
ALGEBRAIC K-THEORY: DEFINITIONS & PROPERTIES
(TALK NOTES)

JUN HOU FUNG

1. Brief history of the lower K-groups

Reference: Grayson, “Quillen’s Work in Algebraic K-Theory”

1.1. The Grothendieck group. Grothendieck’s work in the 60s on generalizing Riemann-

Roch led him to consider vector bundles (coherent sheaves) on an algebraic variety X. These

form a commutative monoid under ⊕, and we may group complete to obtain:

K(X) = 〈[E], E ∈ Vect(X) | [E] = [E ′] + [E ′′] for each SES 0→ E ′ → E → E ′′ → 0〉

Let X = SpecR be affine. Write K0(R) = K(X).

Serre: (vector bundles on SpecR) ←→ (f.g. projective R-modules)

Examples.

(a) F a field (or a PID).

Every projective F -module is free, so K0(F )
dim−−→ Z is an isomorphism.

(b) OK , the ring of integers of a number field K.

It’s a Dedekind domain, so every f.g. projective module has the form On−1
K ⊕I for some

ideal I that is uniquely determined in the ideal class group. So K0(OK) ∼= Z⊕ Cl(K).

1.2. Topological K-theory.

• Motivated by Grothendieck, Atiyah and Hirzebruch studied the situation where X is

a finite simplicial complex.

• Using Σ and Bott periodicity, they constructed a generalized cohomology theory

K∗(X) with K0(X) = K(X).

• Adams introduced cohomology operations ψk on K(X) to study vector fields on

spheres. The ψk’s are characterized by ψk[L] = [L⊗k] for line bundles L. Quillen

later uses these to compute the cohomology of GL(Fq).
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1.3. K1 and K2. Can something similar to topological K-theory be done in the algebraic

setting?

Definition (Bass). K1(R) = GL(R)/[GL(R), GL(R)]

Idea, motivated by Σ: a vector bundle over ΣX is determined by gluing data along the

equator X ⊂ ΣX, i.e., by GL(E) where E is a trivial bundle. Homotopic maps give isomor-

phic bundles, so we should quotient out by “GL(E)◦ ⊇ E(R)”, the subgroup generated by

elementary matrices.

Lemma (Whitehead). [GL(R), GL(R)] = [E(R), E(R)] = E(R).

Let’s compute some K-groups.

Examples.

(a) F a field (or a commutative local ring).

E(F ) = SL(F ), so K1(F ) ∼= F×.

(b) R a commutative ring.

Have determinant map det : K1(R)→ R×. Have splitting R× = GL1(R) ↪→ GL(R)�

K1(R). Thus K1(R) ∼= R× ⊕ SK1(R) where SK1(R) = ker det.

If R = OK , then K1(OK) ∼= O×K ⊕ SK1(OK). By Dirichlet’s unit theorem, O×K ∼=

µ(K)⊕ Zr−1; by Bass-Milnor-Serre, SK1(OK) = 0. So K1(OK) ∼= µ(K)⊕ Zr−1.

Why is this group K1?

Proposition (Localization). R a Dedekind domain, F its fraction field. Have exact se-

quence:

⊕
p

K1(R/p)→ K1(R)→ K1(F )→
⊕
p

K0(R/p)→ K0(R)→ K0(F )→ 0

Looks like the end of some long exact sequence.

Later:

Definition (Milnor). K2(R) = ker(StR→ E(R))
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The Steinberg group StR is the abstract group modelled on elementary matrices with just the

“obvious” relations, so K2(R) is the group of “non-obvious” relations amongst elementary

matrices.

Bass-Tate added K2(F ) to the above localization sequence; Bass further added K2(R).

Remark. Can compute K2 of a field using Matsumoto’s theorem, e.g., K2(Fq) = 0.

2. Quillen’s +-construction

Somehow, need input from homotopy theory to access higher K-groups.

Quillen’s motivation: work on Adams’ conjecture, discussion with Sullivan. Our motiva-

tion: topological K-theory. Recall:

• Complex K-theory represented by spectrum KU = {(Z×)BU,ΩBU, . . .} and U '

BGL(C)

• Real K-theory represented by spectrum KO = {(Z×)BO,ΩBO, . . .} and O '

BGL(R).

For a ring R, we should look at the classifying space BGL(R) and its homotopy groups.

Problems:

• π1BGL(R) = GL(R), not K1(R)

• πiBGL(R) = 0 for i > 1.

