ALGEBRAIC K-THEORY: DEFINITIONS & PROPERTIES
(TALK NOTES)

JUN HOU FUNG

1. BRIEF HISTORY OF THE LOWER K-GROUPS
Reference: Grayson, “Quillen’s Work in Algebraic K-Theory”

1.1. The Grothendieck group. Grothendieck’s work in the 60s on generalizing Riemann-

Roch led him to consider vector bundles (coherent sheaves) on an algebraic variety X. These

form a commutative monoid under ¢, and we may group complete to obtain:
K(X)=([E], E € Vect(X) | [E] = |[E'] + [E"] for each SES0 — E' — E — E" — 0)

Let X = Spec R be affine. Write Ky(R) = K(X).

Serre: (vector bundles on Spec R) +—  (f.g. projective R-modules)

Examples.

(a) F afield (or a PID).
Every projective F-module is free, so K(F') 4m 7, is an isomorphism.
(b) Ok, the ring of integers of a number field K.
It’s a Dedekind domain, so every f.g. projective module has the form O% '@ for some

ideal I that is uniquely determined in the ideal class group. So Ky(Ok) = Z @ CI(K).

1.2. Topological K-theory.
e Motivated by Grothendieck, Atiyah and Hirzebruch studied the situation where X is
a finite simplicial complex.

e Using ¥ and Bott periodicity, they constructed a generalized cohomology theory
K*(X) with K°(X) = K(X).

e Adams introduced cohomology operations ¥* on K(X) to study vector fields on
spheres. The 9"’s are characterized by ¢*[L] = [L®*] for line bundles L. Quillen

later uses these to compute the cohomology of GL(F,).
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1.3. K; and K,. Can something similar to topological K-theory be done in the algebraic

setting?
Definition (Bass). Ki(R) = GL(R)/|[GL(R),GL(R)]

Idea, motivated by X: a vector bundle over XX is determined by gluing data along the
equator X C XX, i.e., by GL(F) where F is a trivial bundle. Homotopic maps give isomor-
phic bundles, so we should quotient out by “GL(E)° O E(R)”, the subgroup generated by

elementary matrices.

Lemma (Whitehead). [GL(R), GL(R)|] = [E(R), E(R)] = E(R).
Let’s compute some K-groups.

Examples.

(a) F a field (or a commutative local ring).
E(F)=SL(F), so Ky(F) = F*.
(b) R a commutative ring.
Have determinant map det : K1(R) — R*. Have splitting R* = GL,(R) — GL(R) —
Ki(R). Thus K;(R) = R* & SK;(R) where SK;(R) = ker det.
If R = Ok, then K1(Ok) = O & SK(Ok). By Dirichlet’s unit theorem, O =
w(K) & Z™1; by Bass-Milnor-Serre, SK1(Ok) = 0. So K1(Ok) = u(K) ® Z™*.

Why is this group K;?

Proposition (Localization). R a Dedekind domain, F its fraction field. Have exact se-

quence:

P Ei(R/p) = Ki(R) = Ki(F) = @D Ko(R/p) = Ko(R) = Ko(F) = 0
p p

Looks like the end of some long exact sequence.

Later:

Definition (Milnor). Ky(R) = ker(St R — E(R))
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The Steinberg group St R is the abstract group modelled on elementary matrices with just the
“obvious” relations, so Ky(R) is the group of “non-obvious” relations amongst elementary

matrices.

Bass-Tate added K»(F') to the above localization sequence; Bass further added Ks(R).

Remark. Can compute K of a field using Matsumoto’s theorem, e.g., K5(F,) = 0.

2. QUILLEN’S +-CONSTRUCTION

Somehow, need input from homotopy theory to access higher K-groups.

Quillen’s motivation: work on Adams’ conjecture, discussion with Sullivan. Our motiva-

tion: topological K -theory. Recall:

e Complex K-theory represented by spectrum KU = {(Zx)BU,QBU,...} and U ~
BGL(C)

e Real K-theory represented by spectrum KO = {(Zx)BO,QBO,...} and O ~
BGL(R).

