Let \mathcal{M} be a (small) exact category.

Construction (<u>Q construction</u>). Define a new category $Q\mathcal{M}$ whose objects are the same as \mathcal{M} and whose morphisms $M \to M'$ are equivalence classes of diagrams $M \ll N \rightarrowtail M'$ (two diagrams are equivalent if there is an isomorphism of diagrams inducing the identity on M and M').

Composition $(M' \leftarrow N' \rightarrow M'') \circ (M \leftarrow N \rightarrow M')$ is given by

Given an admissible mono $M \xrightarrow{i} M'$ in \mathcal{M} , get a morphism $i_! : M \xleftarrow{id} M \xrightarrow{i} M'$ in $Q\mathcal{M}$, called injective.

Given an admissible epi $M' \xrightarrow{j} M$ in \mathcal{M} , get a morphism $j^! : M \xleftarrow{j} M' \xrightarrow{id} M'$ in $Q\mathcal{M}$, called surjective.

Proposition. $\mathcal{M} \rightsquigarrow \mathcal{Q}\mathcal{M}$ is <u>universal</u> for assignments $\mathcal{M} \rightsquigarrow \mathcal{C}$, where \mathcal{C} has "injective", "surjective" maps satisfying That is, given \mathcal{C} , exists functor $\mathcal{Q}\mathcal{M} \rightarrow \mathcal{C}$ such that....

Key theorem:

Theorem (Quillen). $\pi_1(BQ\mathcal{M}, 0) \cong K_0\mathcal{M}$.

Remark. Quillen's original proof uses coverings, morphism-inverting functors, etc.

Proof of theorem. Want to give a presentation of $\pi_1 BQ\mathcal{M}$; look at 2-skeleton of $BQ\mathcal{M}$.

Let $T = \{i_{M!} : 0 \to M\}$. This is a maximal tree in the 1-skeleton of $BQ\mathcal{M}$. Collapse T, and see that $\pi_1 BQ\mathcal{M}$ is generated by morphisms [f] in $\mathcal{Q}M$ modulo relations $[i_{M!}] = 1$, $[f \circ g] = [f][g]$.

- If $i: M \to M'$ is any admissible mono, then $[i_!] = 1$. Proof: can express $i_!$ into terms of $i_{M!}$ and $i_{M'!}$.
- If $j: M' \to M$ is any admissible epi, then $[j^!]$ can be expressed in terms of $[j^!_M]$ and $[j^!_{M'}]$. (Here, j_M is the map $M \to 0$.) Proof: same as above.
- Every morphism in $Q\mathcal{M}$ factors as $i_! \circ j^!$ tautologically, so $\pi_1 BQ\mathcal{M}$ is generated by $\{[i_!], [j^!]\}$, i.e., just by $[j_M^!]$ because of previous two points.

Now suppose $M' \xrightarrow{i} M \xrightarrow{j} M''$ is an exact sequence in \mathcal{M} . <u>Claim</u>: $j' \circ i_{M''} = i_! \circ j'_{M'}$. Proof:

Therefore, $[j^!] = [j^!_{M'}]$. So,

$$[j_M^!] = [(j_{M''} \circ j)^!] = [j^! \circ j_{M''}^!] = [j^!][j_{M''}^!] = [j_{M'}^!][j_{M''}^!].$$

This is the additivity relation.

Conversely, every relation $[f][g] = [f \circ g]$ can be rewritten in terms of the additivity relation. Given $g: M \leftarrow N \rightarrow M'$ and $f: M' \leftarrow N' \rightarrow M''$, their composite is given by

Let $K = \ker(N' \twoheadrightarrow M') \cong \ker(N \times_M N' \twoheadrightarrow N)$, let $K' = \ker(N \times_M N' \twoheadrightarrow M)$ and $K'' = \ker(N \twoheadrightarrow M)$. Then $K \rightarrowtail K' \twoheadrightarrow K''$ is exact, so $[j_{K'}^!] = [j_K^!][j_{K''}^!]$. Then

$$[f \circ g] = [j_{N \times_{M'}N}^!][j_M^!]^{-1} = [j_{K'}^!] = [j_K^!][j_{K''}^!] = ([j_{N'}^!][j_{M'}^!]^{-1})([j_N^!][j_M^!]^{-1}) = [f][g].$$

Therefore,

$$\pi_1 BQ\mathcal{M} = \langle [j_M^!], M \in \text{ob} \,\mathcal{M} \mid [j_M^!] = [j_{M'}^!][j_{M''}^!] \text{ for each SES } M' \to M \twoheadrightarrow M'' \rangle \cong K_0 \mathcal{M}.$$

Definition. $K\mathcal{M} = \Omega BQ\mathcal{M}$. $K_i\mathcal{M} = \pi_i K\mathcal{M} = \pi_{i+1}BQ\mathcal{M}$.