Therefore, need to modify BGL(R). Kervaire introduced a construction to kill a perfect

normal subgroup of π1 without changing H∗.

Proposition (+ construction). Let X be a connected pointed CW complex, N E π1X per-

fect. There exists a connected CW complex X+ and a map i : X → X+ such that

(i) π1(i) is the quotient map π1X → π1X
+ ∼= π1X/N .

(ii) H∗(i) is an isomorphism with any system of local coefficients.

Furthermore, this satisfies a universal property: if Y is some other connected space and

f : X → Y is such that N ≤ ker f∗, then there exists f+ : X+ → Y , unique up to homotopy,

such that
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X Y

X+

f

i f+

Therefore, + is functorial up to homotopy.

Sketch of a construction.

(1) Attach 2-cells to kill N E π1X.

(2) Attach 3-cells to correct “noise” in H∗.

The assumption that N is perfect means we can attach 3-cells “precisely”, i.e., without

affecting other H∗ groups. �

Example. Σn symmetric group on n letters, An ≤ Σn alternating group, which is normal

and perfect if n ≥ 5. Take colimits and form BΣ+
∞ with respect to A∞. The theorem of

Barratt-Priddy-Quillen says π∗BΣ+
∞
∼= π∗S.

Back to K-theory: E(R) / GL(R) is perfect, so form BGL(R)+ with respect to E(R).

Definition. Kn(R) = πnBGL(R)+ for n ≥ 1.

By construction, K1R = π1BGL(R)+ = GL(R)/E(R). Can also see this definition agrees

with classical K2 using group cohomology.

Problem: BGL(R)+ is path connected. Ad hoc fix: define K(R) = K0R × BGL(R)+, the

K-theory space of R.

Theorem (Quillen, Gersten-Wagoner). ΩBGL(SR)+ ' K0R×BGL(R)+, where SR is the

“suspension” of R.

Thus obtain a delooping of K(R), i.e., a Ω-spectrum {K0(S
nR)× BGL(SnR)+} whose

n-th homotopy group is KnR.

2.1. Products.

Proposition. BGL(R)+ is a commutative H-group.
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The operation is induced by a map ⊕ : GL(R) × GL(R) → G(R) interweaving rows and

columns:

BGL(R)+ ×BGL(R)+ ' B(GL(R)×GL(R))+
B⊕+

−−−→ BGL(R)+.

Theorem (Loday). There exists a bilinear and associative product KpR⊗KqR→ Kp+q(R⊗

S) that is natural in R and S.

If R is commutative, then KpR⊗KqR→ Kp+qR is graded-commutative.

This product is induced by the tensor product of matrices, appropriately stabilized.

2.2. Group completion.

Definition. A group completion of a homotopy associative, homotopy commutative H-space

X is a map f : X → Y where Y is a homotopy associative, homotopy commutative H-space

such that

(i) f∗ : π0X → π0Y is the group completion of the commutative monoid π0X

(ii) The map (π0X)−1H∗X → H∗Y induced by f is an isomorphism.

Let (S,⊕) be a symmetric monoidal category acting on X (denote this action by ⊕ also).

Define S−1X to be the category whose objects are (s, x) ∈ ob(S ×X ) and whose morphisms

(s, x)→ (t, y) are pairs of equivalence classes of maps u⊕s→ t, u⊕x→ y for some u ∈ obS.

Then S acts on S−1X by s · (t, x) = (t, s⊕ x), and this action is invertible.

Theorem (Quillen). Let S be a symmetric monoidal category in which “translations are

faithful”. Then B(S−1S) is the group completion of BS. We care about the case S =

iso P(R), the category of f.g. projective R-modules with isomorphisms as morphisms.

Proof outline. Condition on π0 is easy to verify. For condition on H∗, construct a spectral

sequence E2
pq = Hp(S−1(∗); (π0S)−1HqS) ⇒ Hp+qS−1S which degenerates to the desired

isomorphism. �

Proposition. S = iso P(R). Then B(S−1S) ' K0R×BGL(R)+.

Proposition follows from two lemmas:
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Lemma. Let S = iso F(R), where F(R) is the category of f.g. free R-modules, so BS '⊔
n≥0BGLn(R). Then B(S−1S) ' Z×BGL(R)+.

Proof. We’ll just show that the basepoint (0, 0) component B(S−1S)0 of B(S−1S) is homo-

topy equivalent to BGL(R)+.