For a ring R, we should look at the classifying space BGL(R) and its homotopy groups.

Problems:

e mBGL(R) = GL(R), not K;(R)
e m,BGL(R) =0 for i > 1.

Therefore, need to modify BGL(R). Kervaire introduced a construction to kill a perfect

normal subgroup of m; without changing H,.

Proposition (+ construction). Let X be a connected pointed CW complex, N < m X per-

fect. There exists a connected CW compler X and a map i : X — X+ such that
(i) m1(2) is the quotient map mX — m X+t = m X/N.

(i1) H.(i) is an isomorphism with any system of local coefficients.

Furthermore, this satisfies a universal property: if Y is some other connected space and
f: X —Y is such that N < ker f,, then there exists f+: XT — Y, unique up to homotopy,
such that
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Therefore, + is functorial up to homotopy.

Sketch of a construction.

(1) Attach 2-cells to kill N < 7 X.

(2) Attach 3-cells to correct “noise” in H,.

The assumption that N is perfect means we can attach 3-cells “precisely”, i.e., without

affecting other H, groups. O

Example. ¥, symmetric group on n letters, A, < 3, alternating group, which is normal
and perfect if n > 5. Take colimits and form BXT with respect to A.,. The theorem of
Barratt-Priddy-Quillen says m,BX% = 7,S.

Back to K-theory: E(R)<GL(R) is perfect, so form BGL(R)" with respect to E(R).
Definition. K, (R) = m,BGL(R)" for n > 1.

By construction, K1 R = m BGL(R)* = GL(R)/E(R). Can also see this definition agrees
with classical Ky using group cohomology.
Problem: BGL(R)" is path connected. Ad hoc fix: define K(R) = KoR x BGL(R)", the
K-theory space of R.

Theorem (Quillen, Gersten-Wagoner). QBGL(SR)* ~ KoR x BGL(R)", where SR is the

“suspension” of R.

Thus obtain a delooping of K (R), i.e., a Q-spectrum {Ky(S"R) x BGL(S"R)*} whose
n-th homotopy group is K, R.

2.1. Products.

Proposition. BGL(R)" is a commutative H-group.
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The operation is induced by a map @ : GL(R) x GL(R) — G(R) interweaving rows and

columns:
BGL(R)Jr X BGL(R)Jr ~ B(GL(R) x GL(R))Jr E BGL(R)*.

Theorem (Loday). There ezists a bilinear and associative product K,RQ K,R — K, ,(R®
S) that is natural in R and S.
If R is commutative, then K,R ® K R — K, ,R is graded-commutative.

This product is induced by the tensor product of matrices, appropriately stabilized.
2.2. Group completion.

Definition. A group completion of a homotopy associative, homotopy commutative H-space
X isamap f: X — Y where Y is a homotopy associative, homotopy commutative H-space

such that

(1) fe:mX — mY is the group completion of the commutative monoid myX

(ii) The map (7m0 X) 'H,X — H.Y induced by f is an isomorphism.

Let (S, @) be a symmetric monoidal category acting on X' (denote this action by @ also).
Define S7X to be the category whose objects are (s, ) € ob(S x X) and whose morphisms
(s,z) — (t,y) are pairs of equivalence classes of maps u®s — t, udx — y for some u € ob S.

Then S acts on ST'X by s - (t,2) = (t,5 D ), and this action is invertible.

Theorem (Quillen). Let S be a symmetric monoidal category in which “translations are
faithful”.  Then B(S™'S) is the group completion of BS. We care about the case S =

iso P(R), the category of f.g. projective R-modules with isomorphisms as morphisms.

Proof outline. Condition on 7 is easy to verify. For condition on H,, construct a spectral
sequence E> = H,(S7'(x); (m0S) ' H,S) = HpyS—'S which degenerates to the desired

isomorphism. O
Proposition. § = iso P(R). Then B(S87'S) ~ KoR x BGL(R)*.