Special cases:

- $\mathcal{M} = \mathbf{P}(R)$ category of f.g. projective *R*-modules. Set $K_i(R) := K_i \mathbf{P}(R)$.
- $\mathcal{M} = \mathbf{M}(R)$ category of all f.g. *R*-modules. Set $G_i(R) := K_i \mathbf{M}(R)$.

Proposition (Elementary properties).

(a) An exact functor induces a homomorphism of K-groups. For example

- (i) $R \to S$ ring map. Get forgetful functor $\mathbf{P}(S) \to \mathbf{P}(R)$. Get $K_i S \to K_i R$.
- (ii) S a flat R-module, so $-\otimes_R S$ is exact. Get $K_i R \to K_i S$.
- (b) $K_i \mathcal{M}^{\mathrm{op}} \cong K_i \mathcal{M}$.
- (c) $K_i(\mathcal{M} \times \mathcal{M}') \cong K_i\mathcal{M} \times K_i\mathcal{M}'.$
- (d) K_i commutes with filtered colimits.

Plus equals Q.

Theorem. \mathcal{M} a split exact category, $\mathcal{S} = iso \mathcal{M}$. Then $\mathcal{S}^{-1}\mathcal{S} \simeq Q\mathcal{M}$.

Corollary $(\underline{+} = \underline{Q})$. $K_0 R \times BGL(R)^+ \simeq BQ\mathbf{P}(R)$.

Proof. We've proved that if $\mathcal{M} = \mathbf{P}(R)$, then $K_0 R \times BGL(R)^+ \simeq B(\mathcal{S}^{-1}\mathcal{S})$. By the theorem, $B(\mathcal{S}^{-1}\mathcal{S}) \simeq BQ\mathbf{P}(R)$.

Proof of theorem.

Step 1. Define a category \mathcal{E} of exact sequences in \mathcal{M} whose morphisms $(A \rightarrow B \rightarrow C) \rightarrow (A' \rightarrow B' \rightarrow C')$ are equivalence classes of commutative diagrams

(Two such diagrams are equivalent if they are isomorphic via isomorphisms that are the identity except possibly at C''.)

Step 2. Define an action of \mathcal{S} on \mathcal{E} : i.e., $\mathcal{S} \times \mathcal{E} \to \mathcal{E}$ by

$$(s, A \rightarrow B \twoheadrightarrow C) \rightarrow (s \oplus A \rightarrow s \oplus B \twoheadrightarrow C).$$

Thus we can get $\mathcal{S}^{-1}\mathcal{E}$.

Step 3. The functor $q : \mathcal{E} \to Q\mathcal{M}$ defined by $(A \to B \to C) \mapsto C$ induces a functor $\tilde{q} : \mathcal{S}^{-1}\mathcal{E} \to Q\mathcal{M}$.

 $\mathcal{S}^{-1}\mathcal{E}$ is fibered over $Q\mathcal{M}$ by \tilde{q} , i.e., $\tilde{q}^{-1}C \hookrightarrow C \downarrow \tilde{q}$ is a homotopy equivalence for any object C in $Q\mathcal{M}$.

Step 4. Use Quillen's Theorem B to get a fibration sequence

$$B(\mathcal{S}^{-1}\mathcal{S}) \simeq B(\tilde{q}^{-1}C) \to B(\mathcal{S}^{-1}\mathcal{E}) \xrightarrow{B\tilde{q}} BQ\mathcal{M}.$$

The first arrow is induced from $(A \in \mathcal{S}) \mapsto (A \mapsto A \oplus C \twoheadrightarrow C \in q^{-1}C)$.

We get a long exact sequence in homotopy groups.

Step 5. Show that $B(\mathcal{S}^{-1}\mathcal{E})$ is contractible.