Step 1. Construct a map φ : BGL(R)→ B(S−1S)0.

Define φn : BGLnR → BAut(Rn, Rn) ↪→ B(S−1S)0 to be the map induced by (g ∈

GLnR) 7→ ((g, 1) ∈ Aut(Rn, Rn)). Have homotopy commutative diagram

BGLnR BGLn+1R

B(S−1S)0

φn φn+1

Thus, get map φ : BGL(R) = hocolimnBGLn+1R→ B(S−1S)0

Step 2. Show φ is acyclic (induces H∗-isos).

B(S−1S) is the group completion of BS. Let e be the class of [R] in π0S. Then

H∗B(S−1S) ∼= H∗BS[
1

e
] ∼= colim(H∗BS

(⊕R)∗−−−→ H∗BS
(⊕R)∗−−−→ · · · )

∼= H∗ hocolim(BS ⊕R−−→ BS ⊕R−−→ · · · )

∼= H∗BGL(R).

(Recall that BS is a H-space with operation ⊕.)

Step 3. B0, BGL(R)+ are connected CW H-spaces with same H∗ and π1 (because

π1B(S−1S)0 ∼= H1B(S−1S) ∼= H1BGL(R) = GL(R)/E(R)).

So by the relative Hurewicz theorem, Whitehead’s theorem, etc., BGL(R)+ ' B(S−1S)0. �

Lemma. Let F : S → T be cofinal functors between symmetric monoidal categories (i.e.,

for each t ∈ T , there exists s ∈ S and t′ ∈ T such that t ⊕ t′ ∼= F (s)) such that

AutS(s) = AutT (F (s)) for all s. Then B(S−1S) → B(T −1T ) induces equivalences of base-

point components.

Applying this lemma to F(R) ↪→ P(R), we get

B(S−1S) ' π0BS−1S ×BGL(R)+ ∼= K0R×BGL(R)+.
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3. The Q construction

Reference: Quillen, “Higher Algebraic K-Theory, Vol. I”

Turns out it was difficult to prove the basic theorems of algebraic K-theory using the +

construction. We might expect this from the ad hoc addition of K0(R), which is divorced

from homotopy theory. In 1972, Quillen came up with a new definition of K∗. The natural

setting for this construction is exact categories.

Definition. An exact category is an additive category M equipped with a family E of

“exact sequences” satisfying. . .

Think: an abelian category with usual exact sequences; even more concretely: P(R), the

category of f.g. projective R-modules.

If

0→M ′ →M →M ′′ → 0

is an exact sequence, then we call M ′ →M an admissible monomorphism (�) and M →M ′′

an admissible epimorphism (�).

Let M be a (small) exact category.

Construction (Q construction). Define a new category QM whose objects are the same as

M and whose morphisms M →M ′ are equivalence classes of diagrams M � N �M ′ (two

diagrams are equivalent if there is an isomorphism of diagrams inducing the identity on M

and M ′).

Composition (M ′ � N ′�M ′′) ◦ (M � N �M ′) is given by

N ×M ′ N
′ N ′ M ′′

N M ′

M

Given an admissible mono M
i
� M ′ in M, get a morphism i! : M

id
� M

i
� M ′ in QM,

called injective.
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Given an admissible epi M ′ j
� M in M, get a morphism j! : M

j
� M ′ id

� M ′ in QM,

called surjective.

Proposition. M  QM is universal for assignments M  C, where C has “injective”,

“surjective” maps satisfying . . . . That is, given C, exists functor QM→ C such that. . . .

Key theorem:

Theorem (Quillen). π1(BQM, 0) ∼= K0M.

Remark. Quillen’s original proof uses coverings, morphism-inverting functors, etc.

Proof of theorem. Want to give a presentation of π1BQM; look at 2-skeleton of BQM.

Let T = {iM ! : 0 → M}. This is a maximal tree in the 1-skeleton of BQM. Collapse

T , and see that π1BQM is generated by morphisms [f ] in QM modulo relations [iM !] = 1,

[f ◦ g] = [f ][g].

• If i : M �M ′ is any admissible mono, then [i!] = 1. Proof: can express i! into terms

of iM ! and iM ′!.

• If j : M ′ � M is any admissible epi, then [j!] can be expressed in terms of [j!M ] and

[j!M ′ ]. (Here, jM is the map M � 0.) Proof: same as above.

• Every morphism in QM factors as i! ◦ j! tautologically, so π1BQM is generated by

{[i!], [j!]}, i.e., just by [j!M ] because of previous two points.

