Spectra and G-spectra

Eric Peterson

September 23, 2015

 $http://math.harvard.edu/\~ecp/latex/talks/intro-to-spectra.pdf$

Cell structures

Definition

A *cell structure* on a pointed space X is an inductive presentation by iteratively attaching n-disks:

$$\bigvee S^{n-1} \longrightarrow X^{(n-1)}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\bigvee D^n \longrightarrow X^{(n)}.$$

Cell structures

Definition

A *cell structure* on a pointed space X is an inductive presentation by iteratively attaching n-disks:

$$\bigvee S^{n-1} \longrightarrow X^{(n-1)}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\bigvee D^n \longrightarrow X^{(n)}.$$

Suspension Σ is an operation on spaces which preserves gluing squares, and $\Sigma S^{n-1} \simeq S^n$ and $\Sigma D^n \simeq D^{n+1}$. So, Σ is a "shift operator" on cell structures.

Cell structures

Definition

A *cell structure* on a pointed space X is an inductive presentation by iteratively attaching n-disks:

$$\bigvee S^{n-1} \longrightarrow X^{(n-1)}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\bigvee D^n \longrightarrow X^{(n)}.$$

Suspension Σ is an operation on spaces which preserves gluing squares, and $\Sigma S^{n-1} \simeq S^n$ and $\Sigma D^n \simeq D^{n+1}$. So, Σ is a "shift operator" on cell structures.

Theorem ("Stability")

$$H^{n}(X; A) \cong H^{n+1}(\Sigma X; A),$$

 $\Sigma H^{*}(X; A) \cong H^{*}(\Sigma X; A).$

Suspension: Freudenthal's theorem

Calculation: $ au$	r_* of	a s	uspens	sion					
n	1	2	3	4	5	6	7	8	Ī

n	1	2	3	4	5	6	1	8	
$\pi_n S^1$	\mathbb{Z}	0	0	0	0	0	0	0	
$\pi_{n+1}\Sigma S^1$	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/12$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/3$	

Suspension: Freudenthal's theorem

Calculation: π_* of a suspension

n	1	2	3	4	5	6	7	8	
$\pi_n S^1$	\mathbb{Z}	0	0	0	0	0	0	0	
$\pi_{n+1}\Sigma S^1$	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/12$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/3$	

Theorem (Freudenthal)

- X: s-connected space $(\pi_{* \leq s} X = 0)$
- Y: t-connective space $(\pi_{*< t} Y = 0)$

Then

$$F(Y,X) \rightarrow F(\Sigma Y, \Sigma X)$$

is a (2s - t)-equivalence.

Suspension: Freudenthal's theorem

Calculation: π_* of a suspension

n	1	2	3	4	5	6	7	8	
$\pi_n S^1$									
$\pi_{n+1}\Sigma S^1$	\mathbb{Z}	\mathbb{Z}	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/12$	$\mathbb{Z}/2$	$\mathbb{Z}/2$	$\mathbb{Z}/3$	

Theorem (Freudenthal)

- X: s-connected space $(\pi_{* \leq s} X = 0)$
- Y: t-connective space $(\pi_{*< t} Y = 0)$

Then

$$F(Y,X) \rightarrow F(\Sigma Y, \Sigma X)$$

is a (2s - t)-equivalence.

Corollary

The 2 matters: $\pi_n F(\Sigma^m Y, \Sigma^m X)$ is independent of $m \gg n$.

Suspension spectra

Definition

Call " $\Sigma^{\infty}X$ " the suspension spectrum of X.

$$[\Sigma^{\infty}Y, \Sigma^{\infty}X] = \mathsf{colim}_m[\Sigma^mY, \Sigma^mX]$$

Suspension spectra

Definition

Call " $\Sigma^{\infty}X$ " the suspension spectrum of X.