- \mathcal{E} is contractible. Using Quillen's Theorem A, can show $\mathcal{E} \simeq iQ\mathcal{M}$, the category $Q\mathcal{M}$ with just the admissible monomorphisms. The category $iQ\mathcal{M}$ has an initial object, and thus is contractible.
- \mathcal{S} acts by homotopy equivalences on \mathcal{E} , so $B\mathcal{E} \to B(\mathcal{S}^{-1}\mathcal{E})$ is a homotopy equivalence.

Combining this with the LES from step 4, we have a weak equivalence which can be promoted to a homotopy equivalence using Whitehead's theorem. \Box

4. Basic properties

The proofs of the basic properties rely on applying Quillen's Theorem A and Theorem B to cleverly constructed categories. Theorem A gives conditions for when a functor $F : \mathcal{C} \to \mathcal{C}'$ is a homotopy equivalence. Theorem B gives a relationship between $\mathcal{C}, \mathcal{C}'$ and $Y \downarrow F$ (Y is an object of \mathcal{C}') in terms of a long exact sequence.

Theorem (Quillen's Theorem A). Let $F : \mathcal{C} \to \mathcal{C}'$ be a functor. If the category $Y \downarrow F$ (or $F \downarrow Y$) is contractible for every object Y of \mathcal{C}' , then the functor F is a homotopy equivalence.

Theorem (Quillen's Theorem B). Let $F : \mathcal{C} \to \mathcal{C}'$ be a functor such that for every arrow $Y \to Y'$ in \mathcal{C}' , the induced functor $Y' \downarrow F \to Y \downarrow F$ is a homotopy equivalence. Then for any object Y of \mathcal{C}' , the square

is homotopy cartesian, where j(X, v) = X, F'(X, v) = (FX, v), and j'(Y', v) = Y'.

Consequently for any X in $F^{-1}(Y)$ (since $Y \downarrow C'$ has an initial object and is contractible), we have an exact sequence

$$\cdots \to \pi_{i+1}(B\mathcal{C}',Y) \to \pi_i(B(Y \downarrow F),\bar{X}) \xrightarrow{j_*} \pi_i(B\mathcal{C},X) \xrightarrow{F_*} \pi_i(B\mathcal{C}',Y) \to \cdots$$

where $\bar{X} = (X, \mathrm{id}_Y)$.

4.1. Additivity.

Theorem (Additivity). $\mathcal{M}, \mathcal{M}'$ exact categories, $0 \to F' \to F \to F'' \to 0$ a SES of exact functors $\mathcal{M} \to \mathcal{M}'$. Then $F_* = F'_* + F''_*$.

Proof sketch. Reduce to universal example: let \mathcal{E} be the category of SES in \mathcal{M} , with usual morphisms unlike before. Let $s, q, t : \mathcal{E} \to \mathcal{M}$ be the sub, quotient, and total object functors. Make \mathcal{E} into an exact category by declaring s, q, t to be exact. It is enough to show that $t_* = s_* + q_*$.

Define $f : \mathcal{M} \times \mathcal{M} \to \mathcal{E}$ by $(M', M'') \mapsto (0 \to M' \to M' \oplus M'' \to M'' \to 0)$. Then $tf = (s \oplus q)f$, and

$$t_*f_* = (s_* + q_*)f_* = s_*f_* + q_*f_*.$$

Want to cancel f_* . Note f_* is a section of $(s \oplus q)_*$; so want to show that $s \oplus q$ is a homotopy equivalence. By Theorem A, enough to show that $\mathcal{C} = (s,q) \downarrow (M,N)$ is contractible for all objects M, N in \mathcal{M} . The objects of \mathcal{C} are triples (E, u, v) where $E \in \text{ob} \mathcal{E}$, and $u : sE \to M$, $v : qE \to N$ are maps in $Q\mathcal{M}$.

We can replace C by its homotopy equivalent full subcategory C'' consisting of (E, u, v)where u is surjective and v is injective. But C'' has an initial object $(0, j_M^!, i_{N!})$, so it's contractible.

Corollary.

(a) $F : \mathcal{M} \to \mathcal{M}'$ exact. $0 = F_0 \subset \cdots \subset F_n = F$ a filtration with $F_{p-1}X \to F_pX$ an admissible mono for each X. If F_p/F_{p-1} is exact, then $F_* = \sum_p (F_p/F_{p-1})_*$.

(b) $0 \to F_0 \to \cdots \to F_n \to 0$ exact. Then $\sum_p (-1)^p (F_p)_* = 0$.