Proposition follows from two lemmas:



Lemma. Let § = isoF(R), where F(R) is the category of f.g. free R-modules, so BS ~
Ll,o0 BGLu(R). Then B(S™'S) = Z x BGL(R)*.

Proof. We'll just show that the basepoint (0,0) component B(S™1S), of B(S™'S) is homo-
topy equivalent to BGL(R)*.
Step 1. Construct a map ¢ : BGL(R) — B(S71S)q.

Define ¢, : BGL,R — BAut(R",R") — B(S87'S)y to be the map induced by (g €
GL,R) — ((g,1) € Aut(R", R")). Have homotopy commutative diagram

BGL,R BGL, 1R
B(S_18)0

Thus, get map ¢ : BGL(R) = hocolim,, BGL, ;1R — B(S71S),
Step 2. Show ¢ is acyclic (induces H,-isos).
B(S8718) is the group completion of BS. Let e be the class of [R] in myS. Then

1 . .
H.B(S™'S) = H.BS|_| = colim(H.BS © . ps By
= H, hocolim(BS 2R ps 5 .. -)
~ H.BGL(R).

(Recall that BS is a H-space with operation @.)
Step 3. By, BGL(R)" are connected CW H-spaces with same H, and m; (because

mB(S88)y = HB(S™'S) & HiBGL(R) = GL(R)/E(R)).
So by the relative Hurewicz theorem, Whitehead’s theorem, etc., BGL(R)" ~ B(S7'S),. O

Lemma. Let F': § — T be cofinal functors between symmetric monoidal categories (i.e.,
for each t € T, there exists s € S and t' € T such that t ® ¢ = F(s)) such that
Auts(s) = Autr(F(s)) for all s. Then B(S™'S) — B(T 'T) induces equivalences of base-

point components.
Applying this lemma to F(R) — P(R), we get

B(S7'S) ~ m1yBS™'S x BGL(R)" = KoR x BGL(R)™".
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3. THE () CONSTRUCTION

Reference: Quillen, “Higher Algebraic K-Theory, Vol. I”

Turns out it was difficult to prove the basic theorems of algebraic K-theory using the +
construction. We might expect this from the ad hoc addition of Ky(R), which is divorced
from homotopy theory. In 1972, Quillen came up with a new definition of K,. The natural

setting for this construction is exact categories.

Definition. An ezact category is an additive category M equipped with a family & of

“exact sequences” satisfying. ..

Think: an abelian category with usual exact sequences; even more concretely: P(R), the
category of f.g. projective R-modules.
If
0—-M —-M-—>M"—0

is an exact sequence, then we call M" — M an admissible monomorphism (—) and M — M"
an admissible epimorphism (—).

Let M be a (small) exact category.

Construction () construction). Define a new category Q.M whose objects are the same as

M and whose morphisms M — M’ are equivalence classes of diagrams M « N — M’ (two

diagrams are equivalent if there is an isomorphism of diagrams inducing the identity on M

and M').
Composition (M" «= N' — M")o (M « N — M’) is given by
N X N’ N’ M
N M’
M

i id i
Given an admissible mono M — M’ in M, get a morphism 4, : M « M — M’ in QM,

called injective.



j j id
Given an admissible epi M’ % M in M, get a morphism j' : M LM S M QM,

called surjective.

Proposition. M ~~ QM is universal for assignments M ~» C, where C has “injective”,

“surjective” maps satisfying . ... That is, given C, exists functor QM — C such that. . ..

Key theorem:

Theorem (Quillen). m;(BQM,0) = KoM.
Remark. Quillen’s original proof uses coverings, morphism-inverting functors, etc.