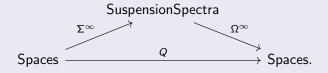
$$\begin{split} [\Sigma^{\infty}Y, \Sigma^{\infty}X] &= \mathsf{colim}_m[\Sigma^mY, \Sigma^mX] \\ &= \mathsf{colim}_m[Y, \Omega^m\Sigma^mX] \\ &= [Y, \mathsf{colim}_m \, \Omega^m\Sigma^mX] =: [Y, QX]. \end{split}$$

Suspension spectra

Definition

Call " $\Sigma^{\infty}X$ " the suspension spectrum of X.

$$\begin{split} [\Sigma^{\infty}Y, \Sigma^{\infty}X] &= \mathsf{colim}_m[\Sigma^mY, \Sigma^mX] \\ &= \mathsf{colim}_m[Y, \Omega^m\Sigma^mX] \\ &= [Y, \mathsf{colim}_m \, \Omega^m\Sigma^mX] =: [Y, QX]. \end{split}$$



The Eilenberg–Mac Lane spectrum

Good news: stable invariants

 $\pi_* \Sigma^{\infty} X = [\Sigma^{\infty} S^*, \Sigma^{\infty} X]$ is a stable invariant of X.

The Eilenberg-Mac Lane spectrum

Good news: stable invariants

 $\pi_* \Sigma^{\infty} X = [\Sigma^{\infty} S^*, \Sigma^{\infty} X]$ is a stable invariant of X.

On the other side, the sequence $Q\Sigma^*X$ represents a stable functor. This is because $Q\Sigma X$ deloops QX: $\Omega(Q\Sigma X) = QX$. Hence,

$$[\Sigma Y, Q\Sigma^*X] = [Y, \Omega Q\Sigma^*X] = [Y, Q\Sigma^{*-1}X.]$$

The Eilenberg-Mac Lane spectrum

Good news: stable invariants

 $\pi_* \Sigma^{\infty} X = [\Sigma^{\infty} S^*, \Sigma^{\infty} X]$ is a stable invariant of X.

On the other side, the sequence $Q\Sigma^*X$ represents a stable functor. This is because $Q\Sigma X$ deloops QX: $\Omega(Q\Sigma X)=QX$. Hence,

$$[\Sigma Y, Q\Sigma^*X] = [Y, \Omega Q\Sigma^*X] = [Y, Q\Sigma^{*-1}X.]$$

Bad news: not all stable invariants

K(A, n) represents a stable functor too:

$$[Y, K(A, n)] = H^n(Y; A).$$

K(A, n + 1) deloops K(A, n), but $K(A, n) \neq QX$ for any X.

The Eilenberg-Mac Lane spectrum

$$\pi_* \Sigma^\infty K(A, n) = \begin{cases} A & \text{if } * = n, \\ 0 & \text{if } * \le 2n, * \ne n, \\ \text{mystery groups} & \text{if } * > 2n. \end{cases}$$

So, "colim_n $\Sigma^{-n}\Sigma^{\infty}K(A, n)$ " has the right homotopy groups.

The Eilenberg–Mac Lane spectrum

$$\pi_* \Sigma^\infty \mathcal{K}(A, n) = \begin{cases} A & \text{if } * = n, \\ 0 & \text{if } * \leq 2n, * \neq n, \\ \text{mystery groups} & \text{if } * > 2n. \end{cases}$$

So, "colim_n $\Sigma^{-n}\Sigma^{\infty}K(A, n)$ " has the right homotopy groups.

Definition (Boardman, more or less)

A *spectrum* is an ind-diagram of things like $\Sigma^{-n}\Sigma^{\infty}X$.

The Eilenberg–Mac Lane spectrum is presented by the ind-system

$$HA := \{ \Sigma^{-n} \Sigma^{\infty} K(A, n) \}.$$

Smash product, representability

Theorem (Boardman)

The smash product \wedge lifts from spaces to spectra:

$$\{\Sigma^{n_{\alpha}}\Sigma^{\infty}X_{\alpha}\}\wedge\{\Sigma^{m_{\beta}}\Sigma^{\infty}Y_{\beta}\}=:\{\Sigma^{n_{\alpha}+m_{\beta}}\Sigma^{\infty}(X_{\alpha}\wedge Y_{\beta})\}.$$

It has an adjoint, the function spectrum: $[Z \wedge Y, X] \simeq [Z, X^Y]$.