Remark (Eilenberg-Mazur swindle). Why not consider all (not necessarily f.g.) modules? If there exists an exact endofunctor $\infty : \mathcal{M} \to \mathcal{M}$ such that $\infty \simeq 1 \oplus \infty$, then $\infty_* = 1_* + \infty_* \Rightarrow$ $1_* = 0$, i.e., $K\mathcal{M}$ is contractible. In case of all modules, can set $\infty(M) = M \oplus M \oplus \cdots$.

4.2. **Resolution.** Let \mathcal{P} be a full subcategory of a small exact category \mathcal{M} that is closed under extensions. Suppose we can resolve objects in \mathcal{M} by objects in \mathcal{P} . What can we say about $K_i \mathcal{P}$ and $K_i \mathcal{M}$?

Theorem (Resolution). Assume \mathcal{P} is closed under extensions in \mathcal{M} and further that

- (i) for every SES $M' \rightarrow M \rightarrow M''$, if M, M'' are in \mathcal{P} , then so is M'.
- (ii) given $j: M \to P$, there exist $j': P' \to P$ and $f: P' \to M$ such that $j \circ f = j'$ (e.g., if \mathcal{M} "has enough projectives").

Let \mathcal{P}_n be the full subcategory of \mathcal{M} consisting of those objects with projective dimension $\leq n$, and put $\mathcal{P}_{\infty} = \operatorname{colim}_n \mathcal{P}_n$. Then $K_i \mathcal{P} \xrightarrow{\cong} K_i \mathcal{P}_1 \xrightarrow{\cong} \cdots \xrightarrow{\cong} K_i \mathcal{P}_{\infty}$.

Corollary. If R is regular noetherian, then $K_i R \xrightarrow{\cong} G_i R$.

4.3. Dévissage and localization. Let \mathcal{A} be a small <u>abelian category</u>, $\mathcal{B} \subset \mathcal{A}$ a nonempty full subcategory closed under subobjects, quotient objects, and finite products. What can we say about $K_i\mathcal{B}$ and $K_i\mathcal{A}$?

Theorem (Dévissage). Suppose every object M of \mathcal{A} has a finite filtration $0 = M_0 \subset M_1 \subset \cdots \subset M_n = M$ such that M_j/M_{j-1} is in \mathcal{B} for each j. Then $K_i \mathcal{B} \xrightarrow{\cong} K_i \mathcal{A}$.

Setting $\mathcal{B} = \{\text{semisimple objects in } \mathcal{A}\}, \text{ we obtain:}$

Corollary. Suppose every object in \mathcal{A} has finite length. Then $K_i\mathcal{A} \cong \bigoplus_j K_iD_j$ where $\{X_j\}$ are isoclasses of simple objects of \mathcal{A} and $D_j = \operatorname{End}(X_j)^{\operatorname{op}}$.

Theorem (Localization). Let \mathcal{B} be a Serre subcategory of \mathcal{A} and \mathcal{A}/\mathcal{B} be the associated quotient abelian category (same objects as \mathcal{A} but morphisms $A_1 \to A_2$ are elements of $\operatorname{colim}_{A'_1 \subseteq A_1, A'_2 \subseteq A_2} \operatorname{Hom}_{\mathcal{A}}(A'_1, A_2/A'_2)$).

Then there exists a LES

$$\cdots \to K_{i+1}(\mathcal{A}/\mathcal{B}) \to K_i\mathcal{B} \to K_i\mathcal{A} \to K_i(\mathcal{A}/\mathcal{B}) \to \cdots$$

Corollary. R a Dedekind domain, F its fraction field. Have LES

$$\cdots \to K_{i+1}F \to \bigoplus_{\mathfrak{p}} K_i(R/\mathfrak{p}) \to K_iR \to K_iF \to \cdots$$

Proof.

- Apply localization to (torsion *R*-modules) ⊂ M(*R*). Associated quotient category is P(*F*).
- Resolution theorem says $K_i \mathbf{M}(R) \cong K_i R$.
- Dévissage theorem says K_i (torsion *R*-modules) $\cong \bigoplus_{\mathfrak{p}} K_i(R/\mathfrak{p})$.

This is one of the things we originally wanted to generalize!

4.4. Fundamental theorem for rings.

Theorem. R regular noetherian.