Proof of theorem. Want to give a presentation of 7 BQM; look at 2-skeleton of BQM.
Let T = {ippn : 0 — M}. This is a maximal tree in the 1-skeleton of BQM. Collapse
T, and see that m BQM is generated by morphisms [f] in QM modulo relations [iyn] = 1,

[f og] = [fllg]-

o Ifi: M »— M’ is any admissible mono, then [ij] = 1. Proof: can express ¢ into terms
of ipn and 7p1.

o If j : M' — M is any admissible epi, then [j'] can be expressed in terms of [j},] and
[jhs]. (Here, js is the map M —» 0.) Proof: same as above.

e Every morphism in QM factors as i, o j' tautologically, so m BQM is generated by

{[i1], [7']}, i.e., just by [j},] because of previous two points.

i J . . . N . . .0
Now suppose M’ — M — M" is an exact sequence in M. Claim: j o iy = 4 0 Jyp-
Proof:
i
M’ M M
Im J

Therefore, [5'] = [j},]. So,

] = [Garr 0 9)'] = [ ojjgn] = [3'1lae] = Lina)ldan]-



This is the additivity relation.

Conversely, every relation [f][g] = [f o g] can be rewritten in terms of the additivity

relation. Given g : M «-= N — M’ and f: M’ «~ N’ — M"), their composite is given by

NXM/N/ N’ M
N M’
M

Let K = ker(N' — M') = ker(N xpr N' — N), let K = ker(N xp N — M) and
K" =ker(N — M). Then K ~ K' — K" is exact, 5o [jk] = [j%][jk~]. Then

1

[f 0 gl = v, Wl ™" = Uil = li)lier) = i) ™) Unlnd ™) = [f1g)-

Therefore,
mBQM = ([j3,], M € ob M | [55,] = [jrr]lir] for each SES M’ »— M — M") = K M.
O
Definition. KM = QBOQM. KM =1, KM = 7.1 BQM.

Special cases:

e M = P(R) category of f.g. projective R-modules. Set K;(R) := K;P(R).
e M = M(R) category of all f.g. R-modules. Set G;(R) := K;M(R).

Proposition (Elementary properties).

(a) An ezact functor induces a homomorphism of K-groups. For example
(i) R — S ring map. Get forgetful functor P(S) — P(R). Get K;S — K;R.
(i) S a flat R-module, so — ®g S is exact. Get K;R — K;S.

(b) K;MP = K;M.

(c) KiiMx M) = K,M x KM

(d) K; commutes with filtered colimits.



Plus equals Q.
Theorem. M a split exact category, S = iso M. Then S71S ~ QM.
Corollary (+ = Q). KoR x BGL(R)* ~ BQP(R).

Proof. We've proved that if M = P(R), then KgRx BGL(R)" ~ B(S™'S). By the theorem,
B(S-18) ~ BQP(R). 0
Proof of theorem.

Step 1. Define a category £ of exact sequences in M whose morphisms (A — B — C) —

(A" — B’ — (") are equivalence classes of commutative diagrams

A B C
A B c’
A B C’

(Two such diagrams are equivalent if they are isomorphic via isomorphisms that are the
identity except possibly at C".)
Step 2. Define an action of S on &: i.e., S x £ — &€ by

(s,A—B—-»C) — (s®dA—s®B—»C).

Thus we can get S™1&.
Step 3. The functor q : &€ — QM defined by (A — B — () +— C induces a functor
G:S& = QM.

S~1€ is fibered over QM by g, i.e., G 'C — C | G is a homotopy equivalence for any
object C'in QM.
Step 4. Use Quillen’s Theorem B to get a fibration sequence

B(S7!S) ~ B(G7'C) — B(S'&) 2% BOM.

The first arrow is induced from (A€ S) —~ (A— ADC - C € ¢1C).

We get a long exact sequence in homotopy groups.
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Step 5. Show that B(S™'€) is contractible.

e & is contractible. Using Quillen’s Theorem A, can show £ ~ iQ M, the category QM
with just the admissible monomorphisms. The category iQQM has an initial object,
and thus is contractible.

e S acts by homotopy equivalences on £, so BE — B(S71€) is a homotopy equivalence.

