1. Emanuele Dotto, 09/16

1.1. Why we care. Start with a ring A and look at the category P_A of finitely generated projective moduels. Then $(|P_A|, \oplus)$ (where $|P_A|$ means classifying space of the category) is a coherently commutative (i.e. E_{∞}) monoid. Then K(A) is the group completion of this. There are many explicit constructions. Here's one: $K(A) = BGL(A)^+ \times \mathbb{Z}$.

This can be extended to Waldhausen categories (categories with a notion of weak equivalence and cofibrations). Because of the group completion above, $\pi_0 K(A)$ is the (algebraic) group completion of the monoid of finitely-generated projective A-modules (up to isomorphism), under direct sums. The idea is that it's sometimes easier to understand the group completion of something than the starting monoid.

Examples 1.1.

- If you take K-theory of the category of pointed sets, you get the sphere spectrum. (This is Barratt-Priddy-Quillen.)
- If you take K-theory of the category of vector bundles over X, you get topological K-theory K(X).
- " $K(\mathbb{Z})$ knows about arithmetic" it's related to conjectures in number theory.
- $K(\Sigma^{\infty}\Omega M_{+}) \simeq \Sigma^{\infty} M_{+} \lor Wh(M)$ (where the latter is the Whitehead spectrum, a geometric gadget related to the stable *h*-cobordisms of *M*). This equivalence is a big theorem of Waldhausen-Jahren-Rognes. Weiss-Williams showed that you can use this to get information about diffeomorphism groups.

One of the first computations was the algebraic K-theory of finite fields.

Theorem 1.2 (Quillen).

$$\pi_i K(\mathbb{F}_q) = \begin{cases} \mathbb{Z} & i = 0\\ \mathbb{Z}/(q^j - 1)\mathbb{Z} & i = 2j - 1\\ 0 & else. \end{cases}$$

Proof idea. The main point is to define a homology isomorphism $\theta : BGL(\mathbb{F}_q) \to \text{hofib}(\psi^q - 1)$ such that ker $\pi_i \theta = E(\mathbb{F}_q)$, elementary matrices. (Here ψ is a map $BU \to BU$.)

Another important K-theory is $K(\mathbb{Z})$; it's not complete, because of number theory. This calculation spans over 50 years; information is very scattered, but Weibel has a book about it, and another good reference is lecture notes by Soulé.

 $K_0(\mathbb{Z})$ is easy: a finitely-generated projective \mathbb{Z} -module is just a free \mathbb{Z} -module, and those are classified by dimension.

- $K_0(\mathbb{Z}) = \mathbb{Z}$
- $K_1(\mathbb{Z}) = \mathbb{Z}/2$ (?)
- $K_2(\mathbb{Z}) = \mathbb{Z}/2$

- $K_3(\mathbb{Z}) = \mathbb{Z}/48$ (much harder, due to Lee-Szczarba)
- $K_4(\mathbb{Z}) = 0$ (Rognes, about 2000, very hard)
- $K_5(\mathbb{Z}) = \mathbb{Z}$ (Soulé and others)

Conjecture 1.3. $K_{4m}(\mathbb{Z}) = 0$ for $m \ge 1$ (but K_8 is not known).

Theorem 1.4 (Kurihara, ~ 2000). The above conjecture is equivalent to the Vandiver conjecture.

Everything else is known.

Theorem 1.5 (Quillen). $K_n(\mathbb{Z})$ is finitely generated.

Theorem 1.6 (Borel).

$$K_n(\mathbb{Z}) = \begin{cases} \mathbb{Z} \oplus finite & n \equiv 1 \pmod{4} \\ finite & otherwise. \end{cases}$$

Proof. For $N \gg q$:

- $H^q(SL_N(\mathbb{Z});\mathbb{R}) \cong H^q_{cts}(SL_N(\mathbb{R});\mathbb{R}).$
- $H^*_{\operatorname{cts}}(SL_N(\mathbb{R})) = \Lambda(e_5, e_9, \dots, e_4|\frac{N-1}{2}|)$
- $K_q(\mathbb{Z}) \otimes \mathbb{R} \cong \pi_q BSL(\mathbb{Z})^+ \otimes \mathbb{R}$

The rest of the calculation of $K(\mathbb{Z})$ follows from:

Theorem 1.7 (Soulé/Dwyer-Friedlander, Voevodsky-Rost).

$$K_{2n-1}(\mathbb{Z}) \otimes \mathbb{Z}_p \xrightarrow{\cong} H^1_{\acute{e}t}(\operatorname{Spec} \mathbb{Z}[\frac{1}{p}], \mathbb{Z}_p(n))$$
$$K_{2n-2}(\mathbb{Z}) \otimes \mathbb{Z}_p \xrightarrow{\cong} H^2_{\acute{e}t}(\operatorname{Spec} \mathbb{Z}[\frac{1}{p}], \mathbb{Z}_p(n))$$

for $n \geq 2$ and p an odd prime.