Smash product, representability

Theorem (Boardman)

The smash product \land lifts from spaces to spectra:

$$\{\Sigma^{n_{\alpha}}\Sigma^{\infty}X_{\alpha}\}\wedge\{\Sigma^{m_{\beta}}\Sigma^{\infty}Y_{\beta}\}=:\{\Sigma^{n_{\alpha}+m_{\beta}}\Sigma^{\infty}(X_{\alpha}\wedge Y_{\beta})\}.$$

It has an adjoint, the function spectrum: $[Z \wedge Y, X] \simeq [Z, X^Y]$.

Theorem

$$X \mapsto \pi_*(HA \wedge \Sigma^{\infty}X)$$
 and $X \mapsto \pi_{-*}(HA^{\Sigma^{\infty}X})$

satisfy the axioms of ordinary (co)homology with A coefficients.

Smash product, representability

Theorem (Boardman)

The smash product \wedge lifts from spaces to spectra:

$$\{\Sigma^{n_{\alpha}}\Sigma^{\infty}X_{\alpha}\}\wedge\{\Sigma^{m_{\beta}}\Sigma^{\infty}Y_{\beta}\}=:\{\Sigma^{n_{\alpha}+m_{\beta}}\Sigma^{\infty}(X_{\alpha}\wedge Y_{\beta})\}.$$

It has an adjoint, the function spectrum: $[Z \wedge Y, X] \simeq [Z, X^Y]$.

$\mathsf{Theorem}$

$$X \mapsto \pi_*(HA \wedge \Sigma^{\infty}X)$$
 and $X \mapsto \pi_{-*}(HA^{\Sigma^{\infty}X})$

satisfy the axioms of ordinary (co)homology with A coefficients.

Theorem (Brown, Atiyah)

For $E_*(-)$ and $E^*(-)$ generalized (co)homology theories, there is a spectrum E such that

$$\widetilde{E}_*(X) \cong \pi_*(E \wedge \Sigma^\infty X)$$
 and $\widetilde{E}^*(X) = \pi_{-*}(E^{\Sigma^\infty X}).$

Gluing homology theories

Moral

Spectra are an enrichment of homology theories where homotopy theory can be done.

Gluing homology theories

Moral

Spectra are an enrichment of homology theories where homotopy theory can be done.

Example: Quotient sequences

The quotient sequence $\mathbb{S} \xrightarrow{2} \mathbb{S} \to \mathbb{S}/2$ induces an exact sequence

Spectra guarantee that these problems have consistent solutions.

$$(a\circ(b\circ c))\to((a\circ b)\circ c)$$

$$(a \circ (b \circ c)) o ((a \circ b) \circ c) \qquad \qquad \leadsto \qquad S^0 o F(E^{\wedge 3}, E)$$

Ring-valued cohomology theories induce multiplication maps on representing spectra. In homotopy theory, associativity is a structure rather than a property:

Leads to quasicategories and A_{∞} -rings ("coherently associative"). It pays off: A_{∞} -rings have a good theory of modules,

Generalized cellular chains

Theorem (Atiyah–Hirzebruch)

Let E be a generalized homology theory and X a cellular space.

$$E_{p,q}^1 = C_p^{\text{cell}}(X; E_q) \Rightarrow E_{p+q}X.$$

Generalized cellular chains

Theorem (Atiyah–Hirzebruch)

Let E be a generalized homology theory and X a cellular space.

$$E_{p,q}^1 = C_p^{\text{cell}}(X; E_q) \Rightarrow E_{p+q}X.$$

A cell structure suspends to a presentation of $\Sigma^{\infty}X$ by shifts of wedges of \mathbb{S} . Applying $E \wedge -$ to these diagrams give a presentation of $E \wedge \Sigma^{\infty}X$ by shifts of wedges of E.

Generalized cellular chains

Theorem (Atiyah–Hirzebruch)

Let E be a generalized homology theory and X a cellular space.

$$E_{p,q}^1 = C_p^{\text{cell}}(X; E_q) \Rightarrow E_{p+q}X.$$

A cell structure suspends to a presentation of $\Sigma^{\infty}X$ by shifts of wedges of \mathbb{S} . Applying $E \wedge -$ to these diagrams give a presentation of $E \wedge \Sigma^{\infty}X$ by shifts of wedges of E.