(a) $K_i(R[t]) \cong K_i R$ (b) $K_i(R[t, t^{-1}]) \cong K_i(R) \oplus K_{i-1}(R).$

Theorem. R any ring. Have exact sequence

$$0 \to K_i(R) \to K_i(R[t]) \oplus K_i(R[t^{-1}]) \to K_i(R[t,t^{-1}]) \to K_{i-1}R \to 0.$$

Remark.

- The case i = 1 was proved by Bass.
- Can generalize these theorems to *schemes*.

5. Waldhausen K-theory

Reference: Waldhausen, "Algebraic K-Theory of Spaces"

- generalizes Quillen K-theory
- generalized further by Thomason-Trobaugh for complexes; Barwick, etc. for higher categories, ...

Definition. A Waldhausen category is a pointed category C together with subcategories $\operatorname{co} C$ (called <u>cofibrations</u>) and wC (called weak equivalences) satisfying...

Example. Any exact category is Waldhausen by taking admissible monos to be cofibrations and isos to be weak equivalences.

Let \mathcal{C} be a Waldhausen category. Let $[n] = \{0 \leq 1 \leq \cdots \leq n\}$. Consider functors $X : \operatorname{Ar}[n] \to \mathcal{C}, (i, j) \mapsto X(i, j)$ such that

- (i) for $i \in ob[n]$, X(i, i) is a zero object
- (ii) for $i \leq j \leq k$ in $[n], X(i, j) \to X(i, k)$ is a cofibration and

is a pushout square.

- $S_n \mathcal{C}$ is the category of these functors and their natural transformations.
- $wS_n\mathcal{C}$ is the subcategory of these functors with natural transformations $X \to X'$ such that $X(i,j) \xrightarrow{\sim} X'(i,j)$ is a weak equivalence for all $i \leq j$.

i.e., an object in these categories looks like

and is determined by the sequence of cofibrations

$$X(0,1) \rightarrow \cdots \rightarrow X(0,n),$$

together with a choice of cofibers X(i, j) = X(0, j)/X(0, i).

Letting n vary, we obtain simplicial categories

$$S.\mathcal{C} : [n] \mapsto S_n\mathcal{C}$$
$$wS.\mathcal{C} : [n] \mapsto wS_n\mathcal{C}.$$

Consider the geometric realization $|wS.\mathcal{C}|$. Have $|wS_0\mathcal{C}| \cong *$, $|wS_1\mathcal{C}| \cong |w\mathcal{C}|$. So the 1-skeleton of $|wS.\mathcal{C}|$ is obtained by attaching $|w\mathcal{C}| \times |\Delta^1|$ to *, and can be identified as the suspension $S^1 \wedge |w\mathcal{C}|$. The adjoint of the inclusion $S^1 \wedge |w\mathcal{C}| \hookrightarrow |wS.\mathcal{C}|$ gives a map $|w\mathcal{C}| \to \Omega |wS.\mathcal{C}|$. **Definition.** The *K*-theory space of the Waldhausen category \mathcal{C} is $\Omega|wS.\mathcal{C}|$.

Upshot. This gives a <u>spectrum</u>: the S. construction extends to simplicial categories by naturality and can be applied to S.C to produce a bisimplical category S.S.C. Iterating this, this gives a spectrum

$$n \mapsto |wS.^{(n)}\mathcal{C}| := |w\underbrace{S.\dots S}_{n}.\mathcal{C}|$$

whose structure maps are the maps $|w\mathcal{C}| \to \Omega |wS.\mathcal{C}|$ defined above.

This is a Ω -spectrum beyond the first term, and so we may equivalently define the Ktheory space of \mathcal{C} as

$$\Omega^{\infty}|wS.^{(\infty)}\mathcal{C}| = \operatorname{colim}_{n} \Omega^{n}|wS.^{(n)}\mathcal{C}|.$$

Selected references

- [1] Grayson, Daniel R. "Quillen's Work in Algebraic K-theory." Journal of K-theory 11 (2013): 527-47.
- [2] Quillen, Daniel. "Higher Algebraic K-theory: I." Lecture Notes in Mathematics 341 (1973): 85-147
- [3] Grayson, Daniel R. "Higher Algebraic K-theory: II (after Daniel Quillen)." Lecture Notes in Mathematics 551 (1976): 217-40.
- [4] Waldhausen, Friedrich. "Algebraic K-theory of Spaces." Lecture Notes in Mathematics 1126 (1983): 318-419.