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1.1. Why we care. Start with a ring A and look at the category PA of finitely generated
projective moduels. Then (|PA|,⊕) (where |PA| means classifying space of the category) is
a coherently commutative (i.e. E∞) monoid. Then K(A) is the group completion of this.
There are many explicit constructions. Here’s one: K(A) = BGL(A)+ × Z.

This can be extended to Waldhausen categories (categories with a notion of weak equivalence
and cofibrations). Because of the group completion above, π0K(A) is the (algebraic) group
completion of the monoid of finitely-generated projective A-modules (up to isomorphism),
under direct sums. The idea is that it’s sometimes easier to understand the group completion
of something than the starting monoid.

Examples 1.1.

• If you take K-theory of the category of pointed sets, you get the sphere spectrum. (This
is Barratt-Priddy-Quillen.)

• If you take K-theory of the category of vector bundles over X, you get topological K-
theory K(X).

• “K(Z) knows about arithmetic” – it’s related to conjectures in number theory.

• K(Σ∞ΩM+) ' Σ∞M+∨Wh(M) (where the latter is the Whitehead spectrum, a geomet-
ric gadget related to the stable h-cobordisms of M). This equivalence is a big theorem
of Waldhausen-Jahren-Rognes. Weiss-Williams showed that you can use this to get in-
formation about diffeomorphism groups.

One of the first computations was the algebraic K-theory of finite fields.

Theorem 1.2 (Quillen).

πiK(Fq) =


Z i = 0

Z/(qj − 1)Z i = 2j − 1

0 else.

Proof idea. The main point is to define a homology isomorphism θ : BGL(Fq)→ hofib(ψq−1)
such that kerπiθ = E(Fq), elementary matrices. (Here ψ is a map BU → BU .) �

Another important K-theory is K(Z); it’s not complete, because of number theory. This
calculation spans over 50 years; information is very scattered, but Weibel has a book about
it, and another good reference is lecture notes by Soulé.

K0(Z) is easy: a finitely-generated projective Z-module is just a free Z-module, and those
are classified by dimension.

• K0(Z) = Z
• K1(Z) = Z/2 (?)

• K2(Z) = Z/2
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• K3(Z) = Z/48 (much harder, due to Lee-Szczarba)

• K4(Z) = 0 (Rognes, about 2000, very hard)

• K5(Z) = Z (Soulé and others)

Conjecture 1.3. K4m(Z) = 0 for m ≥ 1 (but K8 is not known).

Theorem 1.4 (Kurihara, ∼2000). The above conjecture is equivalent to the Vandiver con-
jecture.

Everything else is known.

Theorem 1.5 (Quillen). Kn(Z) is finitely generated.

Theorem 1.6 (Borel).

Kn(Z) =

{
Z⊕ finite n ≡ 1 (mod 4)

finite otherwise.

Proof. For N � q:

• Hq(SLN (Z);R) ∼= Hq
cts(SLN (R);R).

• H∗cts(SLN (R)) = Λ(e5, e9, . . . , e4bN−1
2 c)

• Kq(Z)⊗ R ∼= πqBSL(Z)+ ⊗ R
�

The rest of the calculation of K(Z) follows from:

Theorem 1.7 (Soulé/Dwyer-Friedlander, Voevodsky-Rost).

K2n−1(Z)⊗ Zp
∼=→ H1

ét(SpecZ[1p ],Zp(n))

K2n−2(Z)⊗ Zp
∼=→ H2

ét(SpecZ[1p ],Zp(n))

for n ≥ 2 and p an odd prime.

A slightly more general series of techniques is given by trace methods. The idea: map
K-theory to a more treatable object: THH or TC. This construction is due to Böbstedt-
Hshiang-Madsen. These methods were introduced for figuring out the K-theoretic Novikov
conjecture, which says that the assembly map

BG+ ∧K(Z)→ K(Z[G])

is rationally split injective assuming some finiteness conditions on G. (This is due to BHM.)

Waldhausen showed that there is a map Σ∞+X → K(Σ∞ΩX+) =: A(X) that has a splitting.
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If I ⊂ A is an ideal, let K̃(A) := hofib(K(A) → K(A/I)). For example, if I = (x) and
A = k[x]/xn for a perfect field, then

K̃(k[x]/xn) =

{
Wnk(k)/Vn(Wq(h)) i = 2q − 1

0 otherwise.

(Here Vn is the Verschiebung and W is Witt vectors.) This is due to Hesselholt-Madsen.

You can get information about K(S) in terms of K(Z).

1.2. The trace. Topological Hochschild homology is:

THH(A) = A⊗̂S1

Think of this as configurations of points in S1 with labels in A. If A is not commutative you
can still do this. There is an S1 action on THH(A). You can talk about the fixed points of
this action. Then topological cyclic homology TC(A) is defined using those fised points.

The trace is a map K(A) → TC(A). You can extend the THH construction to categories.
The map K(A)→ TC(A) roughly takes c 7→ the configuration of points labelled by 1c.

Theorem 1.8 (Dundas-Goodwillie-McCarthy). If B → A is surjective and nilpotent fiber in
π0 then

K(B) //

��

TC(B)

��

K(A) // TC(A)

is homotopy cartesian (after p-completion).

One example of such a map is the Hurewicz map, which gives rise to a cartesian square

K(S) //

��

TC(S)

��

K(Z) // TC(Z)

K(Z) is more-or-less understood. TC(S) is known, by work of BHM, and TC(Z) is known,
due to Böbstedt-Madsen and Rognes. Blumberg-Mandell used this to show that K(S)∧p →
TC(S)∧p ×K(Z)∧p is split injective (in π∗) for all odd p.

The proof was scattered over 25 years. It’s the main application of Goodwillie calculus.

Proof idea.

• Dundas: reduce to simplicial rings.

• Goodwillie: reduce to rings. If you have a simplicial ring, you can either take the K-
theory in the category of simplicial rings, or you can take K-theory levelwise (much
easier). In general, these are not at all the same thing, but it works out for the homotopy
fiber K(B)→ K(A).

• Reduce inductively to split square-zero extensions AoM → A.
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• Extend K(AoM) to a functor: make the Dold-Thom construction M(−) (bimodule of
configurations of points in your space with labels in M). So you get a functor K(A o
M(−)) : Top∗ → Sp. Do the same for TC.

• Use calculus: show that D1K ' D1TC, by showing D1K ' THH(A,M(S1 ∧ −)) '
D1TC (actually for the last equivalence you have to p-complete. This is due to Dundas-

McCarthy and Hesselholt). By calculus, K̃ ' T̃C.

�
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