For E = HA, there is a sense in which $HA \wedge \Sigma^{\infty}X \simeq C_*(X; A)$.

$$E \wedge \Sigma^{\infty} X \iff$$
 "E-chains on X".

In good cases, this is "base change" from $\mathbb S$ to E.

Intermission

Basics of equivariant homotopy theory

Where spaces had points, G-spaces have orbits:

$$G/H \xrightarrow{\text{equivariant}} X$$
.

Different choices of $H \leq G$ stratify the space:

$$G/H \mapsto F_G(G/H_+, X) = X^H.$$

Basics of equivariant homotopy theory

Where spaces had points, G-spaces have orbits:

$$G/H \xrightarrow{\text{equivariant}} X.$$

Different choices of $H \leq G$ stratify the space:

$$G/H \mapsto F_G(G/H_+, X) = X^H.$$

Definitions

$$\underline{\pi}_n(X): G/H \mapsto [G/H_+ \wedge S^n, X]_G = \pi_n X^H$$

A weak equivalence of G-spaces is a G-map which is a $\underline{\pi}_*$ -iso. That is, for each H

$$\pi_* X^H \xrightarrow{\simeq} \pi_* Y^H$$
.

Definition

A *G-cell structure* on a pointed *G*-space X is a presentation by iteratively attaching n-disks of the form $G/H_+ \wedge D^n$ along images of $G/H_+ \wedge S^{n-1}$.

Definition

A G-cell structure on a pointed G-space X is a presentation by iteratively attaching n-disks of the form $G/H_+ \wedge D^n$ along images of $G/H_+ \wedge S^{n-1}$.

We would like a cohomology theory that controls the obstructions to extending maps of G-cell complexes across a new cell, analogous to the role of ordinary cohomology.

Definition

A G-cell structure on a pointed G-space X is a presentation by iteratively attaching n-disks of the form $G/H_+ \wedge D^n$ along images of $G/H_+ \wedge S^{n-1}$.

We would like a cohomology theory that controls the obstructions to extending maps of G-cell complexes across a new cell, analogous to the role of ordinary cohomology.

$$\underline{C}^n(X;\underline{M}): G/H \mapsto \operatorname{\mathsf{Hom}}(H_n((X^H)^n,(X^H)^{n-1}),\underline{M}(G/H)).$$

Satisfies the "obvious" Eilenberg-Steenrod axioms.

Definition

A G-cell structure on a pointed G-space X is a presentation by iteratively attaching n-disks of the form $G/H_+ \wedge D^n$ along images of $G/H_+ \wedge S^{n-1}$.

We would like a cohomology theory that controls the obstructions to extending maps of G-cell complexes across a new cell, analogous to the role of ordinary cohomology.

$$\underline{C}^n(X;\underline{M}): G/H \mapsto \operatorname{Hom}(H_n((X^H)^n,(X^H)^{n-1}),\underline{M}(G/H)).$$

Satisfies the "obvious" Eilenberg-Steenrod axioms.

Warning

This works, but it's not great. No Poincaré duality, for instance.

Bredon cohomology

Question

Sphere could also mean $S^V := V^+$ for V a G-representation.

When can a representation be put in for * in $\underline{H}^*(X; \underline{M})$?

Bredon cohomology

Question

Sphere could also mean $S^V := V^+$ for V a G-representation.

When can a representation be put in for * in $\underline{H}^*(X; \underline{M})$?

Answer

Exactly when \underline{M} is a *Mackey functor*:

for any G-map $f: G/H \to G/K$ we choose a "transfer map" $t(f): M(G/H) \to M(G/K)$

satisfying a "double coset formula" reminiscent of character theory. (The definition is set up so that $G/H \mapsto \text{Rep}(H)$ fits.)

Bredon cohomology

Question

Sphere could also mean $S^V := V^+$ for V a G-representation.

When can a representation be put in for * in $\underline{H}^*(X; \underline{M})$?

Answer

Exactly when \underline{M} is a *Mackey functor*:

for any
$$G$$
-map $f: G/H \to G/K$ we choose a "transfer map" $t(f): \underline{M}(G/H) \to \underline{M}(G/K)$

satisfying a "double coset formula" reminiscent of character theory. (The definition is set up so that $G/H \mapsto \text{Rep}(H)$ fits.)

