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1 The image of J

We have an unbased map

SO = colimnSO(n) −→ colimnΩnSn = QS0

mapping into the 1-component of QS0. The map induced by

SO −→ QS0 −1−→ QS0

on homotopy groups is called the J-homomorphism.

From now on let’s work at an odd prime p where the image of J has a relatively simple description:

(ImJ)n =

{
0 if n+ 1 6≡ 0 (mod 2(p− 1))

Z/pk+1 if n+ 1 = 2(p− 1)spk, s - p

Let V be the Moore space S0/p. We have a self map

v1 : Σ2(p−1)V −→ V.

The element

αspk/1 : S2(p−1)spk // Σ2(p−1)spkV
vsp

k

1 // V // S1

is of order p and lies in the image of J . Trickery with vanishing lines shows that these elements lie
in highest possible Adams filtration and there is a beautiful story concerning how the image of J
shows up in the classical Adams SS. We will turn our attention to how the image of J is detected
in the Adams-Novikov SS.

2 A guess as to how αspk/1 is detected

Recall that we are working at an odd prime p and that we have constructed a spectrum BP which
is a retract of MU(p). We will see that BP∗ = Z(p)[v1, v2, v3, . . .] and so the cofiber sequence

S0 p−→ S0 −→ V
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gives rise the a SES of BP∗BP -comodules

0 −→ BP∗
p−→ BP∗ −→ BP∗/p −→ 0.

Assuming that the naming convention is sensible we might guess that v1 ∈ BP∗/p is a BP∗BP -
comodule primitive defining an element v1 ∈ Cotor0

BP∗BP (BP∗/p,BP∗) detecting an element which
we also call v1:

S2(p−1) −→ Σ2(p−1)V
v1−→ V.

The map V −→ S1 is BP -null but it gives rise to a connecting homomorphism; we should expect

that the element αspk/1 is detected by the image of vsp
k

1 under

δ : Cotor0
BP∗BP (BP∗/p,BP∗) −→ Cotor1

BP∗BP (BP∗, BP∗).

Explictly we are guessing that αspk/1 is detected by[
dvsp

k

1

p

]
∈ Cotor1

BP∗BP (BP∗, BP∗),

where d denotes the coboundary map in the cobar construction Ω(BP∗, BP∗BP ). We know there
exists an element αspk/k+1 such that pkαspk/k+1 = αspk/1. We might guess that this is detected by
an element [

dvsp
k

1

pk+1

]
∈ Cotor1

BP∗BP (BP∗, BP∗).

So far it unclear that these elements are well-defined since we don’t know how to compute d.

3 Hazewinkel’s generators for (BP∗, BP∗BP )

Theorem (Hazewinkel): The Hurewicz homomorphim π∗(BP ) −→ H∗(BP ) is an injection. There
exist generators v1, v2, v3, . . . for

π∗(BP ) = Z(p)[v1, v2, v3, . . .]

and m1,m2,m3, . . . for
H∗(BP ) = Z(p)[m1,m2,m3, . . .]

such that |vi| = |mi| = 2(pi − 1) and under the inclusion we have

pmk+1 =
∑
i+j=k

miv
pi

j+1.

where by convention m0 = 1.

Moreover: Using the AHSS we see that the Hurewicz homomorphism π∗(BP ∧BP ) −→ H∗(BP ∧
BP ) takes the form

π∗(BP )[t1, t2, t3, . . .] −→ H∗(BP )[t1, t2, t3, . . . ]
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where |ti| = 2(pi − 1). In particular, π∗(BP ∧ BP ) and H∗(BP ∧ BP ) are flat (as left-modules)
over π∗(BP ) and H∗(BP ), respectively. By convention, t0 = 1.

Important: The Hopf algebroid (π∗(BP ), π∗(BP ∧ BP )) over Z(p) is determined by the Hopf
algebroid (H∗(BP ), H∗(BP ∧ BP )) over Z(p). The H∗(BP )-bimodule structure of H∗(BP ∧ BP )
is given by:

1. The leftH∗(BP )-module structure onH∗(BP∧BP ) is the obvious one onH∗(BP )[t1, t2, t3, . . .],
i.e. ηL(mk) = mk.

2. The rightH∗(BP )-module structure onH∗(BP∧BP ) is described by ηR(mk) =
∑

i+j=kmit
pi

j .

Note: ηR(m1) = m1t
p
0 +m0t1 = m1 + t1 so that ηR(v1) = ηR(pm1) = pm1 + pt1 = v1 + pt1. Also,

we have a commuting diagram

H∗(BP )⊗H∗(BP )
(ηL,ηR) //

ηL⊗ηR
��

H∗(BP ∧BP )

∆
��

H∗(BP ∧BP )⊗H∗(BP ∧BP ) // H∗(BP ∧BP )⊗H∗(BP ) H∗(BP ∧BP )

and
1⊗m1 −m1 ⊗ 1 � //

_

��

(m1 + t1)−m1 = t1_

��
1⊗ (m1 + t1)−m1 ⊗ 1 � // 1⊗m1 + 1⊗ t1 −m1 ⊗ 1 = t1 ⊗ 1 + 1⊗ t1

so that t1 ∈ BP∗(BP ) is a coalgebra primitive.