Now suppose M ′ i
� M

j
� M ′′ is an exact sequence in M. Claim: j! ◦ iM ′′! = i! ◦ j!M ′ .

Proof:

M ′ M M

0 M ′′

0

jM′ j

i

iM′′

Therefore, [j!] = [j!M ′ ]. So,

[j!M ] = [(jM ′′ ◦ j)!] = [j! ◦ j!M ′′ ] = [j!][j!M ′′ ] = [j!M ′ ][j
!
M ′′ ].
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This is the additivity relation.

Conversely, every relation [f ][g] = [f ◦ g] can be rewritten in terms of the additivity

relation. Given g : M � N �M ′ and f : M ′ � N ′�M ′′), their composite is given by

N ×M ′ N
′ N ′ M ′′

N M ′

M

Let K = ker(N ′ � M ′) ∼= ker(N ×M N ′ � N), let K ′ = ker(N ×M N ′ � M) and

K ′′ = ker(N �M). Then K � K ′ � K ′′ is exact, so [j!K′ ] = [j!K ][j!K′′ ]. Then

[f ◦ g] = [j!N×M′N
][j!M ]−1 = [j!K′ ] = [j!K ][j!K′′ ] = ([j!N ′ ][j

!
M ′ ]
−1)([j!N ][j!M ]−1) = [f ][g].

Therefore,

π1BQM = 〈[j!M ], M ∈ obM | [j!M ] = [j!M ′ ][j
!
M ′′ ] for each SES M ′�M �M ′′〉 ∼= K0M.

�

Definition. KM = ΩBQM. KiM = πiKM = πi+1BQM.

Special cases:

• M = P(R) category of f.g. projective R-modules. Set Ki(R) := KiP(R).

• M = M(R) category of all f.g. R-modules. Set Gi(R) := KiM(R).

Proposition (Elementary properties).

(a) An exact functor induces a homomorphism of K-groups. For example

(i) R→ S ring map. Get forgetful functor P(S)→ P(R). Get KiS → KiR.

(ii) S a flat R-module, so −⊗R S is exact. Get KiR→ KiS.

(b) KiMop ∼= KiM.

(c) Ki(M×M′) ∼= KiM×KiM′.

(d) Ki commutes with filtered colimits.
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Plus equals Q.

Theorem. M a split exact category, S = isoM. Then S−1S ' QM.

Corollary (+ = Q). K0R×BGL(R)+ ' BQP(R).

Proof. We’ve proved that ifM = P(R), then K0R×BGL(R)+ ' B(S−1S). By the theorem,

B(S−1S) ' BQP(R). �

Proof of theorem.

Step 1. Define a category E of exact sequences in M whose morphisms (A� B � C)→

(A′� B′ � C ′) are equivalence classes of commutative diagrams

A B C

A′ B C ′′

A′ B C ′

(Two such diagrams are equivalent if they are isomorphic via isomorphisms that are the

identity except possibly at C ′′.)

Step 2. Define an action of S on E : i.e., S × E → E by

(s, A� B � C) 7→ (s⊕ A� s⊕B � C).

Thus we can get S−1E .

Step 3. The functor q : E → QM defined by (A � B � C) 7→ C induces a functor

q̃ : S−1E → QM.

S−1E is fibered over QM by q̃, i.e., q̃−1C ↪→ C ↓ q̃ is a homotopy equivalence for any

object C in QM.

Step 4. Use Quillen’s Theorem B to get a fibration sequence

B(S−1S) ' B(q̃−1C)→ B(S−1E)
Bq̃−→ BQM.

The first arrow is induced from (A ∈ S) 7→ (A� A⊕ C � C ∈ q−1C).

We get a long exact sequence in homotopy groups.
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Step 5. Show that B(S−1E) is contractible.

• E is contractible. Using Quillen’s Theorem A, can show E ' iQM, the category QM

with just the admissible monomorphisms. The category iQM has an initial object,

and thus is contractible.

• S acts by homotopy equivalences on E , so BE → B(S−1E) is a homotopy equivalence.

Combining this with the LES from step 4, we have a weak equivalence which can be

promoted to a homotopy equivalence using Whitehead’s theorem. �

4. Basic properties

The proofs of the basic properties rely on applying Quillen’s Theorem A and Theorem B to

cleverly constructed categories. Theorem A gives conditions for when a functor F : C → C ′

is a homotopy equivalence. Theorem B gives a relationship between C, C ′ and Y ↓ F (Y is

an object of C ′) in terms of a long exact sequence.