These are great: Poincaré duality and everything else you could hope for.

G-spectra

Definitions, redux

Define suspension *G*–spectra by

$$[\Sigma_G^{\infty} Y, \Sigma_G^{\infty} X]_G = [Y, \operatorname{colim}_V \Omega^V \Sigma^V X]_G.$$

Equivariant Freudenthal says this colimit is degenerate. G-spectra are ind-systems of S^V -desuspensions of suspension G-spectra.

G-spectra

Definitions, redux

Define suspension *G*–spectra by

$$[\Sigma_G^{\infty} Y, \Sigma_G^{\infty} X]_G = [Y, \operatorname{colim}_V \Omega^V \Sigma^V X]_G.$$

Equivariant Freudenthal says this colimit is degenerate. G-spectra are ind-systems of S^V -desuspensions of suspension G-spectra.

Theorem, redux

For $\underline{E}_{\star}(-)$ and $\underline{E}^{\star}(-)$ generalized Bredon (co)homology theories (i.e., $\star = V$ is allowed), there is a G-spectrum E such that

$$\underline{\widetilde{E}}_{\star}(X) \cong \underline{\pi}_{\star}(E \wedge \Sigma_G^{\infty}X) \quad \text{and} \quad \underline{\widetilde{E}}^{\star}(X) = \underline{\pi}_{-\star}(E^{\Sigma_G^{\infty}X}).$$

G-spectra

Definitions, redux

Define suspension *G*–spectra by

$$[\Sigma_G^{\infty} Y, \Sigma_G^{\infty} X]_G = [Y, \operatorname{colim}_V \Omega^V \Sigma^V X]_G.$$

Equivariant Freudenthal says this colimit is degenerate. G-spectra are ind-systems of S^V -desuspensions of suspension G-spectra.

Theorem, redux

For $\underline{E}_{\star}(-)$ and $\underline{E}^{\star}(-)$ generalized Bredon (co)homology theories (i.e., $\star = V$ is allowed), there is a G-spectrum E such that

$$\underline{\widetilde{E}}_{\star}(X) \cong \underline{\pi}_{\star}(E \wedge \Sigma_G^{\infty} X) \quad \text{and} \quad \underline{\widetilde{E}}^{\star}(X) = \underline{\pi}_{-\star}(E^{\Sigma_G^{\infty} X}).$$

Theorem, redux

For any Mackey functor \underline{M} , there is an Eilenberg–Mac Lane G–spectrum $H\underline{M}$ presenting Bredon cohomology $\underline{H}^*(-; M)$.

Stable fixed points

We built G-spaces so that they carry fixed point data: " X^{H} ". This splits into three notions of fixed points for G-spectra:

• Geometric:
$$\Phi^H(\Sigma_G^\infty X) = \Sigma^\infty X^H,$$

$$\Phi^H(\operatorname{colim}_\alpha \{X_\alpha\}) = \operatorname{colim}_\alpha \{\Phi^H X_\alpha\},$$

$$\Phi^H(X \wedge Y) = \Phi^H(X) \wedge \Phi^H(Y).$$

- Categorical: $[E, X^H] = [E, X]_H$, $\underline{\pi}_n(X) : G/H \mapsto \pi_n X^H$.
- Homotopical: $X^{hH} = F_H(EH_+, X)$.

Stable fixed points

We built G-spaces so that they carry fixed point data: " X^{H} ". This splits into three notions of fixed points for G-spectra:

- Categorical: $[E, X^H] = [E, X]_H$, $\underline{\pi}_n(X) : G/H \mapsto \pi_n X^H$.
- Homotopical: $X^{hH} = F_H(EH_+, X)$.

There is a map of fiber sequences

$$? \longrightarrow X^{H} \longrightarrow \Phi^{H}(X)$$

$$\downarrow \qquad \qquad \downarrow$$

$$X_{hH} \longrightarrow X^{hH} \longrightarrow X^{tH}.$$

Generally, this is the best we can say.