4 dvsp
k

1 /pk+1

Recall that in the unreduced cobar construction we have

Ω0(BP∗;BP∗BP )
d // Ω1(BP∗;BP∗BP )

BP∗
ψR−(−⊗1) // BP∗ ⊗BP∗ BP∗BP

BP∗
ηR−ηL // BP∗BP

Recall that ηL(v1) = v1 and ηR(v1) = v1 + pt1. Thus in Ω(BP∗;BP∗BP )

d(vsp
k

1 ) = ηR(vsp
k

1 )− ηL(vsp
k

1 ) =
∑

i+j=spk

i>0

pi
(
spk

i

)
vj1[ti1].

Whenever i > 0, pk+1|pi
(
spk

i

)
and so

dvsp
k

1

pk+1 is a well-defined cocyle in Ω1(BP∗, BP∗BP ), determining
an element

αspk/k+1 ∈ Cotor1
BP∗BP (BP∗, BP∗).
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5 The chromatic spectral sequence

We wish to show the elements αspk/k+1 generate the 1-line of the ANSS. For this we’ll use the
chromatic SS. We consider the following in which each “down, up-right” is a SES.

BP∗

��

BP∗/p
∞

��

BP∗/(p
∞, v∞1 )

��

· · ·

p−1BP∗

88

v−1
1 BP∗/p

∞

66

v−1
2 BP∗/(p

∞, v∞1 )

77

[It is clear that we can construct the diagram above as BP∗-modules. It is less clear that all the
objects have the structure of a right BP∗BP -comodule. We’ll assume this for now.]

We let Mk = v−1
k BP∗/(p

∞, v1, . . . , v
∞
k−1), where we now have the convention that v0 = p. Ap-

plying CotorBP∗BP (−, BP∗) we get an exact couple.

· · · Cotort,uBP∗BP
(BP∗/(p

∞, . . . , v∞s−1), BP∗)

��

oo Cotort−1,u
BP∗BP

(BP∗/(p
∞, . . . , v∞s ), BP∗)

��

oo · · ·oo

Cotort,uBP∗BP
(Ms, BP∗)

22

Cotort−1,u
BP∗BP

(Ms+1, BP∗)

55

Here the dashed line raises the degree of s relative to what is indicated. We get a SS with

Es,t,u1 = Cotort,uBP∗BP
(Ms, BP∗)

s
=⇒ Cotors+t,uBP∗BP

(BP∗, BP∗), dr : Es,t,ur −→ Es+r,t−r+1,u
r .

We wish to use this SS to compute the 0 and 1-line of the E2-page of the ANSS. If M is a right
BP∗BP -comodule write Hs(M) for Cotors,∗BP∗BP

(M,BP∗). The above SS takes the form

Ht(Ms)
s

=⇒ Hs+t(BP∗).

6 H∗(M0)

BP ∧HQ is a wedge of HQ’s. Thus HQ −→ HQ∧BP splits and by definition HQ is BP -injective.
We conclude that

H∗(M0) = CotorBP∗BP (p−1BP∗, BP∗) = CotorBP∗BP (BP∗(SQ), BP∗) = E2(HQ;BP )

is concentrated in degree 0 where it is equal to Q (and the u grading is 0).

7 Some useful results

7.1 Primitives

We have already used that the following diagrams commute

BP∗
x 7−→x⊗1 // BP∗ ⊗BP∗ BP∗BP

∼=
��

BP∗
ηL // BP∗BP

BP∗
ψR // BP∗ ⊗BP∗ BP∗BP

BP∗
ηR // BP∗BP

∼=

OO

This tells us that BP∗BP -comodule primitives are elements of ker (ηR − ηL).
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7.2 Landweber and Morava

p ∈ BP∗ is a BP∗BP -comodule primitive and so we can form the BP∗BP -comodule BP∗/p. We
have seen that (ηR − ηL)(v1) = pt1 ∈ BP∗BP and so v1 ∈ BP∗/p is a BP∗BP -comodule primitive.
Part of a theorem due to Landweber and Morava says that

H0(BP∗) = Z(p) and H0(BP∗/p) = Fp[v1].

Thus
H0(v−1

1 BP∗/p) = Fp[v1, v
−1
1 ].

7.3 t1 ∈ BP∗BP

Recall that t1 ∈ BP∗BP is a coalgebra primitive. Thus, it defines an element [t1] ∈ H1(M) for any
right BP∗BP -comodule.

Theorem: [t1] 6= 0 in H1(v−1
1 BP∗/p).