Theorem (Quillen’s Theorem A). Let F : C → C ′ be a functor. If the category Y ↓ F (or

F ↓ Y ) is contractible for every object Y of C ′, then the functor F is a homotopy equivalence.

Theorem (Quillen’s Theorem B). Let F : C → C ′ be a functor such that for every arrow

Y → Y ′ in C ′, the induced functor Y ′ ↓ F → Y ↓ F is a homotopy equivalence. Then for

any object Y of C ′, the square

Y ↓ F C

Y ↓ C ′ C ′

j

F ′ F

j′

is homotopy cartesian, where j(X, v) = X, F ′(X, v) = (FX, v), and j′(Y ′, v) = Y ′.

Consequently for any X in F−1(Y ) (since Y ↓ C ′ has an initial object and is contractible),

we have an exact sequence

· · · → πi+1(BC ′, Y )→ πi(B(Y ↓ F ), X̄)
j∗−→ πi(BC, X)

F∗−→ πi(BC ′, Y )→ · · ·

where X̄ = (X, idY ).
11



4.1. Additivity.

Theorem (Additivity). M,M′ exact categories, 0 → F ′ → F → F ′′ → 0 a SES of exact

functors M→M′. Then F∗ = F ′∗ + F ′′∗ .

Proof sketch. Reduce to universal example: let E be the category of SES in M, with usual

morphisms unlike before. Let s, q, t : E →M be the sub, quotient, and total object functors.

Make E into an exact category by declaring s, q, t to be exact. It is enough to show that

t∗ = s∗ + q∗.

Define f : M×M → E by (M ′,M ′′) 7→ (0 → M ′ → M ′ ⊕ M ′′ → M ′′ → 0). Then

tf = (s⊕ q)f , and

t∗f∗ = (s∗ + q∗)f∗ = s∗f∗ + q∗f∗.

Want to cancel f∗. Note f∗ is a section of (s⊕q)∗; so want to show that s⊕q is a homotopy

equivalence. By Theorem A, enough to show that C = (s, q) ↓ (M,N) is contractible for all

objects M,N inM. The objects of C are triples (E, u, v) where E ∈ ob E , and u : sE →M ,

v : qE → N are maps in QM.

We can replace C by its homotopy equivalent full subcategory C ′′ consisting of (E, u, v)

where u is surjective and v is injective. But C ′′ has an initial object (0, j!M , iN !), so it’s

contractible. �

Corollary.

(a) F : M → M′ exact. 0 = F0 ⊂ · · · ⊂ Fn = F a filtration with Fp−1X � FpX an

admissible mono for each X. If Fp/Fp−1 is exact, then F∗ =
∑

p(Fp/Fp−1)∗.

(b) 0→ F0 → · · · → Fn → 0 exact. Then
∑

p(−1)p(Fp)∗ = 0.

Remark (Eilenberg-Mazur swindle). Why not consider all (not necessarily f.g.) modules? If

there exists an exact endofunctor∞ :M→M such that∞ ' 1⊕∞, then∞∗ = 1∗+∞∗ ⇒

1∗ = 0, i.e., KM is contractible. In case of all modules, can set ∞(M) = M ⊕M ⊕ · · · .

4.2. Resolution. Let P be a full subcategory of a small exact category M that is closed

under extensions. Suppose we can resolve objects in M by objects in P . What can we say

about KiP and KiM?

Theorem (Resolution). Assume P is closed under extensions in M and further that
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(i) for every SES M ′�M �M ′′, if M,M ′′ are in P, then so is M ′.

(ii) given j : M � P , there exist j′ : P ′ � P and f : P ′ →M such that j ◦ f = j′ (e.g., if

M “has enough projectives”).

Let Pn be the full subcategory of M consisting of those objects with projective dimension

≤ n, and put P∞ = colimnPn. Then KiP
∼=−→ KiP1

∼=−→ · · ·
∼=−→ KiP∞.

Corollary. If R is regular noetherian, then KiR
∼=−→ GiR.

4.3. Dévissage and localization. Let A be a small abelian category, B ⊂ A a nonempty

full subcategory closed under subobjects, quotient objects, and finite products. What can

we say about KiB and KiA?

Theorem (Dévissage). Suppose every object M of A has a finite filtration 0 = M0 ⊂M1 ⊂

· · · ⊂Mn = M such that Mj/Mj−1 is in B for each j. Then KiB
∼=−→ KiA.