Combining this with the LES from step 4, we have a weak equivalence which can be

promoted to a homotopy equivalence using Whitehead’s theorem. 0

4. BASIC PROPERTIES

The proofs of the basic properties rely on applying Quillen’s Theorem A and Theorem B to
cleverly constructed categories. Theorem A gives conditions for when a functor F' : C — ('
is a homotopy equivalence. Theorem B gives a relationship between C, ¢’ and Y | F' (Y is

an object of C’) in terms of a long exact sequence.

Theorem (Quillen’s Theorem A). Let F' : C — C' be a functor. If the category Y | F (or
F 1Y) is contractible for every object Y of C', then the functor F' is a homotopy equivalence.

Theorem (Quillen’s Theorem B). Let F' : C — C' be a functor such that for every arrow
Y — Y in C', the induced functor Y | FF — Y | F is a homotopy equivalence. Then for
any object Y of C', the square

J

YIF C
F“ BF
Y lc c’

.

J

is homotopy cartesian, where j(X,v) = X, F'(X,v) = (FX,v), and j/(Y',v) =Y".
Consequently for any X in F~Y(Y) (since Y | C' has an initial object and is contractible),

we h(l’l)@ an exact sequence
o (BCLY) = m(B(Y L F),X) 2 m(BC, X) L m(BCY) = - -

where X = (X, idy).



4.1. Additivity.

Theorem (Additivity). M, M’ ezact categories, 0 — F' — F — F" — 0 a SES of ezact
functors M — M’'. Then F, = F. + F!.

Proof sketch. Reduce to universal example: let £ be the category of SES in M, with usual
morphisms unlike before. Let s,q,t: £ — M be the sub, quotient, and total object functors.
Make £ into an exact category by declaring s,q,t to be exact. It is enough to show that
te = Sy + .

Define f : M x M — Eby (M M") — (0 - M — M &M" - M" — 0). Then
tf = (s g)f, and

tfe = (S + @) fr = Sufu + QS

Want to cancel f,. Note f, is a section of (s®q).; so want to show that s@®q is a homotopy
equivalence. By Theorem A, enough to show that C = (s,q) | (M, N) is contractible for all
objects M, N in M. The objects of C are triples (E, u,v) where E € ob&, and u : sE — M,
v:qFE — N are maps in QM.

We can replace C by its homotopy equivalent full subcategory C” consisting of (E,u,v)
where u is surjective and v is injective. But C” has an initial object (0,j},,in), so it’s

contractible. ]

Corollary.

(a) F: M — M exact. 0 =F, C --- C F, = F a filtration with F, 1 X — F,X an
admissible mono for each X. If F},/F, 1 is exact, then Fi. =3 (F,/F)1)..

(b) 0= Fy — - = F, = 0 exvact. Then ) (—1)P(F}). = 0.

Remark (Eilenberg-Mazur swindle). Why not consider all (not necessarily f.g.) modules? If
there exists an exact endofunctor co : M — M such that co >~ 16 oo, then oo, = 1,400, =

1. =0, i.e., KM is contractible. In case of all modules, can set co(M)=M &M & ---.

4.2. Resolution. Let P be a full subcategory of a small exact category M that is closed
under extensions. Suppose we can resolve objects in M by objects in P. What can we say
about K;P and K;M?

Theorem (Resolution). Assume P is closed under extensions in M and further that
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(i) for every SES M' — M — M", if M, M" are in P, then so is M.
(i1) given j: M — P, there exist j': P' - P and f : P' — M such that jo f =7 (e.g., if
M “has enough projectives”).

Let P, be the full subcategory of M consisting of those objects with projective dimension
<n, and put Py = colim,, P,,. Then K;P =N K;P: .05 KP.

Corollary. If R is reqular noetherian, then K;R = G4R.

4.3. Dévissage and localization. Let A be a small abelian category, B C A a nonempty

full subcategory closed under subobjects, quotient objects, and finite products. What can

we say about K;B and K;A?