A slightly more general series of techniques is given by trace methods. The idea: map K-theory to a more treatable object: THH or TC. This construction is due to Böbstedt-Hshiang-Madsen. These methods were introduced for figuring out the K-theoretic Novikov conjecture, which says that the assembly map

$$BG_+ \wedge K(\mathbb{Z}) \to K(\mathbb{Z}[G])$$

is rationally split injective assuming some finiteness conditions on G. (This is due to BHM.)

Waldhausen showed that there is a map $\Sigma^{\infty}_{+}X \to K(\Sigma^{\infty}\Omega X_{+}) =: A(X)$ that has a splitting.

If $I \subset A$ is an ideal, let $\widetilde{K}(A) := \operatorname{hofib}(K(A) \to K(A/I))$. For example, if I = (x) and $A = k[x]/x^n$ for a perfect field, then

$$\widetilde{K}(k[x]/x^n) = \begin{cases} W_{nk}(k)/V_n(W_q(h)) & i = 2q - 1\\ 0 & \text{otherwise.} \end{cases}$$

(Here V_n is the Verschiebung and W is Witt vectors.) This is due to Hesselholt-Madsen.

You can get information about K(S) in terms of $K(\mathbb{Z})$.

1.2. The trace. Topological Hochschild homology is:

$$THH(A) = A\widehat{\otimes}S^1$$

Think of this as configurations of points in S^1 with labels in A. If A is not commutative you can still do this. There is an S^1 action on THH(A). You can talk about the fixed points of this action. Then topological cyclic homology TC(A) is defined using those fixed points.

The trace is a map $K(A) \to TC(A)$. You can extend the *THH* construction to categories. The map $K(A) \to TC(A)$ roughly takes $c \mapsto$ the configuration of points labelled by $\mathbb{1}_c$.

Theorem 1.8 (Dundas-Goodwillie-McCarthy). If $B \to A$ is surjective and nilpotent fiber in π_0 then

is homotopy cartesian (after p-completion).

One example of such a map is the Hurewicz map, which gives rise to a cartesian square

$$K(S) \longrightarrow TC(S)$$

$$\downarrow \qquad \qquad \downarrow$$

$$K(\mathbb{Z}) \longrightarrow TC(\mathbb{Z})$$

 $K(\mathbb{Z})$ is more-or-less understood. TC(S) is known, by work of BHM, and $TC(\mathbb{Z})$ is known, due to Böbstedt-Madsen and Rognes. Blumberg-Mandell used this to show that $K(S)_p^{\wedge} \to TC(S)_p^{\wedge} \times K(\mathbb{Z})_p^{\wedge}$ is split injective (in π_*) for all odd p.

The proof was scattered over 25 years. It's the main application of Goodwillie calculus.

Proof idea.

- Dundas: reduce to simplicial rings.
- Goodwillie: reduce to rings. If you have a simplicial ring, you can either take the K-theory in the category of simplicial rings, or you can take K-theory levelwise (much easier). In general, these are not at all the same thing, but it works out for the homotopy fiber $K(B) \to K(A)$.
- Reduce inductively to split square-zero extensions $A \rtimes M \to A$.

- Extend $K(A \rtimes M)$ to a functor: make the Dold-Thom construction M(-) (bimodule of configurations of points in your space with labels in M). So you get a functor $K(A \rtimes M(-))$: Top_{*} \rightarrow Sp. Do the same for TC.
- Use calculus: show that $D_1K \simeq D_1TC$, by showing $D_1K \simeq THH(A, M(S^1 \wedge -)) \simeq D_1TC$ (actually for the last equivalence you have to *p*-complete. This is due to Dundas-McCarthy and Hesselholt). By calculus, $\widetilde{K} \simeq \widetilde{TC}$.