Setting B = {semisimple objects in A}, we obtain:

Corollary. Suppose every object in A has finite length. Then KiA ∼=
⊕

j KiDj where {Xj}

are isoclasses of simple objects of A and Dj = End(Xj)
op.

Theorem (Localization). Let B be a Serre subcategory of A and A/B be the associated

quotient abelian category (same objects as A but morphisms A1 → A2 are elements of

colimA′1⊆A1, A′2⊆A2
HomA(A′1, A2/A

′
2)).

Then there exists a LES

· · · → Ki+1(A/B)→ KiB → KiA → Ki(A/B)→ · · · .

Corollary. R a Dedekind domain, F its fraction field. Have LES

· · · → Ki+1F →
⊕
p

Ki(R/p)→ KiR→ KiF → · · · .

Proof.

• Apply localization to (torsion R-modules) ⊂M(R). Associated quotient category is

P(F ).

• Resolution theorem says KiM(R) ∼= KiR.

• Dévissage theorem says Ki(torsion R-modules) ∼=
⊕

pKi(R/p).
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�

This is one of the things we originally wanted to generalize!

4.4. Fundamental theorem for rings.

Theorem. R regular noetherian.

(a) Ki(R[t]) ∼= KiR

(b) Ki(R[t, t−1]) ∼= Ki(R)⊕Ki−1(R).

Theorem. R any ring. Have exact sequence

0→ Ki(R)→ Ki(R[t])⊕Ki(R[t−1])→ Ki(R[t, t−1])→ Ki−1R→ 0.

Remark.

• The case i = 1 was proved by Bass.

• Can generalize these theorems to schemes.

5. Waldhausen K-theory

Reference: Waldhausen, “Algebraic K-Theory of Spaces”

• generalizes Quillen K-theory

• generalized further by Thomason-Trobaugh for complexes; Barwick, etc. for higher

categories, . . .

Definition. A Waldhausen category is a pointed category C together with subcategories

co C (called cofibrations) and wC (called weak equivalences) satisfying. . .

Example. Any exact category is Waldhausen by taking admissible monos to be cofibrations

and isos to be weak equivalences.

Let C be a Waldhausen category. Let [n] = {0 ≤ 1 ≤ · · · ≤ n}. Consider functors

X : Ar[n]→ C, (i, j) 7→ X(i, j) such that

(i) for i ∈ ob[n], X(i, i) is a zero object

(ii) for i ≤ j ≤ k in [n], X(i, j)→ X(i, k) is a cofibration and
14



X(i, j) X(i, k)

X(j, j) X(j, k)

is a pushout square.

• SnC is the category of these functors and their natural transformations.

• wSnC is the subcategory of these functors with natural transformations X → X ′ such

that X(i, j)
∼−→ X ′(i, j) is a weak equivalence for all i ≤ j.

i.e., an object in these categories looks like

X(0, 0) X(0, 1) · · · X(0, n)

X(1, 1) · · · X(1, n)

· ...

X(n, n)

and is determined by the sequence of cofibrations

X(0, 1)� · · ·� X(0, n),

together with a choice of cofibers X(i, j) = X(0, j)/X(0, i).

Letting n vary, we obtain simplicial categories

S.C : [n] 7→ SnC

wS.C : [n] 7→ wSnC.

Consider the geometric realization |wS.C|. Have |wS0C| ∼= ∗, |wS1C| ∼= |wC|. So the

1-skeleton of |wS.C| is obtained by attaching |wC| × |∆1| to ∗, and can be identified as

the suspension S1 ∧ |wC|. The adjoint of the inclusion S1 ∧ |wC| ↪→ |wS.C| gives a map

|wC| → Ω|wS.C|.
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Definition. The K-theory space of the Waldhausen category C is Ω|wS.C|.

Upshot. This gives a spectrum: the S. construction extends to simplicial categories by

naturality and can be applied to S.C to produce a bisimplical category S.S.C. Iterating this,

this gives a spectrum

n 7→ |wS.(n)C| := |wS. . . . S︸ ︷︷ ︸
n

.C|

whose structure maps are the maps |wC| → Ω|wS.C| defined above.

This is a Ω-spectrum beyond the first term, and so we may equivalently define the K-

theory space of C as

Ω∞|wS.(∞)C| = colimn Ωn|wS.(n)C|.
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