8 H0(M1)

The SES of BP∗BP -comodules

0 // v−1
1 BP∗/p

i // v−1
1 BP∗/p

∞ p // v−1
1 BP∗/p

∞ // 0

a � // a
p

gives a LES

0 −→ H0(v−1
1 BP∗/p)

i−→ H0(M1)
p−→ H0(M1)

δ−→ H1(v−1
1 BP∗/p) −→ . . . .

Given a nonzero element x ∈ H0(M1) there exists a k ≥ 0 such that pkx 6= 0 and pk+1x = 0. Then
pkx is in the image of i. Thus we can calculate H0(M1) by taking elements in the image of i and
analysing how p-divisible they are; we know we cannot divide an element by p if the image under
δ is nonzero. We need a lemma.

Lemma: x =
vsp

k

1

pk+1 ∈ Ω(M1;BP∗BP ) is a cocycle. If p - s then δ[x] is nonzero.

Proof : Note that in the statement of the lemma s is allowed to be negative. Recall that

d(vsp
k

1 ) = ηR(vsp
k

1 )− ηL(vsp
k

1 ) =
∑

i+j=spk

i>0

pi
(
spk

i

)
vj1[ti1]

in Ω(BP∗;BP∗BP ). pk+1|pi
(
spk

i

)
for i > 0 and so in Ω(p−1BP∗;BP∗BP ), when we calculate

d

(
vsp

k

1

pk+1

)
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we actually obtain an element of Ω(BP∗, BP∗BP ). [Dividing by p commutes with the differential
since p is primitive in BP∗.] Thus, in Ω(BP∗/p

∞;BP∗BP ) and Ω(M1;BP∗BP )

d

(
vsp

k

1

pk+1

)
= 0.

Since we are assuming that p is odd, we have pk+2|pi
(
spk

i

)
, whenever i ≥ 2. Thus when we calculate

d

(
vsp

k

1

pk+2

)

in Ω(p−1BP∗;BP∗BP ) we obtain

svsp
k−1

1

p
[t1]

plus an element of Ω(BP∗;BP∗BP ). We conclude that δ[x] is svsp
k−1

1 [t1]. v1 acts isomorphically
on H∗(v−1

1 BP∗/p). Since s - p and [t1] 6= 0 we conclude δ[x] 6= 0. We’ve proved the lemma for s > 0.

Setting s = 1 in the first computation and replacing k by (k+ 1) we see that vp
k+1

1 is primitive mod
pk+2. Thus

vp
k+1

1 : BP∗〈p−k−2〉/BP∗ −→ BP∗〈p−k−2〉/BP∗

is a comodule map. This means that multiplication by vp
k+1

1 = vp·p
k

1 commutes with d on

vsp
k

1 /pk+1 and vsp
k

1 /pk+2.

Thus we have proved the lemma for all s 6= 0. We’re then done by the following lemma.

Lemma: 1
pk
∈ Ω(M1;BP∗BP ) is a cocycle for all k.

Conclusion: We know that the image of i is{[
vsp

k

1

p

]
: s ∈ Z− pZ, k ∈ N ∪ {0}

}
∪
{[

1

p

]}
and we have analysed how p-divisible these elements are. Up to a little thinking we have computed
H0(M1): it is generated as an abelian group by{[

vsp
k

1

pk+1

]
: s ∈ Z− pZ, k ∈ N ∪ {0}

}
∪
{[

1

pk

]
: k ∈ N

}
.
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9 Computing the relevant part of the CSS

We have a SES of abelian groups

0 −→ Z −→ p−1Z −→ Z/p∞ −→ 0.

Localising gives
0 −→ Z(p) −→ Q q−→ Z/p∞ −→ 0.

Since we know that H0(BP∗) = Z(p) we have a commuting diagram

H0(M0)
d1 // H0(M1)

Q //q // Z/p∞
u-grading-equal-to-0-part included

OO

What about d1 : H0(M1) −→ H0(M2). This is just the composite

H0(v−1
1 BP∗/p

∞) −→ H0(BP∗/(p
∞, v∞1 )) −→ H0(v−1

2 BP∗/(p
∞, v∞1 )).

We see immediately that{[
vsp

k

1

pk+1

]
: s ∈ N− pN, k ∈ N ∪ {0}

}
∪
{[

1

pk

]
: k ∈ N

}
is killed by d1. On the other hand the image of{[

vsp
k

1

pk+1

]
: −s ∈ N− pN, k ∈ N ∪ {0}

}

under d1 is nonzero (since H0(M) consists of primitives, in particular, a submodule of M , there is
no quotienting to worry about). Thus

E1,0,∗
∞ =

{[
vsp

k

1

pk+1

]
: s ∈ N− pN, k ∈ N ∪ {0}

}
,

which looks suspiciously familiar (see sections 1 and 2). The element in H1(BP∗) detected by[
vsp

k

1

pk+1

]
is represented by

dvsp
k

1

pk+1
= svsp

k−1
1 [t1] +

∑
i+j=spk

i>1

pi−k−1

(
spk

i

)
vj1[ti1] ∈ Ω1(BP∗;BP∗BP )

and so it is our friend αspk/k+1.
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