Stable fixed points

We built G-spaces so that they carry fixed point data: " X^{H} ". This splits into three notions of fixed points for G-spectra:

• Geometric:
$$\Phi^H(\Sigma_G^{\infty}X) = \Sigma^{\infty}X^H,$$

$$\Phi^H(\operatorname{colim}_{\alpha}\{X_{\alpha}\}) = \operatorname{colim}_{\alpha}\{\Phi^HX_{\alpha}\},$$

$$\Phi^H(X \wedge Y) = \Phi^H(X) \wedge \Phi^H(Y).$$

- Categorical: $[E, X^H] = [E, X]_H$, $\underline{\pi}_n(X) : G/H \mapsto \pi_n X^H$.
- Homotopical: $X^{hH} = F_H(EH_+, X)$.

There is a map of fiber sequences

Generally, this is the best we can say.

"Tate spectrum"

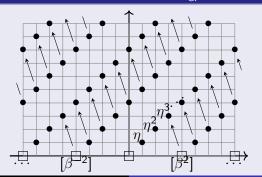
Advertisement: $KO \simeq KU^{hC_2}$

KU exists as a C_2 -spectrum with action by complex conjugation. $X_{hH} \longrightarrow X^H \longrightarrow \Phi^H(X)$ $KO = KO \longrightarrow *$ $KO = KO \longrightarrow *$ $KO \longrightarrow KO \longrightarrow *$ $KO \longrightarrow KO \longrightarrow *$

Advertisement: $KO \simeq KU^{hC_2}$

$$KU$$
 exists as a C_2 -spectrum with action by complex conjugation. $X_{hH} \longrightarrow X^H \longrightarrow \Phi^H(X)$ $KO = KO \longrightarrow *$ $KO = KO \longrightarrow *$ $KO = KO \longrightarrow *$ $KO = KO \longrightarrow *$

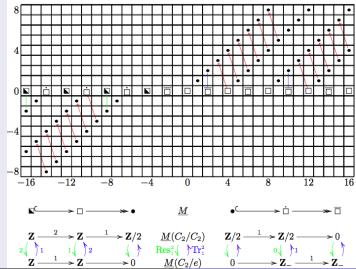
Homotopy fixed point spectral sequence: $H_{gp}^*(C_2; \pi_*KU) \Rightarrow \pi_*KO$



Advertisement: $KO \simeq KU^{C_2}$

Slice spectral sequence (Dugger)

You can also get the homotopy groups as Mackey functors.



Advertisement: THH

Theorem (McCarthy)

Let $f:R\to S$ be a surjection of rings with nilpotent kernel. Then there is a pullback square

$$\begin{array}{ccc} \mathcal{K}(R)^{\wedge}_{p} & \stackrel{\text{``trace''}}{\longrightarrow} & \mathcal{T}C(R)^{\wedge}_{p} \\ \downarrow & & \downarrow \\ \mathcal{K}(S)^{\wedge}_{p} & \stackrel{\text{``trace''}}{\longrightarrow} & \mathcal{T}C(S)^{\wedge}_{p}, \end{array}$$

where

$$TC(R) = \operatorname{fib}\left(\lim_{n \to \infty} THH(R)^{C_{p^n}} \xrightarrow{R - \operatorname{id}} \lim_{n \to \infty} THH(R)^{C_{p^n}}\right)$$

and THH is the subject of this (and the Thursday) seminar.

Advertisement: THH

Theorem (McCarthy)

Let $f:R\to S$ be a surjection of rings with nilpotent kernel. Then there is a pullback square

$$\begin{array}{ccc} \mathcal{K}(R)^{\wedge}_{p} & \stackrel{\text{``trace''}}{\longrightarrow} & \mathcal{T}C(R)^{\wedge}_{p} \\ \downarrow & & \downarrow \\ \mathcal{K}(S)^{\wedge}_{p} & \stackrel{\text{``trace''}}{\longrightarrow} & \mathcal{T}C(S)^{\wedge}_{p}, \end{array}$$

where

$$TC(R) = \operatorname{fib}\left(\lim_{n \to \infty} THH(R)^{C_{p^n}} \xrightarrow{R - \operatorname{id}} \lim_{n \to \infty} THH(R)^{C_{p^n}}\right)$$

and THH is the subject of this (and the Thursday) seminar.

There are lots of theorems along these lines, relating equivariant structure on THH to sundry things in algebraic K-theory.