Theorem (Dévissage). Suppose every object M of A has a finite filtration 0 = My C M; C
-+ C M, = M such that M;/M;_; is in B for each j. Then K;B = KA.

Setting B = {semisimple objects in A}, we obtain:

Corollary. Suppose every object in A has finite length. Then K; A = P, K;D; where {X;}
are isoclasses of simple objects of A and D; = End(X)°P.

Theorem (Localization). Let B be a Serre subcategory of A and A/B be the associated
quotient abelian category (same objects as A but morphisms Ay — As are elements of
colim g ca,, ayca, Hom 4 (A7, Ay /A5) ).

Then there exists a LES
o= K (A/B) » KB — KA — Ki(A/B) — - .
Corollary. R a Dedekind domain, F' its fraction field. Have LES

o= Ko F = @ Ki(R/p) = KiR — K;F — - .
p

Proof.
e Apply localization to (torsion R-modules) C M(R). Associated quotient category is
P(F).
e Resolution theorem says K;M(R) = K;R.

e Dévissage theorem says K;(torsion R-modules) = P, Ki(R/p).
13



This is one of the things we originally wanted to generalize!

4.4. Fundamental theorem for rings.

Theorem. R regular noetherian.
(a) Ki(R[t]) = KR
(b) K;(R[t,t7']) = K;(R) ® K;_1(R).

Theorem. R any ring. Have exact sequence

Remark.

e The case 1 = 1 was proved by Bass.

e Can generalize these theorems to schemes.

5. WALDHAUSEN K-THEORY

Reference: Waldhausen, “Algebraic K-Theory of Spaces”

e generalizes Quillen K-theory
e generalized further by Thomason-Trobaugh for complexes; Barwick, etc. for higher

categories, ...

Definition. A Waldhausen category is a pointed category C together with subcategories

coC (called cofibrations) and wC (called weak equivalences) satisfying. ..

Example. Any exact category is Waldhausen by taking admissible monos to be cofibrations

and isos to be weak equivalences.

Let C be a Waldhausen category. Let [n] = {0 < 1 < --- < n}. Consider functors
X : Ar[n] = C, (4,4) — X (4, j) such that
(i) for i € ob[n|, X(i,1) is a zero object

(ii) for i < j <k in [n], X(4,5) — X (4, k) is a cofibration and
14



|

is a pushout square.

e 5,C is the category of these functors and their natural transformations.
e wS,C is the subcategory of these functors with natural transformations X — X’ such
that X (i,7) — X'(i, ) is a weak equivalence for all i < j.

i.e., an object in these categories looks like

X(0,0) —— X(0,1) X (0,n)
X(1,1) X(1,n)
X(n,n)

and is determined by the sequence of cofibrations
X(0,1) — -+ — X(0,n),

together with a choice of cofibers X (i, j) = X (0,7)/X(0,1).

Letting n vary, we obtain simplicial categories

S.C:[n]— S,C

wS.C : [n] = wS,C.

Consider the geometric realization |wS.C|. Have |wSoC| = *, |[wSiC| = |wC|. So the

1-skeleton of |wS.C| is obtained by attaching |wC| x |A'| to *, and can be identified as

the suspension S! A |wC|. The adjoint of the inclusion S' A |wC| < |wS.C| gives a map

|lwC| — QwS.C|.
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Definition. The K-theory space of the Waldhausen category C is Q|wS.C|.

Upshot. This gives a spectrum: the S. construction extends to simplicial categories by
naturality and can be applied to S.C to produce a bisimplical category S.S5.C. Iterating this,
this gives a spectrum

ni— [ws."M¢| = |ws....S.C|
N—_——

whose structure maps are the maps |wC| — Q|wS.C| defined above.
This is a {2-spectrum beyond the first term, and so we may equivalently define the K-
theory space of C as
Q> |wS.*)¢| = colim,, Q"|wS.MC|.
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